Two-stage reconstituting injector

Information

  • Patent Grant
  • 10688250
  • Patent Number
    10,688,250
  • Date Filed
    Friday, October 20, 2017
    7 years ago
  • Date Issued
    Tuesday, June 23, 2020
    4 years ago
Abstract
An injector (10) for injecting a medicament into a patient. The injector includes a container (18) defining a first chamber (22), which contains a fluid therein, and a second chamber (23). The injector also includes an injection conduit (126) configured for directing the fluid fired from the container into the patient. A transfer mechanism is operable by a user to transfer the fluid from the first chamber to the second chamber in a first stage of operation, and a firing mechanism is operable by the user for firing the fluid from the second chamber through the injection conduit in a second stage of operation. An energy source (62) is in powering association with the firing mechanism to drive firing mechanism in the first and second stages.
Description
FIELD OF THE INVENTION

The present invention relates to an injector, and more particularly to an injector in which materials from at least two compartments are contained before the injection is made.


BACKGROUND OF THE PRESENT INVENTION

Known injection devices for injection of medicaments into a patient include traditional hypodermic needle syringes, needle-free jet injectors like the ones disclosed in U.S. Pat. Nos. 5,599,302; 5,062,830; and 4,790,824; needle-assisted injectors, such as those described in U.S. Patent Publication No. 2005/0033234; and self-injectors or autoinjectors like the ones disclosed in U.S. Pat. Nos. 4,553,962 and 4,378,015, and PCT Publications WO 95/29720 and WO 97/14455.


The liquid medicament preparations that are injected from such injection devices arc also known to contain insoluble or particulate drug constituents. This can be due to the insolubility of the drug in the vehicle or medium in which it is stored. As a result, the insoluble or particulate drug constituents in the liquid preparations separate upon storage, even over short periods of time.


The particulates can potentially clog the needle, and this is particularly problematic in cases when the liquid pharmaceutical preparation containing insoluble particles is self-administered or administered in the home by non-professional care-givers. Ordinarily, when these liquid pharmaceutical preparations are administered in the hospital or other health-care providing institutions by trained staff, one can rely on adequate handling of the medication to ensure proper drug delivery, despite settled material and plugged needles. However when such pharmaceutical preparations are self-administered or administered in the home by non-professional care-givers, the risk for inadequate handling of the medication increases since the injection of such formulations requires that the administrator be able to adequately resuspend any settled material and clear the needle to ensure proper drug delivery.


Thus, an injector is needed that can facilitate reliable combination of injectable components prior to injection.


SUMMARY OF THE INVENTION

The invention is related to an injector for injecting a medicament into a patient. The preferred embodiment of the injector includes a container defining a first chamber containing a fluid therein, and a second chamber. An injection conduit is configured for directing the fluid fired from the container into the patient. The injector also includes a transfer mechanism operable by a user to transfer the fluid from the first chamber to the second chamber in a first stage of operation, and a firing mechanism operable by the user for firing the fluid from the second chamber through the injection conduit in a second stage of operation. An energy source is in powering association with the firing mechanism to drive firing mechanism in the first and second stages.


Preferably, the injector also includes a transfer control that is manually operable to operate the injector in the first stage of operation. The first stage preferably also includes venting the second chamber. The injection conduit preferably has a position that is initially fluidly incommunicated with the second chamber, and the transfer control preferably operates the transfer mechanism in the first stage of operation and fluidly communicates the injection conduit with the second chamber in the first stage of operation. Preferably, the transfer control includes a cap associated with the container and disposed to cover the injection conduit prior to the first stage of operation. Also, the cap is preferably separable from the injection conduit and container after the first stage of operation. Preferably, the injector includes a cap release in locking association with the cap to prevent operation thereof. The cap release is positionable in a release position in which the cap release releases the cap to permit operation thereof in the first stage of operation.


The injection conduit preferably includes a communicating needle portion, and the transfer control is operable to relatively move the communicating needle portion with respect to the second chamber to pierce the container to fluidly communicate the second chamber with the communicating needle portion in the first stage of operation. The injection conduit also preferably includes an injecting needle portion disposed and configured to pierce the skin of the patient for assisting the injection of the fluid in the second stage.


Preferably, the energy source and firing mechanism arc configured for delivering the fluid in a jet to an injection site within the patient tissue remote from the injecting needle. The injection conduit preferably includes a jet nozzle disposed and configured to deliver the fluid in a jet into the patient during the second stage of operation to pierce the skin of the patient for assisting the injection of the fluid in the second stage.


Preferably, the second chamber comprises the medicament, and the fluid in the first chamber is a diluent configured for dissolving or suspending the medicament therein for injection into the patient. The energy source is preferably associated to power the transfer mechanism to transfer the fluid to the second chamber. The preferred injector also includes an injection trigger mechanism operably associated with the firing mechanism to operate the firing mechanism in the second stage. The transfer and firing mechanisms can include a firing ram that is movable over a first throw in the first stage of operation and a second throw in the second stage of operation, the energy source in biasing association with the ram in each stage of operation to power the ram. The injection trigger mechanism is configured to block movement of the ram beyond the first throw, the injection trigger being acuatable to release the ram to travel over the second throw.


The injector also preferably includes a retractable guard that is movable between a protecting position in which the injection conduit is disposed within the guard, and an injecting position in which an injection needle portion of the injection conduit is exposed for injection of the fluid in the patient. Preferably, the injection trigger mechanism is configured for operating the firing mechanism in the second stage after the retractable guard is retracted from the protecting position. Also, the retractable guard can be operably associated with the injection trigger mechanism to cause the injection trigger mechanism to operate the firing mechanism when the guard is retracted to the injecting position.


In another preferred embodiment, the injector includes a container that includes a fluid chamber containing a medicament therein, the fluid chamber comprising a needle hub at the distal end thereof, and an injection conduit configured for directing the medicament fired from the container into the patient, the injection conduit having a position that is fluidly incommunicated with the fluid chamber. The injector also includes a transfer control operable to fluidly communicate the injection conduit with the needle hub of the fluid chamber. The transfer control includes a cap associated with the container and disposed to cover the injection conduit, the cap being separable from the injection conduit upon operating the transfer control to fluidly communicate the injection conduit with the needle hub.


Preferably, the injection conduit includes a communicating needle portion, the transfer control being operable to relatively move the communicating needle portion with respect to the fluid chamber to pierce the container adjacent the needle hub to fluidly communicate the fluid chamber with the communicating needle portion.


A trigger device can be associated with the energy source and the firing mechanism, with the triggering device being operable in a first triggering stage, which causes the firing mechanism to operate in the first stage of operation. The triggering device can be configured such that only after the firing mechanism has operated in the first stage of operation, the triggering device is operable in a second triggering stage which causes the firing mechanism to operate in the second stage of operation. The triggering device can have a single control that is operable in the first and second triggering stages, or separate controls to operate in each of the first and second triggering stages.


The present invention thus provides an injector that enables reconstitution of a liquid medicament preparation, preferably just prior to injection, to enable easy and effective delivery of the medicament to a patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a preferred embodiment of an injector constructed according to the present invention, showing the injector with a cap associated therewith;



FIG. 2 is a perspective view of the distal end of the housing thereof, with the cap removed;



FIG. 3 is a side view of a flex arm, flex arm cam, and an outer sleeve arm of the injector of FIG. 1;



FIG. 4 is a perspective view of another embodiment of an injector device with the cap being removed; and



FIG. 5 is a perspective view thereof during injection.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a preferred embodiment of an injector 10 has a tubular outer housing 12 having a proximal end 6 and a distal end 8, and configured for allowing a user to handle the injector 10 and position the injector near or adjacent an injection location of a patient. The outer housing 12 preferably houses most of the components of the injector 10.


A cap 100 is associated with the outer housing 12 at the distal end 8 and is configured for covering an injection conduit, which can be a needle 126, or a jet nozzle, for example. The cap 100 preferably includes engagement portions configured for removable engagement with outer housing 12. As shown in the preferred embodiment of FIGS. 1 and 2, the cap 100 preferably includes a radially recessed neck 101 extending a distance 108 from the proximal end thereof. The neck 101 preferably has a smaller diameter than the remaining portion of the cap 100, but can have the same or larger diameter in other embodiments. A pair of engagement portions 102 extend preferably proximally towards the outer housing 12 from the neck 101, such as on opposing sides there. Each of the engagement portions 102 preferably extends circumferentially around less than about a quarter, and more preferably less than about a fifth, of the total circumference of the neck 101. The outer radial surface of the engagement portions 102 is preferably a threaded surface 103 configured for threadably associating with a portion of the outer housing 12. The engagement portions 102 also preferably include a notch 104 at the proximal end thereof and which is configured for associating with another portion of the outer housing 12.


The distal end of the outer housing 12 also preferably includes engagement portions 106 configured for removable engagement with the cap 100. Engagement portions 106 extend distally from positions to engage the cap engagement portions 102, and in this embodiment are disposed diametrically opposite sides of the distal end 8 of the outer housing 12. Similar to the engagement portions 102 of the cap 100, the engagement portions 106 of the outer housing 12 preferably extend circumferentially around less than about a quarter, and more preferably less than about a fifth, of the total circumference of the distal end 8 of the outer housing 12. The inner radial surface of the engagement portions 106 is preferably a threaded surface 107. Additionally, the engagement portions 106 preferably define a pair of gaps 105 therebetween, the circumferential length of the gaps 105 preferably larger than the circumferential length of the engagement portions 102 of the cap 100.


Preferably, the width between circumferentially adjacent engagement portions 106 of the outer housing 12 is greater than the width between engagement portions 102 of the cap 100, such that when the cap 100 and outer housing 12 are engaged with each other as shown in FIG. 1, the threaded surface 103 of the engagement portions 102 are in threaded association with the threaded surface 107 of the engagement portions 106, with the engagement portions 102 disposed radially inward with respect to the engagement portions 106.


One or both of the engagement portions 106 preferably further includes a cap lock mechanism 110 that is moveable between a blocking position and a release position. The cap lock mechanism 110 includes an actuation portion 111 that is operable by the user, a blocking portion 112, and a pivot 113 that is mounted preferably to the outer housing 12. When the engagement portions 102 and 106 are in threaded association with each other such that the cap 100 and the outer housing 12 are engaged, each cap lock mechanism 110 is resiliently biased to the blocking position such that each blocking portion 112 is disposed within respective notches 104. In this position, the blocking portion 112 prevents rotation of the cap 100 with respect to the outer housing 12, at least in a direction that would allow cap release, and preferably in both directions. Movement of the cap 100 in the proximal direction with respect to the outer housing 12 is also thus prevented. Actuation of the cap lock mechanism 110, for example, by depressing the actuation portion 111 radially inward, causes the blocking portion 112 to pivot proximally about pivot 113 to a release position. As a result, the blocking member 112 pivots out of association with the notch 104 to a position in which rotation in a cap release direction is permitted, and no longer prevents or obstructs movement of the cap 100 in the proximal direction with respect to the outer housing 12. Preferably, the actuation portion 111 is a button, although it can be any other suitable actuation member in other embodiments, and alternative mechanisms can be used to lock the cap in a protective position. In other embodiments, the cap lock mechanism can be mounted on the cap and be disengageable with notches located on the engagement portions of the outer housing.


The interior of the cap 100 preferably includes a hub-engagement portion 120, which is preferably substantially annular, that defines a holding area 122 therein. The hub-engagement portion 120 is preferably configured for reception in axial opening 74 of guard 66 of the injector 10. Releasably mounted within the holding area 122 is a needle hub 124 to which an injection needle 126, or other injection conduit, is mounted. In a needle-free embodiment, a jet nozzle can be mounted thereto. The needle hub 124 preferably is in a snap-lock association with the holding area 122 of the cap 100, but alternatively can be abutting the cap for free removal therefrom. The needle 126 preferably includes a piercing end 125 and an injection end 127 that terminates in an injection tip. The injection end 127 is preferably configured as known in the art to penetrate the tissue of a patient, preferably the skin, at the injection location. A needle bore extends through the needle 126 forming a conduit for the medicament. Preferably, the needle hub 124 is attached to the needle 126 so that the piercing end 125 is oriented proximally, and the injection end 127 is oriented distally, with respect to the outer housing 12.


In other embodiments, the cap and distal end of the housing can have different configurations for allowing removable engagement therebetween. For example, the cap and housing can include associable bayonet fittings, latch fittings, snap fittings, or other suitable attachment structures.


The injector 10 also includes container support member 16 housed within and mounted with the inner housing 13. The container support member 16 is configured to hold and position a container within the injector 10. The container can be, for example, a cartridge 18 or any other suitable container for holding medicament therein. In the preferred embodiment, the container support member 16 is substantially fixed to the inner housing 13, such as by snaps, an adhesive, a weld, or another known attachment, but may be mounted therein in other manners.


The cartridge 18 preferably includes a container portion 24 that defines in its interior a diluent chamber 22, which is preferably prefilled with a liquid diluent, and a medicament or drug chamber 23, which is preferably prefilled with a particulate drug. The container portion 24 is preferably tubular or cylindrical in shape. The diluent chamber 22 is preferably aligned with and disposed proximally with respect to the medicament chamber 23. Additionally, the diluent chamber 22 is defined by a first plunger 28 at the proximal end of the chamber, a second plunger 29 at the distal end of the chamber, and by the wall of the container portion 24. Similarly, the medicament chamber 23 is defined by the second plunger 29 at the proximal end of the chamber, a membrane, septum 30, or stopper at the distal end of the chamber, and by the wall of the container portion 24. The distal end of the medicament chamber 23, adjacent the septum 30, is preferably configured for engagement and mounting of the needle hub 124 therewith.


A preferred material for the container portion 24 is glass, for example, borosilicate glass that is compatible with most medicaments, but other suitable materials can be used in other embodiments. The first and second plungers or stoppers 28, 29, and the septum 30 seal the respective contents of diluent chamber 22 and medicament chamber 23 therein.


The container 18 also preferably includes a by-pass or a reconstitution bulge 32 where the walls of the container are flared radially outward along a longitudinal length thereof. As such, the radial diameter of the reconstitution bulge 32 is preferably substantially larger than the remaining portions of the container 18. Preferably, the radial diameter and the longitudinal length of the reconstitution bulge 32 is also substantially larger than that of the second plunger 29. The reconstitution bulge 32 is preferably located within the medicament chamber 23 before the injection is commenced or the contents of the diluent and medicament chambers are combined.


The injector 10 also preferably includes a flex arm cam member 40, flex ail is 44, and ram arms 48 contained within the outer housing 12, as shown in FIG. 1. FIG. 3 shows a side view of the relationship between such components. The flex arm cam member 40 is preferably disposed near the distal end of the outer housing 12 such that base 41 of the flex arm cam member 40 is proximally adjacent the cap 100. The flex arm cam member 40 also includes flex arm cams 42 that extend proximally from the base 41 to adjacent a distal portion of one of the flex arms 44. The flex arm cams 42 also define a slot 43 therebetween configured for receiving a portion of the ram arm 48.


The distal end of the of the flex aim 44 can be mounted to inner housing 13 or another suitable portion of the injector 10. The distal portion of the flex arms 44 are disposed radially inward with respect to the flex arm cams 42. The flex arms 44 extend proximally from the flex arm cams 42. The flex aims 44 are shown in a blocking position in FIG. 1. The flex arms 44 are preferably made of a resilient, flexible material such that the proximal ends of the flex arms 40 can flex radially inward upon application of a force thereto to assume a release position.


In the blocking position, the proximal ends of each flex aim 44 is disposed in longitudinal abutment with, and preferably in substantial longitudinal alignment with, the distal end of a respective ram arm 48. The ram arms 48 further extend proximally therefrom to respective shoulders 49, which extend radially inward from each ram arm 48. Preferably, the shoulder 49 is attached to ram 60, which is associated with and biased by an energy source, which in the embodiment of FIG. 1 is a compression spring 62, although other suitable energy sources can alternatively be used such as elastomer, compressed-gas springs, or gas generators. A preferred type of compression spring is a coil spring. As a result, the ram aims 48 are also biased distally by the spring 62, and thus the distal end of each ram arm 48 is biased against the proximal end of each flex arm 44 when the flex arms are in the blocking position. The distal end of the ram 60 is disposed adjacent the proximal end of the first plunger 28. Although the ram 60 is biased distally against the first plunger 28 by the spring 62, the ram 60 is prevented from displacing the first plunger 28 because the ram wins 48 are blocked by the flex arms 44.


The ram 60 also includes a proximal portion that includes a shaft 63 and terminates proximally at enlarged portion or end 64. The enlarged end 64 preferably has a radial diameter that is substantially greater than that of the shaft 63, and which is also too large to fit through aperture 58 between the trigger protrusions 56, which thus prevents or impedes distal movement of the ram 60 past where the trigger protrusions 56 would abut the enlarged end 64.


The features of the injector 10 as described above advantageously allow the injector 10 to complete a first stage of operation, which effectively prepares the medicament and readies the injector 10 for injection. Prior to commencement of the first stage of operation, the injector 10 is preferably oriented such that the cap 100, which is in threaded association with the outer housing 12, is above the rest of the injector 10, as shown in FIG. 4. In some embodiments, a safety wrapping is affixed to the cap and the housing, the removal of which is required in order to commence the first stage of operation. Additionally, the safety wrapping can include indicia thereon to indicate that the injector should be oriented with the cap above the rest of the injector prior to commencing the first stage of operation, as well as other instructions.


In the preferred embodiment, the first stage of operation is initiated by actuation or depression of the cap lock mechanisms 110 to enable the cap 100 to be unlocked from fixed engagement with the outer housing 12. Upon actuation of the cap lock mechanisms 110, the blocking portions 112 are pivoted proximally about the pivot 113 to the release position, and thus the cap 100 is free to rotate. Upon rotation of the threads, the cap 100 moves proximally with respect to the outer housing 112, as shown in FIG. 4. Preferably, the cap 100 is able to simultaneously rotate and move proximally. Instead of threads, alternative embodiments can use other mechanisms, such as modified bayonet fittings of the cap to the housing, or by a cam mechanism. The cap 100 is preferably able to move proximally with respect to the outer housing 12 until a proximal portion of the cap 100 contacts the distal end of the engagement portions 106, which can act to limit proximal movement of the cap 100. Preferably, a quarter-turn rotation of the cap 100 is sufficient to move the cap to actuate the first stage mechanism or transfer mechanism, which in this embodiment includes cap 100, flex aim cam member 40, flex arms 44, and ram aims 48, and also to completely disengage the respective threaded surfaces 103, 107 of the engagement portions 102, 106 from threaded association with each other (e.g., rotating the cap so as to dispose the engagement portions 102 within the gaps 105 defined between the engagement portions 106, or vice versa). In other embodiments, the cap and housing can be configured to require rotation of the cap first until disengagement of the engagement portions, subsequently followed by movement of the cap proximally relative to the housing.


In another embodiment, as shown in FIG. 5 for example, engagement between the cap and the outer housing is directed by a modified bayonet fitting 130 disposed on the outer housing 12. The fitting 130 includes a longitudinal slot and a lateral slot, and the cap preferably includes a cap protrusion configured to slide within the longitudinal and lateral slots. In this configuration, the cap protrusion is located at the end of the lateral slot when the cap and outer housing are engaged, and disengagement is preferably achieved by rotation of the cap such that the cap slides along the lateral slot, followed by longitudinal movement of the cap away from the outer housing such that the cap slides along the longitudinal slot to separate the cap therefrom.


In the preferred embodiment, rotation of the cap 100 with respect to the outer housing 12 disengages the engagement portions 102, 106 from threaded association with each other, thus allowing the cap 100 to be completely removed from association with the outer housing 12 by pulling the cap 100 distally away therefrom. Prior to such removal of the cap, however, movement of the cap 100 proximally with respect to the outer housing 12 also preferably initiates the first stage of operation, which preferably includes attaching the injection conduit in fluid communication with the medicament chamber 23.


For example, movement of the cap 100 in the proximal direction also moves the needle hub 124 proximally such that the needle hub 124 is received on the distal end of the medicament chamber 23 and securely mounted thereto. Preferably, the needle hub 124 has a snap-lock association with the distal end of the medicament chamber 23 that is of greater strength than the snap-lock association between the needle hub 124 and the holding area 122. Thus, the needle hub 124 will remain mounted to the distal end of the medicament chamber 23 even after removal of the cap 100 from the injector 10 by pulling the cap distally.


Additionally, upon moving the needle hub 124 proximally for mounting, the piercing end 125 of the needle 126 preferably pierces or punctures the septum 30 at the distal end of the medicament chamber 23. This puts the bore of the needle 126 in fluid communication with the medicament chamber 23 and the medicament therein, and is open at the needle tip 127 to inject the medicament therethrough. The fluid communication between the needle 126 and the medicament chamber 23 also acts to vent the chamber, thus allowing air within the chamber to escape or be released through the bore of the needle 126, such as upon movement of the plungers 28, 29 through the diluent and medicament chambers 22, 23. Orientation of the injector 10 with the cap 100 above the injector 10 advantageously facilitates efficient venting of the medicament chamber 23, without the medicament leaking from the needle hub 124.


Movement of the cap 100 in the proximal direction also causes a proximal side 80 of cap 100 to contact and push the base 41 of the flex arm cam member 40. Upon engagement by the proximal side 80, the flex at in cam member 40 is also moved in the proximal direction, sliding the flex arm cams 42 proximally along and against the distal portions of the flex arms 44. The flex arm cams 42 thus cam the flexible flex arms 44 radially inwardly from the blocking position to the release position with respect to the ram aims 48. Because the flex arms 44 in the release position are no longer longitudinally aligned with the ram arms 48, the spring 62 is able to move the ram 60 in the distal direction until the enlarged end 64 reaches aperture 58, where the trigger protrusions 56 prevent further distal movement of the ram 60. In the first stage operation, the ram 60 preferably moves longitudinally by a predetermined first amount, which is less than full travel. As the ram 60 moves distally, the ram arms 48 also slide distally radially over the flex arms 44, and the distal portions of the ram arms 48 are received within slots 43 between the flex arm cams 42.


Movement of the ram 60 distally also moves the first plunger 28 in the distal direction, pushing the diluent in the diluent chamber 22, which pushes the second plunger 29 in the distal direction until second plunger 29 reaches the reconstitution bulge 32. When the second plunger 29 enters the reconstitution bulge 32, a fluid passageway is created between the diluent chamber 22 and the medicament chamber 23, allowing diluent from the diluent chamber 22 to enter and mix with the medicament in the medicament chamber 23 as the diluent chamber 22 is reduced in volume because the first plunger 28 continues to move towards the second plunger 29. Preferably, the first stage mechanism is configured to move the first plunger 28 until contacting second plunger 29 in the bulge 32, but lesser or greater movement can be suitable in some embodiments.


Further mixing of the diluent and medicament in the medicament chamber 23 to suspend or dissolve the medicament in the diluent can be accomplished by shaking of the injector 10. In some embodiments, for example the embodiment shown in FIGS. 4 and 5, the outer housing 12 can include a transparent window portion 14 adjacent the medicament chamber 23 such that the user can physically inspect the extent of mixing of the suspension through the window.


At this point, the first stage of operation is completed and the injector 10 is ready for injection of the mixed medicament from the medicament chamber 23. Injection is preferably achieved by completion of a second stage of operation, which uses a second stage mechanism or firing mechanism that includes guard 66, trigger mechanism 52, and ram 60 in this embodiment. The user-operable trigger device to activate the device in both first and second stages of operation can include a single control that is operated in first and second triggering stages, or, as in the preferred embodiments described, can include separate user-manipulable controls that are operated separately from each other. For example, the control to initiate the second stage can be operable once the first stage is completed, but with the second stage mechanism keeping the injector from firing prior to its activation.


The injector 10 includes a trigger mechanism 52 that is preferably housed within the proximal end of the outer housing 12. The trigger mechanism 52 includes a portion of the inner portion or housing 13 that can be attached to the outer housing 12, such as by snaps, an adhesive, a weld, or other known attachment. Trigger protrusions 56 extend radially inwardly from the proximal end of trigger arms 57 and are resiliently biased outwardly. Trigger protrusions 56 form the aperture 58 about the shaft 63 of the ram 60, the shaft 63 being received in the aperture 58. The shaft 63 is preferably at least as long as the longitudinal movement of the ram 60 required in the first stage of operation. Upon movement of the ram 60 in the distal direction during the first stage of operation, the trigger protrusions 56 enter into blocking association with the enlarged end 64 of the ram 60 to prevent further distal movement of the ram 60 prior to the firing of the injector 10 upon actuation of the trigger mechanism 52.


A trigger member of the trigger mechanism 52, such as a latch portion or housing 61, is provided exterior to the inner housing 13 to retain the trigger protrusions 56 in the blocking association with the enlarged end 64 after the first stage of operation to prevent premature firing of the injector 10. The latch housing 61 is slideable inside the outer housing 12 with respect to the inner housing 13, preferably in an axial direction, and the latch housing 61 preferably surrounds the inner housing 13.


The distal end of the outer housing 12 preferably includes a needle guard 66 that is moveable with respect to the outer housing 12. The needle guard 66 is retractable between a protecting position and an injecting position. In the protecting position, the needle 126 is disposed within the guard 66. The needle guard 66 is retractable, preferably into the outer housing 12, in a proximal direction to the injecting position, in which the injection portion 127 of the needle 126 is exposed for insertion into a patient. In the preferred embodiment, the proximal movement of the guard is prevented substantially in the injecting position. The guard 66 is preferably resiliently biased distally towards the protecting position by compression coil spring 72. Also, the needle guard 66 has an axial opening 74 to allow the needle 126 pass there through, and which may be sized according to the type of injector desired. The needle guard 66 extends proximally through the injector 10 and is of unitary with the latch housing 61.


Other embodiments can incorporate alternative trigger mechanisms for actuating firing of the injector. For example, the injector can include a button or other suitable depressible member on the outer housing that, upon depression thereof, actuates firing of the injector.


In the preferred embodiment, the second stage of operation to fire the injector 10 is initiated by retracting the guard 66 to the injecting position, such as by pushing the guard against the patient's skin. The needle guard 66 is associated with the latch housing 61 such that when the guard 66 is displaced proximally, it slides the latch housing 61 also in a proximal direction to release the trigger protrusions 56 from blocking association with the enlarged end 64 of the ram 60. Preferably, the latch housing 61 has a latching portion that abuts the inner housing 13 in an association to bias and maintain the trigger protrusions 56 positioned in the blocking association with the enlarged end 64 prior to the firing of the injector 10. When the latch housing 61 is slid proximally by the retracting of the guard 66 to the injecting position, the latching portion slides beyond the portion of inner housing 13 that it contacts to flex the trigger protrusions 56, allowing the trigger protrusions 56 to move radially outwardly with respect to the shaft 63 and therefore from the blocking association with the enlarged end 64. When this happens, i.e., when the trigger mechanism 52 is actuated, the spring 62 biases the ram 60 against the first plunger 28 to fire the injector 10. The cartridge 18 is configured such that when the first plunger 28 is displaced in a distal direction, the volume of the medicament chamber 23 is decreased, forcing the mixed medicament out therefrom and through the bore of needle 24. Latch housing 61 preferably defines trigger openings adjacent to the latching portions, which are configured to receive a portion of the inner housing 13, such as the surface disposed radially outwardly from the trigger protrusions 56. A same energy source, such as spring 62, can be configured to power both first and second stages.


In the preferred embodiment, the user can push the distal end of the injector 10 against the patient's skin as shown in FIG. 5, pushing the needle 126 into the skin at the injection location, preferably substantially at the same speed as the injector is pushed, although alternative embodiments can move the cartridge forward to insert the needle. Once the needle 126 is fully inserted to an insertion point at a penetration depth in the patient's skin, the trigger mechanism 52 fires the injection of medicament into an injection location.


Preferably, the injecting position of the guard 66 is such that a predetermined length of the end of needle 126 is exposed from the guard 66. In some embodiments, such as where the opening 74 is of a sufficiently large diameter, the skin of the patient maybe allowed to extend into the opening 74 when the device 10 is pressed there against, and a needle that does not protrude beyond the distal end of the guard 66 can be used. In most embodiments, the distance by which the needle tip extends past the distal end of the guard will be fairly close to the depth of the insertion of the needle. Additionally, in some embodiments, the distal surface of the guard can be discontinuous.


The injector 10 can be configured for various types of subcutaneous injections, intradermal injections, intravascular injections, or other types of injections. In the preferred embodiment, the guard 66 is configured to allow insertion of the needle to a penetration depth in the skin that is up to about 5 mm below the skin surface. More preferably, the penetration depth is less than about 4 mm, and in one embodiment is less than about 3 mm. Preferably, the insertion depth is at least about 0.5 mm and more preferably at least about 1 mm. In another embodiment, the distance by which the needle extends past the guard 66 or the distal surface of the guard 66 that contacts the skin is up to about 5 mm, more preferably up to about 4 mm, and in one embodiment up to about 3 mm. Preferably, extension distance is at least about 0.5 mm, more preferably at least about 1 mm, and most preferably at least about 2 mm. In a preferred embodiment, tip 127 of the needle 126 extends by a distance of around 2.5 mm beyond the portion of the guard 66 that contacts the skin in the injecting position. In alternative embodiments, the needle tip stops behind or proximal to the guard, and penetrates the skin that is pushed into the guard.


In another embodiment, such as for intramuscular injection, the injector is configured to allow the needle to be inserted into the patient to a penetration depth in the skin, or alternatively beyond the distal surface of the guard, by a distance of up to about 15 mm. In one embodiment, this distance is about between 10 mm and 14 mm. In an embodiment for jet injection of epinephrine for instance, a preferred penetration depth or distance beyond the guard is between about 12 mm and 13.5 mm, and most preferably around 12.7 mm. Jet injection with this length needle improves the distribution of the medicament in the patient tissue compared to non-jet injection. Other exposed needle lengths can be selected for jet injection to different depths below the skin, with a preferred overall penetration length of between about 0.5 mm and about 20 mm. In these embodiments, the needle guard is preferably configured for retracting from a protecting position, preferably covering the entire needle, to an injecting position, in which the desired length of the end of the needle is exposed.


In some embodiments, the energy source, which is preferably spring 62, and the container, which is preferably cartridge 18, are configured to jet inject the medicament into the patient to an injection site. The spring 62 applies a force on the ram 60 to bias the first plunger 28 that is preferably sufficient to elevate the pressure within the diluent and medicament chambers 22, 23 to a level high enough to eject the medicament from the needle 126 as a jet. Jet injection is to be understood as an injection with sufficient velocity and force to drive the medicament to locations remote from the needle tip 127. The jet injector embodiments deliver a jet injection, the medicament is jet injected distally or in other directions, such as generally radially by the elevated pressure jet, which beneficially improves the distribution of the medicament after the injection and keeps a large bolus from forming that can detrimentally force the medicament to leak back out of the patient around the needle or through the hole left behind by the needle after it is removed. In alternative autoinjector embodiments that use needles, the injection pressures are relatively very low, and the medicament exits the needle tip inside the patient and is typically deposited locally around the needle in a bolus.


Preferably, the needle 127 is between 26 and 28 gage, and are most preferably around 27 gage, but alternatively other needle gages can be used where the other components are cooperatively configured to produce the desired injection. Preferably, the components of the injector 10 are configured to jet inject the medicament to a subterraneous injection site.


Preferred injection rates are below about 0.75 mL/sec., more preferably below about 0.6 mL/sec., and preferably at least about 0.2 mL/sec., more preferably at least about 0.3 mL/sec, and most preferably at least about 0.4 mL/see. Preferably, the injection of the entire amount of medicament is completed in less than about 4 seconds, more preferably in less than about 3 seconds, and most preferably in less than about 2.5 seconds. Preferably, the medicament injection takes at least about 1 second, and more preferably at least 1.5 seconds, and most preferably at least about 1.75 seconds. A preferred embodiment injects the medicament at about 0.5 mL/sec., completing the injection of 1 mL in about 2 seconds.


The entire amount of mixed medicament contained and injected from the container 18 is preferably between about 0.02 mL and 4 mL, and preferably less than about 3 mL, and in the preferred embodiment is around 1 mL. Larger volumes may also be selected depending on the particular medicament and dosage required. Preferably, the cartridge 18 shown in FIG. 1 is assembled into the remaining parts of the injector 10 already containing the desired amount of diluent and medicament therein. In a preferred embodiment, the container 18 contains about 1 mL of diluent and medicament.


While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.

Claims
  • 1. An injector for injecting a medicament into a patient, comprising: a container defining: a first chamber containing a fluid, anda second chamber;an injection conduit configured for directing the fluid fired from the container into the patient;a transfer mechanism operable by a user to transfer the fluid from the first chamber to the second chamber in a first stage of operation;a firing mechanism operable by the user for firing the fluid from the second chamber through the injection conduit in a second stage of operation;an energy source in powering association with the transfer and firing mechanisms to drive transfer and firing mechanisms in both the first and second stages; anda cap associated with the container and disposed to cover the injection conduit prior to the first stage of operation, the cap being separable from the injection conduit and container after the first stage of operation.
  • 2. The injector of claim 1, further comprising an injection trigger mechanism operably associated with the firing mechanism to operate the firing mechanism in the second stage.
  • 3. The injector of claim 2, wherein the transfer and firing mechanisms comprise a firing ram that is movable over a first throw in the first stage of operation and a second throw in the second stage of operation, the energy source in biasing association with the ram in each stage of operation to power the ram.
  • 4. The injector of claim 3, wherein the injection trigger mechanism is configured to block movement of the ram beyond the first throw, the injection trigger being actuatable to release the ram to travel over the second throw.
  • 5. The injector of claim 1, further comprising a retractable guard that is movable between: a protecting position in which the injection conduit is disposed within the guard; andan injecting position in which an injection needle portion of the injection conduit is exposed for injection of the fluid in the patient;wherein the injection trigger mechanism is configured for operating the firing mechanism in the second stage after the retractable guard is retracted from the protecting position.
  • 6. The injector of claim 5, wherein the retractable guard is operably associated with the injection trigger mechanism to cause the injection trigger mechanism to operate the firing mechanism when the guard is retracted to the injecting position.
  • 7. The injector of claim 1, further comprising a transfer control that is manually operable to operate the injector in the first stage of operation, which further comprises venting the second chamber.
  • 8. The injector of claim 1, wherein the injection conduit has a position that is fluidly incommunicated with the second chamber, the injector further comprising a transfer control that is manually operable to operate the transfer mechanism in the first stage of operation and to fluidly communicate the injection conduit with the second chamber in the first stage of operation.
  • 9. The injector of claim 8, wherein the transfer control comprises a cap associated with the container and disposed to cover the injection conduit prior to the first stage of operation, which cap is separable from the injection conduit and container after the first stage of operation.
  • 10. The injector of claim 8, wherein the injection conduit comprises a communicating needle portion, the transfer control operable to relatively move the communicating needle portion with respect to the second chamber to pierce the container to fluidly communicate the second chamber with the communicating needle portion in the first stage of operation.
  • 11. The injector of claim 10, wherein the injection conduit comprises an injecting needle portion disposed and configured to pierce the skin of the patient for assisting the injection of the fluid in the second stage.
  • 12. The injector of claim 11, wherein the injecting needle includes a needle tip and the energy source and firing mechanism are configured for delivering the fluid to an injection site within the patient tissue remote from the needle tip.
  • 13. The injector of claim 10, wherein the injection conduit is configured to deliver the fluid by injection into the patient during the second stage of operation.
  • 14. The injector of claim 1, wherein the transfer control includes the cap.
  • 15. The injector of claim 14, further comprising a cap release in locking association with the cap to prevent operation thereof, and being positionable in a release position in which the cap release releases the cap to permit operation thereof in the first stage of operation.
  • 16. The injector of claim 1, wherein the second chamber comprises a medicament, and the fluid comprises a diluent configured for dissolving or suspending the medicament therein for injection into the patient.
  • 17. The injector of claim 1, wherein movement of the cap actuates the transfer mechanism.
  • 18. An injector for injecting a medicament into a patient, comprising: a container defining:a first chamber containing a fluid, anda second chamber;a firing mechanism configured for transferring the fluid from the first chamber to the second chamber in a first stage of operation, and for firing the fluid from the second chamber in a second stage of operation;an injection conduit configured for directing the fluid fired from the container into the patient;an energy source in powering association with the firing mechanism to drive the firing mechanism in the first and second stages;a trigger device associated with the energy source and the firing mechanism and being operable in a first triggering stage which causes the firing mechanism to operate in the first stage of operation, wherein the triggering device is configured such that after the firing mechanism has operated in the first stage of operation, the triggering device is operable in a second triggering stage which causes the firing mechanism to operate in the second stage of operation; anda cap associated with the container and disposed to cover the injection conduit prior to the first stage of operation, the cap being separable from the injection conduit and container after the first stage of operation.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is continuation of and claims priority benefit of U.S. Non-Provisional Patent Application No. 14/244,916 filed Apr. 4, 2014; which is a continuation of U.S. Non-Provisional Patent Application No. 13/584,317, filed Aug. 13, 2012, now U.S. Pat. No. 8,696,618; which is a continuation of U.S. Non-Provisional Patent Application No. 12/299,274, filed May 2, 2007, now U.S. Pat. No. 8,251,947; which is a U.S. National Stage Entry of PCT/US2007/067986, filed May 2, 2007, which in turn claims priority benefit from U.S. Provisional Patent Application Ser. No. 60/796,939, filed 3 May 2006, all of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (654)
Number Name Date Kind
547370 Chalefou Oct 1895 A
1465793 Schilling Aug 1923 A
1512294 Marcy Oct 1924 A
1687323 Cook Oct 1928 A
2354649 Bruckner Aug 1944 A
2607344 Brown Aug 1952 A
2645223 Lawshe Jul 1953 A
2648334 Brown Aug 1953 A
2687730 Hein Aug 1954 A
2688967 Huber Sep 1954 A
2699166 Bickinson Jan 1955 A
2717601 Brown Sep 1955 A
2728341 Roehr Dec 1955 A
2737946 Hein, Jr. Mar 1956 A
2813528 Blackman Nov 1957 A
2866458 Mesa et al. Dec 1958 A
2888924 Dunmire Jun 1959 A
2893390 Lockhart Jul 1959 A
3130724 Higgins Apr 1964 A
3166069 Enstrom Jan 1965 A
3375825 Keller Apr 1968 A
3382865 Worrall May 1968 A
3526225 Hayamamachi Sep 1970 A
3557784 Shields Jan 1971 A
3563098 Gley Feb 1971 A
3605744 Dwyer Sep 1971 A
3688765 Gasaway Sep 1972 A
3702609 Steiner Nov 1972 A
3712301 Sarnoff Jan 1973 A
3742948 Post et al. Jul 1973 A
3770026 Isenberg Nov 1973 A
3790048 Luciano et al. Feb 1974 A
3797489 Sarnoff Mar 1974 A
3797491 Hurschman Mar 1974 A
3811441 Sarnoff May 1974 A
3831814 Butler Aug 1974 A
3848593 Baldwin Nov 1974 A
3882863 Sarnoff et al. May 1975 A
3892237 Steiner Jul 1975 A
3895633 Bartner et al. Jul 1975 A
3946732 Hurscham Mar 1976 A
4031893 Kaplan et al. Jun 1977 A
4067333 Reinhardt et al. Jan 1978 A
4127118 Latorre Nov 1978 A
4171698 Genese Oct 1979 A
4222392 Brennan Sep 1980 A
4227528 Wardlaw Oct 1980 A
4258713 Wardlaw Mar 1981 A
4282986 af Ekenstam et al. Aug 1981 A
4316463 Schmitz et al. Feb 1982 A
4316643 Burk et al. Feb 1982 A
4328802 Curley et al. May 1982 A
4333456 Webb Jun 1982 A
4333458 Margulies et al. Jun 1982 A
4338980 Schwebel et al. Jul 1982 A
4373526 Kling Feb 1983 A
4378015 Wardlaw Mar 1983 A
4411661 Kersten Oct 1983 A
4484910 Samoff et al. Nov 1984 A
4529403 Kamstra Jul 1985 A
4553962 Brunet Nov 1985 A
4558690 Joyce Dec 1985 A
4573971 Kamstra Mar 1986 A
4592745 Rex et al. Jun 1986 A
4624660 Mijers et al. Nov 1986 A
4634027 Kanarvogel Jan 1987 A
4661098 Bekkering et al. Apr 1987 A
4662878 Lindmayer May 1987 A
4664653 Sagstetter et al. May 1987 A
4664655 Orentreich et al. May 1987 A
4678461 Mesa Jul 1987 A
4719825 LaHaye et al. Jan 1988 A
4722728 Dixon Feb 1988 A
4774772 Vetter et al. Oct 1988 A
4790824 Morrow et al. Dec 1988 A
4818517 Kwee et al. Apr 1989 A
4820286 van der Wal Apr 1989 A
4822340 Kamstra Apr 1989 A
4830217 Dufresne et al. May 1989 A
4874381 Vetter Oct 1989 A
4883472 Michel Nov 1989 A
4913699 Parsons Apr 1990 A
4915701 Halkyard Apr 1990 A
4929238 Baum May 1990 A
4936833 Sams Jun 1990 A
4940460 Casey et al. Jul 1990 A
4966581 Landau Oct 1990 A
4968302 Schluter et al. Nov 1990 A
4973318 Holm et al. Nov 1990 A
4976701 Ejlersen et al. Dec 1990 A
4982769 Fournier et al. Jan 1991 A
4986816 Steiner et al. Jan 1991 A
5042977 Bechtold et al. Aug 1991 A
5062830 Dunlap Nov 1991 A
5064413 McKinnon et al. Nov 1991 A
5069670 Vetter et al. Dec 1991 A
5078680 Sarnoff Jan 1992 A
5080648 D'Antonio Jan 1992 A
5080649 Vetter Jan 1992 A
5085641 Sarnoff et al. Feb 1992 A
5085642 Sarnoff et al. Feb 1992 A
5092842 Bechtold et al. Mar 1992 A
5102388 Richmond Apr 1992 A
5102393 Sarnoff et al. Apr 1992 A
5104380 Holman et al. Apr 1992 A
5114406 Gabriel et al. May 1992 A
5137516 Rand et al. Aug 1992 A
5137528 Crose Aug 1992 A
5139490 Vetter et al. Aug 1992 A
5163907 Szuszkiewicz Nov 1992 A
5176643 Kramer et al. Jan 1993 A
5180370 Gillespie Jan 1993 A
5185985 Vetter et al. Feb 1993 A
5195983 Boese Mar 1993 A
5221348 Masano Jun 1993 A
5226895 Harris Jul 1993 A
5232459 Hjertman Aug 1993 A
5256142 Colavecchio Oct 1993 A
5263934 Haak Nov 1993 A
5271744 Kramer et al. Dec 1993 A
5279543 Glikfeld et al. Jan 1994 A
5279576 Loo et al. Jan 1994 A
5279585 Balkwill Jan 1994 A
5279586 Balkwill Jan 1994 A
5281198 Haber et al. Jan 1994 A
5290228 Uemura et al. Mar 1994 A
5295965 Wilmot Mar 1994 A
5300030 Crossman et al. Apr 1994 A
5304128 Haber et al. Apr 1994 A
5304152 Sams Apr 1994 A
5308341 Chanoch May 1994 A
5318522 D'Antonio Jun 1994 A
5320603 Vetter et al. Jun 1994 A
5330431 Herskowitz Jul 1994 A
5332399 Grabenkort et al. Jul 1994 A
5334144 Alchas et al. Aug 1994 A
5342308 Boschetti Aug 1994 A
5350367 Stiehl et al. Sep 1994 A
5354286 Mesa et al. Oct 1994 A
5358489 Wyrick Oct 1994 A
RE34845 Vetter et al. Jan 1995 E
5391151 Wilmot Feb 1995 A
5405362 Kramer et al. Apr 1995 A
5415648 Malay et al. May 1995 A
5425715 Dalling et al. Jun 1995 A
5451210 Kramer et al. Sep 1995 A
5478316 Bitdinger et al. Dec 1995 A
5505694 Hubbard et al. Apr 1996 A
5514097 Knauer May 1996 A
5514107 Haber et al. May 1996 A
5540664 Wyrick Jul 1996 A
5542760 Chanoch et al. Aug 1996 A
5544234 Terajima et al. Aug 1996 A
5549561 Hjertman Aug 1996 A
5554134 Bonnichsen Sep 1996 A
5562625 Stefancin, Jr. Oct 1996 A
5567160 Massino Oct 1996 A
5569190 D'Antonio Oct 1996 A
5569192 van der Wal Oct 1996 A
5569236 Kriesel Oct 1996 A
5573042 De Haen Nov 1996 A
5593388 Phillips Jan 1997 A
5599302 Lilley et al. Feb 1997 A
5599309 Marshall et al. Feb 1997 A
5605542 Tanaka et al. Feb 1997 A
5637094 Stewart, Jr. et al. Jun 1997 A
5637100 Sudo Jun 1997 A
5649912 Peterson Jul 1997 A
5658259 Pearson et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5688251 Chanoch Nov 1997 A
5695472 Wyrick Dec 1997 A
5704911 Parsons Jan 1998 A
5725508 Chanoch et al. Mar 1998 A
5730723 Castellano et al. Mar 1998 A
5743889 Sams Apr 1998 A
5769138 Sadowski et al. Jun 1998 A
5785691 Vetter et al. Jul 1998 A
5788670 Reinhard et al. Aug 1998 A
5801057 Smart et al. Sep 1998 A
5807309 Lundquist et al. Sep 1998 A
5820602 Kovelman et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5827232 Chanoch et al. Oct 1998 A
5836911 Marzynski et al. Nov 1998 A
5843036 Olive et al. Dec 1998 A
5846233 Lilley et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5851198 Castellano et al. Dec 1998 A
5860456 Bydlon et al. Jan 1999 A
5865795 Schiff et al. Feb 1999 A
5865799 Tanaka et al. Feb 1999 A
5868711 Kramer et al. Feb 1999 A
5873857 Kriesel Feb 1999 A
5875976 Nelson et al. Mar 1999 A
5879327 DeFarges et al. Mar 1999 A
5891085 Lilley et al. Apr 1999 A
5891086 Weston Apr 1999 A
5893842 Imbert Apr 1999 A
5919159 Lilley et al. Jul 1999 A
5921966 Bendek et al. Jul 1999 A
5925017 Kriesel et al. Jul 1999 A
5928205 Marshall Jul 1999 A
5935949 White Aug 1999 A
5951528 Parkin Sep 1999 A
5957897 Jeffrey Sep 1999 A
5960797 Kramer et al. Oct 1999 A
5989227 Vetter et al. Nov 1999 A
6004297 Steenfeldt-Jensen et al. Dec 1999 A
6045534 Jacobson et al. Apr 2000 A
6056716 D'Antonio et al. May 2000 A
6077247 Marshall et al. Jun 2000 A
6083201 Skinkle Jul 2000 A
6090070 Hager et al. Jul 2000 A
6099504 Gross et al. Aug 2000 A
6123684 Deboer et al. Sep 2000 A
6132395 Landau et al. Oct 2000 A
6159181 Crossman et al. Dec 2000 A
6171276 Lippe Jan 2001 B1
6203529 Gabriel et al. Mar 2001 B1
6210369 Wilmot et al. Apr 2001 B1
6221046 Burroughs et al. Apr 2001 B1
6221053 Walters et al. Apr 2001 B1
6223408 Vetter et al. May 2001 B1
6231540 Smedegaard May 2001 B1
6241709 Bechtold et al. Jun 2001 B1
6245347 Zhang et al. Jun 2001 B1
6258078 Thilly Jul 2001 B1
6264629 Landau Jul 2001 B1
6270479 Bergens et al. Aug 2001 B1
6309371 Deboer et al. Oct 2001 B1
6319224 Stout et al. Nov 2001 B1
6371939 Bergens et al. Apr 2002 B2
6383168 Landau et al. May 2002 B1
6391003 Lesch, Jr. May 2002 B1
6406456 Slate et al. Jun 2002 B1
6428528 Sadowski et al. Aug 2002 B2
6471669 Landau Oct 2002 B2
6494865 Alchas Dec 2002 B1
6517517 Farrugia et al. Feb 2003 B1
6530904 Edwards et al. Mar 2003 B1
6544234 Gabriel Apr 2003 B1
6562006 Hjertman et al. May 2003 B1
6565553 Sadowski et al. May 2003 B2
6568259 Saheki et al. May 2003 B2
6569123 Alchas et al. May 2003 B2
6569143 Alchas et al. May 2003 B2
6584910 Plass Jul 2003 B1
6589210 Rolfe Jul 2003 B1
6607508 Knauer Aug 2003 B2
6620137 Kirchhofer et al. Sep 2003 B2
6641561 Hill et al. Nov 2003 B1
6645170 Landau Nov 2003 B2
6656150 Hill et al. Dec 2003 B2
6673035 Rice et al. Jan 2004 B1
6682504 Nelson et al. Jan 2004 B2
6689092 Zierenberg et al. Feb 2004 B2
6706000 Perez et al. Mar 2004 B2
6746429 Sadowski et al. Jun 2004 B2
6767336 Kaplan Jul 2004 B1
6805686 Fathallah et al. Oct 2004 B1
6830560 Gross et al. Dec 2004 B1
6899698 Sams May 2005 B2
6932793 Marshall et al. Aug 2005 B1
6932794 Giambattista et al. Aug 2005 B2
6936032 Bush, Jr. et al. Aug 2005 B1
6969370 Langley et al. Nov 2005 B2
6969372 Halseth Nov 2005 B1
6979316 Rubin et al. Dec 2005 B1
6986758 Schiffmann Jan 2006 B2
6997901 Popovsky Feb 2006 B2
7018364 Giambattista et al. Mar 2006 B2
7066907 Crossman et al. Jun 2006 B2
7112187 Karlsson Sep 2006 B2
7118552 Shaw et al. Oct 2006 B2
7118553 Scherer Oct 2006 B2
7169132 Bendek et al. Jan 2007 B2
7195616 Diller et al. Mar 2007 B2
7218962 Freyman May 2007 B2
7220247 Shaw et al. May 2007 B2
7247149 Beyerlein Jul 2007 B2
7291132 DeRuntz et al. Nov 2007 B2
7292885 Scott et al. Nov 2007 B2
7297136 Wyrick Nov 2007 B2
7341575 Rice et al. Mar 2008 B2
7361160 Hommann et al. Apr 2008 B2
7390314 Stutz, Jr. et al. Jun 2008 B2
7390319 Friedman Jun 2008 B2
7407492 Gurtner Aug 2008 B2
7416540 Edwards et al. Aug 2008 B2
7442185 Amark et al. Oct 2008 B2
7449012 Young et al. Nov 2008 B2
7488308 Lesch, Jr. Feb 2009 B2
7488313 Segal et al. Feb 2009 B2
7488314 Segal et al. Feb 2009 B2
7500964 Shaw et al. Mar 2009 B2
7517342 Scott et al. Apr 2009 B2
7519418 Scott et al. Apr 2009 B2
7544188 Edwards et al. Jun 2009 B2
7547293 Williamson et al. Jun 2009 B2
7569035 Wilmot et al. Aug 2009 B1
7611491 Pickhard Nov 2009 B2
7621887 Griffiths et al. Nov 2009 B2
7621891 Wyrick Nov 2009 B2
7635348 Raven et al. Dec 2009 B2
7635350 Scherer Dec 2009 B2
7637891 Wall Dec 2009 B2
7648482 Edwards et al. Jan 2010 B2
7648483 Edwards et al. Jan 2010 B2
7654983 De La Sema et al. Feb 2010 B2
7658724 Rubin et al. Feb 2010 B2
7670314 Wall et al. Mar 2010 B2
7704237 Fisher et al. Apr 2010 B2
7717877 Lavi et al. May 2010 B2
7722595 Pettis et al. May 2010 B2
7731686 Edwards et al. Jun 2010 B2
7731690 Edwards et al. Jun 2010 B2
7736333 Gillespie, III Jun 2010 B2
7744582 Sadowski et al. Jun 2010 B2
7749194 Edwards et al. Jul 2010 B2
7749195 Hommann Jul 2010 B2
7762996 Palasis Jul 2010 B2
7776015 Sadowski et al. Aug 2010 B2
7794432 Young et al. Sep 2010 B2
7811254 Wilmot et al. Oct 2010 B2
7862543 Potter et al. Jan 2011 B2
7896841 Wall et al. Mar 2011 B2
7901377 Harrison et al. Mar 2011 B1
7905352 Wyrick Mar 2011 B2
7905866 Haider et al. Mar 2011 B2
7918823 Edwards et al. Apr 2011 B2
7927303 Wyrick Apr 2011 B2
7931618 Wyrick Apr 2011 B2
7947017 Edwards et al. May 2011 B2
RE42463 Landau Jun 2011 E
7955304 Guillermo Jun 2011 B2
7967772 McKenzie et al. Jun 2011 B2
7988675 Gillespie, III et al. Aug 2011 B2
8016774 Freeman et al. Sep 2011 B2
8016788 Edwards et al. Sep 2011 B2
8021335 Lesch, Jr. Sep 2011 B2
8048035 Mesa et al. Nov 2011 B2
8048037 Kohlbrenner et al. Nov 2011 B2
8057427 Griffiths et al. Nov 2011 B2
8066659 Joshi et al. Nov 2011 B2
8083711 Enggaard Dec 2011 B2
8100865 Spofforth Jan 2012 B2
8105272 Williamson et al. Jan 2012 B2
8105281 Edwards et al. Jan 2012 B2
8110209 Prestrelski et al. Feb 2012 B2
8123719 Edwards et al. Feb 2012 B2
8123724 Gillespie, III Feb 2012 B2
8162873 Muto et al. Apr 2012 B2
8162886 Sadowski et al. Apr 2012 B2
8167840 Matusch May 2012 B2
8167866 Klein May 2012 B2
8177758 Brooks, Jr. et al. May 2012 B2
8187224 Wyrick May 2012 B2
8216180 Tschirren et al. Jul 2012 B2
8216192 Burroughs et al. Jul 2012 B2
8226618 Geertsen Jul 2012 B2
8226631 Boyd et al. Jul 2012 B2
8233135 Jansen et al. Jul 2012 B2
8235952 Wikner Aug 2012 B2
8246577 Schrul et al. Aug 2012 B2
8251947 Kramer et al. Aug 2012 B2
8257318 Thogersen et al. Sep 2012 B2
8257319 Plumptre Sep 2012 B2
8267899 Moller Sep 2012 B2
8267900 Harms et al. Sep 2012 B2
8273798 Bausch et al. Sep 2012 B2
8275454 Adachi et al. Sep 2012 B2
8276583 Farieta et al. Oct 2012 B2
8277412 Kronestedt Oct 2012 B2
8277413 Kirchhofer Oct 2012 B2
8298175 Hirschel et al. Oct 2012 B2
8298194 Moller Oct 2012 B2
8300852 Terada Oct 2012 B2
RE43834 Steenfeldt-Jensen et al. Nov 2012 E
8308232 Zamperla et al. Nov 2012 B2
8308695 Laiosa Nov 2012 B2
8313466 Edwards et al. Nov 2012 B2
8317757 Plumptre Nov 2012 B2
8323237 Radmer et al. Dec 2012 B2
8333739 Moller Dec 2012 B2
8337472 Edginton et al. Dec 2012 B2
8343103 Moser Jan 2013 B2
8343109 Marshall et al. Jan 2013 B2
8348905 Radmer et al. Jan 2013 B2
8353878 Moller et al. Jan 2013 B2
8357120 Moller et al. Jan 2013 B2
8357125 Grunhut et al. Jan 2013 B2
8361036 Moller et al. Jan 2013 B2
8366680 Raab Feb 2013 B2
8372031 Elmen et al. Feb 2013 B2
8372042 Wieselblad Feb 2013 B2
8376993 Cox et al. Feb 2013 B2
8398593 Eich et al. Mar 2013 B2
8409149 Hommann et al. Apr 2013 B2
8435215 Arby et al. May 2013 B2
20010039394 Weston Nov 2001 A1
20010049496 Kirchhofer et al. Dec 2001 A1
20020007149 Nelson et al. Jan 2002 A1
20020045866 Sadowski et al. Apr 2002 A1
20020173752 Polzin Nov 2002 A1
20020183690 Arnisolle Dec 2002 A1
20020188251 Staylor et al. Dec 2002 A1
20030040697 Pass et al. Feb 2003 A1
20030083621 Shaw et al. May 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030130619 Safabash et al. Jul 2003 A1
20030158523 Hjertman et al. Aug 2003 A1
20030171717 Farrugia et al. Sep 2003 A1
20030229330 Hickle Dec 2003 A1
20030236502 De La Serna et al. Dec 2003 A1
20040039336 Amark et al. Feb 2004 A1
20040039337 Letzing Feb 2004 A1
20040097783 Peters et al. May 2004 A1
20040097883 Roe May 2004 A1
20040143213 Hunter et al. Jul 2004 A1
20040220524 Sadowski et al. Nov 2004 A1
20040267207 Veasey et al. Dec 2004 A1
20040267355 Scott et al. Dec 2004 A1
20050020979 Westbye et al. Jan 2005 A1
20050027255 Lavi et al. Feb 2005 A1
20050033234 Sadowski et al. Feb 2005 A1
20050080377 Sadowski Apr 2005 A1
20050101919 Brunnberg May 2005 A1
20050165360 Stamp Jul 2005 A1
20050165363 Judson et al. Jul 2005 A1
20050209569 Ishikawa et al. Sep 2005 A1
20050215955 Slawson Sep 2005 A1
20050240145 Scott et al. Oct 2005 A1
20050256499 Pettis et al. Nov 2005 A1
20050261634 Karlsson Nov 2005 A1
20050273054 Asch Dec 2005 A1
20060025747 Sullivan et al. Feb 2006 A1
20060106362 Pass et al. May 2006 A1
20060129122 Wyrick Jun 2006 A1
20060224124 Scherer Oct 2006 A1
20060258988 Keitel et al. Nov 2006 A1
20060258990 Weber Nov 2006 A1
20070017533 Wyrick Jan 2007 A1
20070025890 Joshi et al. Feb 2007 A1
20070027430 Hommann Feb 2007 A1
20070088288 Barron et al. Apr 2007 A1
20070093775 Daly Apr 2007 A1
20070100288 Bozeman et al. May 2007 A1
20070123818 Griffiths et al. May 2007 A1
20070123829 Atterbury et al. May 2007 A1
20070129686 Daily et al. Jun 2007 A1
20070129687 Marshall et al. Jun 2007 A1
20070185432 Etheredge et al. Aug 2007 A1
20070191784 Jacobs et al. Aug 2007 A1
20070219498 Malone et al. Sep 2007 A1
20080059133 Edwards et al. Mar 2008 A1
20080154199 Wyrick Jun 2008 A1
20080154200 Lesch Jun 2008 A1
20080185069 Clark Aug 2008 A1
20080262427 Hommann Oct 2008 A1
20080262436 Olson Oct 2008 A1
20080262445 Hsu et al. Oct 2008 A1
20090124981 Evans May 2009 A1
20090124997 Pettis et al. May 2009 A1
20090204062 Muto et al. Aug 2009 A1
20090254027 Moller Oct 2009 A1
20090254035 Kohlbrenner et al. Oct 2009 A1
20090292240 Kramer et al. Nov 2009 A1
20090299278 Lesch, Jr. et al. Dec 2009 A1
20090304812 Stainforth et al. Dec 2009 A1
20090312705 Grunhut Dec 2009 A1
20090318361 Noera et al. Dec 2009 A1
20100016326 Will Jan 2010 A1
20100036318 Raday et al. Feb 2010 A1
20100049125 James et al. Feb 2010 A1
20100069845 Marshall et al. Mar 2010 A1
20100076378 Runfola Mar 2010 A1
20100076400 Wall Mar 2010 A1
20100087847 Hong Apr 2010 A1
20100094214 Abry et al. Apr 2010 A1
20100094324 Huang et al. Apr 2010 A1
20100100039 Wyrick Apr 2010 A1
20100114058 Weitzel et al. May 2010 A1
20100121272 Marshall et al. May 2010 A1
20100137798 Streit et al. Jun 2010 A1
20100152699 Ferrari et al. Jun 2010 A1
20100152702 Vigil et al. Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174268 Wilmot et al. Jul 2010 A1
20100191217 Hommann et al. Jul 2010 A1
20100204678 Imran Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100228193 Wyrick Sep 2010 A1
20100249746 Klein Sep 2010 A1
20100256570 Maritan Oct 2010 A1
20100258631 Rueblinger et al. Oct 2010 A1
20100262082 Brooks et al. Oct 2010 A1
20100262083 Grunhut et al. Oct 2010 A1
20100268170 Carrel et al. Oct 2010 A1
20100274198 Bechtold Oct 2010 A1
20100274273 Schraga et al. Oct 2010 A1
20100288593 Chiesa et al. Nov 2010 A1
20100292643 Wilmot et al. Nov 2010 A1
20100292653 Maritan Nov 2010 A1
20100298780 Laiosa Nov 2010 A1
20100312196 Hirschel et al. Dec 2010 A1
20100318035 Edwards et al. Dec 2010 A1
20100318037 Young et al. Dec 2010 A1
20100324480 Chun Dec 2010 A1
20110021989 Janek et al. Jan 2011 A1
20110034879 Crow Feb 2011 A1
20110054414 Shang et al. Mar 2011 A1
20110077599 Wozencroft Mar 2011 A1
20110087192 Uhland et al. Apr 2011 A1
20110098655 Jennings et al. Apr 2011 A1
20110098656 Burnell et al. Apr 2011 A1
20110125076 Kraft et al. May 2011 A1
20110125100 Schwirtz et al. May 2011 A1
20110137246 Cali et al. Jun 2011 A1
20110137247 Mesa et al. Jun 2011 A1
20110144594 Sund et al. Jun 2011 A1
20110190725 Pettis et al. Aug 2011 A1
20110196300 Edwards et al. Aug 2011 A1
20110196311 Bicknell et al. Aug 2011 A1
20110224620 Johansen et al. Sep 2011 A1
20110238003 Bruno-Raimondi et al. Sep 2011 A1
20110269750 Kley et al. Nov 2011 A1
20110319864 Beller et al. Dec 2011 A1
20120004608 Lesch, Jr. Jan 2012 A1
20120016296 Cleathero Jan 2012 A1
20120046609 Mesa et al. Feb 2012 A1
20120053563 Du Mar 2012 A1
20120059319 Segal Mar 2012 A1
20120071829 Edwards et al. Mar 2012 A1
20120095443 Ferrari et al. Apr 2012 A1
20120101475 Wilmot et al. Apr 2012 A1
20120116318 Edwards et al. May 2012 A1
20120123350 Giambattista et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120130318 Young May 2012 A1
20120130342 Cleathero May 2012 A1
20120136303 Cleathero May 2012 A1
20120136318 Lanin et al. May 2012 A1
20120143144 Young Jun 2012 A1
20120157931 Nzike Jun 2012 A1
20120157965 Wotton et al. Jun 2012 A1
20120172809 Plumptre Jul 2012 A1
20120172811 Enggaard et al. Jul 2012 A1
20120172812 Plumptre et al. Jul 2012 A1
20120172813 Plumptre et al. Jul 2012 A1
20120172814 Plumptre et al. Jul 2012 A1
20120172815 Holmqvist Jul 2012 A1
20120172816 Boyd et al. Jul 2012 A1
20120172818 Harms et al. Jul 2012 A1
20120172885 Drapeau et al. Jul 2012 A1
20120179100 Sadowski et al. Jul 2012 A1
20120179137 Bartlett et al. Jul 2012 A1
20120184900 Marshall et al. Jul 2012 A1
20120184917 Born et al. Jul 2012 A1
20120184918 Bostrom Jul 2012 A1
20120186075 Edginton Jul 2012 A1
20120191048 Eaton Jul 2012 A1
20120191049 Harms et al. Jul 2012 A1
20120197209 Bicknell et al. Aug 2012 A1
20120197213 Kohlbrenner et al. Aug 2012 A1
20120203184 Selz et al. Aug 2012 A1
20120203185 Kristensen et al. Aug 2012 A1
20120203186 Vogt et al. Aug 2012 A1
20120209192 Alexandersson Aug 2012 A1
20120209200 Jones et al. Aug 2012 A1
20120209210 Plumptre et al. Aug 2012 A1
20120209211 Plumptre et al. Aug 2012 A1
20120209212 Plumptre et al. Aug 2012 A1
20120215162 Nielsen et al. Aug 2012 A1
20120215176 Veasey et al. Aug 2012 A1
20120220929 Nagel et al. Aug 2012 A1
20120220941 Jones Aug 2012 A1
20120220953 Holmqvist Aug 2012 A1
20120220954 Cowe Aug 2012 A1
20120226226 Edwards et al. Sep 2012 A1
20120230620 Holdgate et al. Sep 2012 A1
20120232517 Saiki Sep 2012 A1
20120245516 Tschirren et al. Sep 2012 A1
20120245532 Frantz et al. Sep 2012 A1
20120253274 Karlsson et al. Oct 2012 A1
20120253287 Giambattista et al. Oct 2012 A1
20120253288 Dasbach et al. Oct 2012 A1
20120253289 Cleathero Oct 2012 A1
20120253290 Geertsen Oct 2012 A1
20120253314 Harish et al. Oct 2012 A1
20120259285 Schabbach et al. Oct 2012 A1
20120265153 Jugl et al. Oct 2012 A1
20120267761 Kim et al. Oct 2012 A1
20120271233 Bruggemann et al. Oct 2012 A1
20120271243 Plumptre et al. Oct 2012 A1
20120277724 Larsen et al. Nov 2012 A1
20120283645 Veasey et al. Nov 2012 A1
20120283648 Veasey et al. Nov 2012 A1
20120283649 Veasey et al. Nov 2012 A1
20120283650 MacDonald et al. Nov 2012 A1
20120283651 Veasey et al. Nov 2012 A1
20120283652 MacDonald et al. Nov 2012 A1
20120283654 MacDonald et al. Nov 2012 A1
20120283660 Jones et al. Nov 2012 A1
20120283661 Jugl et al. Nov 2012 A1
20120289907 Veasey et al. Nov 2012 A1
20120289908 Kouyoumjian et al. Nov 2012 A1
20120289909 Raab et al. Nov 2012 A1
20120289929 Boyd et al. Nov 2012 A1
20120291778 Nagel et al. Nov 2012 A1
20120296276 Nicholls et al. Nov 2012 A1
20120296287 Veasey et al. Nov 2012 A1
20120302989 Kramer et al. Nov 2012 A1
20120302992 Brooks et al. Nov 2012 A1
20120310156 Karlsson et al. Dec 2012 A1
20120310206 Kouyoumjian et al. Dec 2012 A1
20120310208 Kirchhofer Dec 2012 A1
20120310289 Bottlang et al. Dec 2012 A1
20120316508 Kirchhofer Dec 2012 A1
20120323177 Adams et al. Dec 2012 A1
20120323186 Karlsen et al. Dec 2012 A1
20120325865 Forstreuter et al. Dec 2012 A1
20120330228 Day et al. Dec 2012 A1
20130006191 Jugl et al. Jan 2013 A1
20130006192 Teucher et al. Jan 2013 A1
20130006193 Veasey et al. Jan 2013 A1
20130006310 Bottlang et al. Jan 2013 A1
20130012871 Pommereu Jan 2013 A1
20130012884 Pommerau et al. Jan 2013 A1
20130012885 Bode et al. Jan 2013 A1
20130018310 Boyd et al. Jan 2013 A1
20130018313 Kramer et al. Jan 2013 A1
20130018317 Bobroff et al. Jan 2013 A1
20130018323 Boyd et al. Jan 2013 A1
20130018327 Dasbach et al. Jan 2013 A1
20130018328 Jugl et al. Jan 2013 A1
20130023830 Bode Jan 2013 A1
20130030367 Wotton et al. Jan 2013 A1
20130030378 Jugl et al. Jan 2013 A1
20130030383 Keitel Jan 2013 A1
20130030409 Macdonald et al. Jan 2013 A1
20130035641 Moller et al. Feb 2013 A1
20130035642 Daniel Feb 2013 A1
20130035644 Giambattista et al. Feb 2013 A1
20130035645 Bicknell et al. Feb 2013 A1
20130035647 Veasey et al. Feb 2013 A1
20130041321 Cross et al. Feb 2013 A1
20130041324 Daniel Feb 2013 A1
20130041325 Helmer et al. Feb 2013 A1
20130041327 Daniel Feb 2013 A1
20130041328 Daniel Feb 2013 A1
20130041347 Daniel Feb 2013 A1
20130060231 Adlon et al. Mar 2013 A1
Foreign Referenced Citations (487)
Number Date Country
00081651 Oct 2012 AR
082053 Nov 2012 AR
2007253481 Nov 2007 AU
2007301890 Apr 2008 AU
2008231897 Oct 2008 AU
2008309660 Apr 2009 AU
2009217376 Oct 2009 AU
2009272992 Jan 2010 AU
2009299888 Apr 2010 AU
2009326132 Aug 2011 AU
2009326321 Aug 2011 AU
2009326322 Aug 2011 AU
2009326323 Aug 2011 AU
2009326324 Aug 2011 AU
2009326325 Aug 2011 AU
2009341040 Sep 2011 AU
2010233924 Nov 2011 AU
2010239762 Dec 2011 AU
2010242096 Dec 2011 AU
2010254627 Jan 2012 AU
2010260568 Feb 2012 AU
2010260569 Feb 2012 AU
2010287033 Apr 2012 AU
2010303987 May 2012 AU
2010332857 Jul 2012 AU
2010332862 Jul 2012 AU
2010337136 Jul 2012 AU
2010338469 Jul 2012 AU
2010314315 Aug 2012 AU
2011212490 Aug 2012 AU
2011212556 Aug 2012 AU
2011212558 Aug 2012 AU
2011212561 Aug 2012 AU
2011212564 Aug 2012 AU
2011212566 Aug 2012 AU
2011212567 Aug 2012 AU
2011214922 Aug 2012 AU
2011221472 Aug 2012 AU
2011231688 Sep 2012 AU
2011231691 Sep 2012 AU
2011224884 Oct 2012 AU
2011231570 Oct 2012 AU
2011231697 Oct 2012 AU
2011233733 Oct 2012 AU
2011234479 Oct 2012 AU
2011238967 Nov 2012 AU
2011244232 Nov 2012 AU
2011244236 Nov 2012 AU
2011244237 Nov 2012 AU
2011249098 Nov 2012 AU
2011262408 Dec 2012 AU
2011270934 Jan 2013 AU
2011273721 Jan 2013 AU
2011273722 Jan 2013 AU
2011273723 Jan 2013 AU
2011273724 Jan 2013 AU
2011273725 Jan 2013 AU
2011273726 Jan 2013 AU
2011273727 Jan 2013 AU
2011273728 Jan 2013 AU
0208013 Mar 2004 BR
0308262 Jan 2005 BR
PI712805 Oct 2012 BR
PI0713802-4 Nov 2012 BR
0214721 Dec 2012 BR
2552177 Jul 1999 CA
2689022 Nov 2002 CA
2473371 Jul 2003 CA
2557897 Oct 2005 CA
02702412 Dec 2008 CA
101094700 Dec 2007 CN
101128231 Feb 2008 CN
101184520 May 2008 CN
101400394 Apr 2009 CN
101405582 Apr 2009 CN
101479000 Jul 2009 CN
101511410 Aug 2009 CN
101516421 Aug 2009 CN
101557849 Oct 2009 CN
101563123 Oct 2009 CN
101563124 Oct 2009 CN
101594898 Dec 2009 CN
101600468 Dec 2009 CN
101605569 Dec 2009 CN
101610804 Dec 2009 CN
101626796 Jan 2010 CN
101678166 Mar 2010 CN
101678172 Mar 2010 CN
101678173 Mar 2010 CN
101687078 Mar 2010 CN
101687079 Mar 2010 CN
101687080 Mar 2010 CN
101715371 May 2010 CN
101909673 Dec 2010 CN
101912650 Dec 2010 CN
101939034 Jan 2011 CN
101939036 Jan 2011 CN
102548599 Jul 2012 CN
102548601 Jul 2012 CN
102548602 Jul 2012 CN
102573955 Jul 2012 CN
102573958 Jul 2012 CN
102573960 Jul 2012 CN
102573963 Jul 2012 CN
102630172 Aug 2012 CN
102630173 Aug 2012 CN
102630174 Aug 2012 CN
102639170 Aug 2012 CN
102639171 Aug 2012 CN
102648014 Aug 2012 CN
102655899 Sep 2012 CN
102665800 Sep 2012 CN
102665802 Sep 2012 CN
102686255 Sep 2012 CN
102686258 Sep 2012 CN
102695531 Sep 2012 CN
102695532 Sep 2012 CN
CA 102686256 Sep 2012 CN
102711878 Oct 2012 CN
102727965 Oct 2012 CN
102740907 Oct 2012 CN
102753222 Oct 2012 CN
102753223 Oct 2012 CN
102753224 Oct 2012 CN
102753227 Oct 2012 CN
102770170 Nov 2012 CN
102770173 Nov 2012 CN
102781499 Nov 2012 CN
102781500 Nov 2012 CN
102802699 Nov 2012 CN
102802702 Nov 2012 CN
102802703 Nov 2012 CN
102665801 Dec 2012 CN
102821801 Dec 2012 CN
102821802 Dec 2012 CN
102821805 Dec 2012 CN
102834133 Dec 2012 CN
102869399 Jan 2013 CN
102895718 Jan 2013 CN
102905613 Jan 2013 CN
102905742 Jan 2013 CN
102905743 Jan 2013 CN
102905744 Jan 2013 CN
102905745 Jan 2013 CN
102917738 Feb 2013 CN
102917743 Feb 2013 CN
102006041809 Mar 2008 DE
202011110155 Dec 2012 DE
1646844 Dec 2009 DK
2229201 Jul 2012 DK
2023982 Oct 2012 DK
2274032 Oct 2012 DK
02346552 Nov 2012 DK
1888148 Jan 2013 DK
2288400 Jan 2013 DK
2373361 Jan 2013 DK
1885414 Feb 2013 DK
2174682 Feb 2013 DK
2310073 Feb 2013 DK
25844 Sep 2012 EG
0072057 Feb 1983 EP
0103664 Mar 1984 EP
1752174 Mar 1986 EP
245895 Nov 1987 EP
255044 Feb 1988 EP
361668 Apr 1990 EP
0518416 Dec 1992 EP
525525 Feb 1993 EP
1067823 Jan 2001 EP
1161961 Dec 2001 EP
1307012 May 2003 EP
1518575 Mar 2005 EP
1140260 Aug 2005 EP
1944050 Jul 2008 EP
2174682 Apr 2010 EP
2258424 Dec 2010 EP
2258425 Dec 2010 EP
02275158 Jan 2011 EP
2364742 Sep 2011 EP
2393062 Dec 2011 EP
2471564 Jul 2012 EP
02477681 Jul 2012 EP
02484395 Aug 2012 EP
2526987 Nov 2012 EP
02529773 Dec 2012 EP
02529774 Dec 2012 EP
02529775 Dec 2012 EP
2549789 Jan 2013 EP
02385630 Jul 2012 ES
2389866 Nov 2012 ES
2392667 Dec 2012 ES
02393173 Dec 2012 ES
2394556 Feb 2013 ES
2506161 Nov 1982 FR
2635009 Feb 1990 FR
6677523 Aug 1952 GB
1181037 Feb 1970 GB
1216813 Dec 1970 GB
2463034 Mar 2010 GB
171247 Aug 2012 IL
198750 Oct 2012 IL
10-507935 Aug 1998 JP
11-347121 Dec 1999 JP
2000-245839 Sep 2000 JP
2001-523485 Nov 2001 JP
5016490 May 2008 JP
5026411 Nov 2008 JP
5033792 Nov 2008 JP
5074397 Feb 2009 JP
2009-529395 Aug 2009 JP
5066177 Sep 2009 JP
5039135 Nov 2009 JP
5044625 Dec 2009 JP
2010-005414 Jan 2010 JP
2010-046507 Mar 2010 JP
4970282 Jul 2012 JP
4970286 Jul 2012 JP
4972147 Jul 2012 JP
4977209 Jul 2012 JP
4977252 Jul 2012 JP
4979686 Jul 2012 JP
4982722 Jul 2012 JP
2012515566 Jul 2012 JP
2012515585 Jul 2012 JP
2012515587 Jul 2012 JP
2012516168 Jul 2012 JP
2012516736 Jul 2012 JP
2012516737 Jul 2012 JP
4990151 Aug 2012 JP
4992147 Aug 2012 JP
4994370 Aug 2012 JP
5001001 Aug 2012 JP
2012143646 Aug 2012 JP
2012148198 Aug 2012 JP
2012519508 Aug 2012 JP
2012519511 Aug 2012 JP
2012519514 Aug 2012 JP
2012176295 Sep 2012 JP
2012183322 Sep 2012 JP
2012520128 Sep 2012 JP
2012521821 Sep 2012 JP
2012521825 Sep 2012 JP
2012521826 Sep 2012 JP
2012521827 Sep 2012 JP
2012521828 Sep 2012 JP
2012521829 Sep 2012 JP
2012521830 Sep 2012 JP
2012521831 Sep 2012 JP
2012521834 Sep 2012 JP
2012522547 Sep 2012 JP
2012-525172 Oct 2012 JP
2012-525180 Oct 2012 JP
2012-525185 Oct 2012 JP
2012523876 Oct 2012 JP
2012525200 Oct 2012 JP
5084825 Nov 2012 JP
2012232151 Nov 2012 JP
2012528618 Nov 2012 JP
2012528619 Nov 2012 JP
2012528620 Nov 2012 JP
2012528621 Nov 2012 JP
2012528622 Nov 2012 JP
2012528623 Nov 2012 JP
2012528624 Nov 2012 JP
2012528625 Nov 2012 JP
2012528626 Nov 2012 JP
2012528627 Nov 2012 JP
2012528628 Nov 2012 JP
2012528629 Nov 2012 JP
2012528630 Nov 2012 JP
2012528631 Nov 2012 JP
2012528632 Nov 2012 JP
2012528633 Nov 2012 JP
2012528634 Nov 2012 JP
2012528635 Nov 2012 JP
2012528636 Nov 2012 JP
2012528637 Nov 2012 JP
2012528638 Nov 2012 JP
2012528640 Nov 2012 JP
2012530576 Dec 2012 JP
2012532635 Dec 2012 JP
2012532636 Dec 2012 JP
2012532717 Dec 2012 JP
2012532720 Dec 2012 JP
2012532721 Dec 2012 JP
2012532722 Dec 2012 JP
5112330 Jan 2013 JP
5113847 Jan 2013 JP
101160735 Jul 2012 KR
20120091009 Aug 2012 KR
20120091153 Aug 2012 KR
20120091154 Aug 2012 KR
20120095919 Aug 2012 KR
20120099022 Sep 2012 KR
20120099101 Sep 2012 KR
20120102597 Sep 2012 KR
20120106754 Sep 2012 KR
20120106756 Sep 2012 KR
20120112503 Oct 2012 KR
2012006694 Jul 2012 MX
332622 Oct 2003 NO
572765 Aug 2012 NZ
587235 Aug 2012 NZ
00590352 Oct 2012 NZ
2023982 Nov 2012 PL
2274032 Oct 2012 PT
2346552 Nov 2012 PT
2462275 Mar 2011 RU
2459247 Aug 2012 RU
2011104496 Aug 2012 RU
2460546 Sep 2012 RU
2011109925 Oct 2012 RU
2011119019 Nov 2012 RU
181710 Jul 2012 SG
181790 Jul 2012 SG
184182 Oct 2012 SG
184328 Nov 2012 SG
184500 Nov 2012 SG
184501 Nov 2012 SG
184502 Nov 2012 SG
2274032 Dec 2012 SI
2346552 Dec 2012 SI
WO 8808724 Nov 1988 WO
WO 9113299 Sep 1991 WO
WO 9113430 Sep 1991 WO
WO 9219296 Nov 1992 WO
WO 9409839 May 1994 WO
WO 9411041 May 1994 WO
WO 9529720 Nov 1995 WO
WO 9529730 Nov 1995 WO
WO 9621482 Jul 1996 WO
WO 9714455 Apr 1997 WO
WO 9721457 Jun 1997 WO
WO 199741907 Nov 1997 WO
WO 9748430 Dec 1997 WO
WO 1998031369 Jul 1998 WO
WO 1998032451 Jul 1998 WO
WO 9831369 Jul 1998 WO
WO 9832451 Jul 1998 WO
WO 9903521 Jan 1999 WO
WO 9910030 Mar 1999 WO
WO 9922790 May 1999 WO
WO 9922789 May 1999 WO
WO 1999062525 Dec 1999 WO
WO 9962525 Dec 1999 WO
WO 0006228 Feb 2000 WO
WO 0024441 May 2000 WO
WO 0029050 May 2000 WO
WO 0193926 Dec 2001 WO
WO 02083216 Oct 2002 WO
WO 2002089805 Nov 2002 WO
WO 2089805 Nov 2002 WO
WO 3047663 Jun 2003 WO
WO 2003070296 Aug 2003 WO
WO 3068290 Aug 2003 WO
WO 03070296 Aug 2003 WO
WO 2003097133 Nov 2003 WO
WO 3097133 Nov 2003 WO
WO 2004028598 Apr 2004 WO
WO 2007041331 May 2004 WO
WO 2004047892 Jun 2004 WO
WO 2004108194 Dec 2004 WO
WO 2005002653 Jan 2005 WO
WO 2005005929 Jan 2005 WO
WO 2005009515 Feb 2005 WO
WO 2005053778 Jun 2005 WO
WO 2006079064 Jul 2006 WO
WO 2006086899 Aug 2006 WO
WO 2006125328 Nov 2006 WO
WO 2006130098 Dec 2006 WO
WO 2007047200 Apr 2007 WO
WO 2007063342 Jun 2007 WO
WO 2007100899 Sep 2007 WO
WO 2006079064 Nov 2007 WO
WO 2007129106 Nov 2007 WO
WO 2007131013 Nov 2007 WO
WO 2007131025 Nov 2007 WO
WO 2007143676 Dec 2007 WO
WO 2008005315 Jan 2008 WO
WO 2008009476 Jan 2008 WO
WO 2008058666 May 2008 WO
WO 2008089886 Jul 2008 WO
WO 2008100576 Aug 2008 WO
WO 2008107378 Sep 2008 WO
WO 2008112472 Sep 2008 WO
WO 2007104636 Dec 2008 WO
WO 2009049885 Apr 2009 WO
WO 2008071804 Aug 2009 WO
WO 2009114542 Sep 2009 WO
WO 2009132778 Nov 2009 WO
WO 2009141005 Nov 2009 WO
WO 2010003569 Jan 2010 WO
WO 2010043533 Apr 2010 WO
WO 2010046394 Apr 2010 WO
WO 2010097116 Sep 2010 WO
WO 2010108116 Sep 2010 WO
WO 2011023736 Mar 2011 WO
WO 2011023882 Mar 2011 WO
WO 2011035877 Mar 2011 WO
WO 2011036133 Mar 2011 WO
WO 2011036134 Mar 2011 WO
WO 2011039163 Apr 2011 WO
WO 2011039201 Apr 2011 WO
WO 2011039202 Apr 2011 WO
WO 2011039207 Apr 2011 WO
WO 2011039208 Apr 2011 WO
WO 2011039209 Apr 2011 WO
WO 2011039211 Apr 2011 WO
WO 2011039216 Apr 2011 WO
WO 2011039217 Apr 2011 WO
WO 2011039218 Apr 2011 WO
WO 2011039219 Apr 2011 WO
WO 2011039228 Apr 2011 WO
WO 2011039231 Apr 2011 WO
WO 2011039232 Apr 2011 WO
WO 2011039233 Apr 2011 WO
WO 2011039236 Apr 2011 WO
WO 2011040861 Apr 2011 WO
WO 2011045385 Apr 2011 WO
WO 2011045386 Apr 2011 WO
WO 2011045611 Apr 2011 WO
WO 2011046756 Apr 2011 WO
WO 2011048223 Apr 2011 WO
WO 2011048422 Apr 2011 WO
WO 2011050359 Apr 2011 WO
WO 2011053225 May 2011 WO
WO 2011054648 May 2011 WO
WO 2011054775 May 2011 WO
WO 2011056127 May 2011 WO
WO 2011060087 May 2011 WO
WO 2011067187 Jun 2011 WO
WO 2011067268 Jun 2011 WO
WO 2011067320 Jun 2011 WO
WO 2011067615 Jun 2011 WO
WO 2011068253 Jun 2011 WO
WO 2011069936 Jun 2011 WO
WO 2011073302 Jun 2011 WO
WO 2011073307 Jun 2011 WO
WO 2011076280 Jun 2011 WO
WO 2011080092 Jul 2011 WO
WO 2011081867 Jul 2011 WO
WO 2011081885 Jul 2011 WO
WO 2011089206 Jul 2011 WO
WO 2011089207 Jul 2011 WO
WO 2011095478 Aug 2011 WO
WO 2011095480 Aug 2011 WO
WO 2011095483 Aug 2011 WO
WO 2011095486 Aug 2011 WO
WO 2011095488 Aug 2011 WO
WO 2011095489 Aug 2011 WO
WO 2011095503 Aug 2011 WO
WO 2011099918 Aug 2011 WO
WO 2011101349 Aug 2011 WO
WO 2011101351 Aug 2011 WO
WO 2011101375 Aug 2011 WO
WO 2011101376 Aug 2011 WO
WO 2011101377 Aug 2011 WO
WO 2011101378 Aug 2011 WO
WO 2011101379 Aug 2011 WO
WO 2011101380 Aug 2011 WO
WO 2011101381 Aug 2011 WO
WO 2011101382 Aug 2011 WO
WO 2011101383 Aug 2011 WO
WO 2011107805 Sep 2011 WO
WO 2011109205 Sep 2011 WO
WO 2011110464 Sep 2011 WO
WO 2011110465 Sep 2011 WO
WO 2011110466 Sep 2011 WO
WO 2011111006 Sep 2011 WO
WO 2011112136 Sep 2011 WO
WO 2011113806 Sep 2011 WO
WO 2011117212 Sep 2011 WO
WO 2011117284 Sep 2011 WO
WO 2011117404 Sep 2011 WO
WO 2011121003 Oct 2011 WO
WO 2011121061 Oct 2011 WO
WO 2011123024 Oct 2011 WO
WO 2011124634 Oct 2011 WO
WO 2011126439 Oct 2011 WO
WO 2012020084 Feb 2012 WO
WO 2012022771 Feb 2012 WO
WO 2012090186 Jul 2012 WO
WO 2011042537 Aug 2012 WO
WO 2011042540 Aug 2012 WO
WO 2011043714 Aug 2012 WO
WO 2011051366 Sep 2012 WO
WO 2012122643 Sep 2012 WO
Non-Patent Literature Citations (47)
Entry
International Patent Application Np. PCT/US14/23883, International Search Report, dated Jul. 10, 2014, 3 pages.
International Patent Application No. PCT/US14/23485, International Search Report, dated Jul. 7, 2014, 2 pages.
International Patent Application No. PCT/US14/24530, International Search Report, dated Jul. 15, 2014, 2 pages.
International Patent Application No. PCT/US14/24543, International Search Report, dated Jul. 28, 2014, 2 pages.
“Skin”, American Medical Association (AMA) Current Procedural Terminology , 1998, http://www.ama-assn.org/ama/pub/category/print/7176.html, 1 page.
Becks et al., “Comparison of Conventional Twice-Daily Subcutaneous Needle Injections to Multiple Jet Injections of Insulin in Insulin-Dependent Diabetes”, Clinical and Investigative Medicine, 1981, p. 33B.
Binder, “Absorption of Injected Insulin”, ACTA Pharmacological ET Toxicologica, 1969, 27(Supp 2), 3 pages.
Bonetti et al., “An Extended-Release formulation of Methotrexate for Subcutaneous Administration”, Cancer Chemotherapy Pharmacology, 1994, 33, 303-306.
Braun et al., “Comparison of the Clinical Efficacy and Safety of Subcutaneous Versus Oral Administration of Methotrexate in Patients with Active Rheumatoid Arthritis”, Arthritis and Rheumatism, Jan. 2008, 58(1), pp. 73-81.
Chen et al., “Blood Lipid Profiles and Peripheral Blood Mononuclear Cell Cholesterol Metabolism Gene Expression in Patients with and Without Methotrexate” BMC Medicine, 2011, 9(4), 9 pages.
Chiasson et al., “Continuous Subcutaneous Insulin Infusion (Mill-Hill Infuser) Versus Multiple Injections (Medi-Jector) in the Treatment of Insulin-Dependent Diabetes Mellitus and the Effects of Metabolic Control on Microangiopathy” Diabetes Care, Jul.-Aug. 1984, 7(4), pp. 331-337.
Cohn et al., “Clincal Experience with Jet Insulin Injection in Diabetes Mellitus Therapy: A Clue to the Pathogenesis of Lipodystrophy”, Ala. J. Med. Sci., 1974, 11(3), pp. 265-272.
Cowie et al., “Physical and Metabolic Characteristics of Persons with Diabetes”, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 1995, 95(1468), pp. 117-120.
European Patent Application No. 03707823.5, Supplementary European Search Report, dated Mar. 30, 2005 with Communication dated Apr. 25, 2005 regarding Proceeding Further with the European Patent Application Pursuant to Article 96(1), and Rule 51(1) EPC, 3 pages.
European Patent Application No. 00976612.2, Communication Pursuant to Article 96(2) EPC, dated May 10, 2004, 5 pages.
Hingson et al., “A Survey of the Development of Jet Injection in Parenteral Therapy”, Nov./Dec. 1952, 31(6), pp. 361-366.
Hoekstra et al., Bioavailability of Higher Dose Methotrexate Comparing Oral and Subcutaneous Administration i n Patients with Rheumatoid Arthritis, The Journal of Rheumatology, 2004, 31(4), pp. 645-648.
International Patent Application No. PCT/US2012/46742, International Search Report and Written Opinion dated Nov. 16, 2012, 11 pages.
International Patent Application No. PCT/US2009/052835, International Search Report dated Mar. 15, 2010, 5 pages.
International Patent Application No. PCT/US2013/029085, International Search Report dated May 13, 2013, 2 pages.
International Patent Application No. PCT/US2010/028011, International Search Report, dated Jun. 29, 2010, 5 pages.
International Patent Application No. PCT/US2009/036682, International Search Report, dated Jul. 7, 2009, 5 pages.
International Patent Application No. PCT/US2007/068010, International Search Report, dated Sep. 24, 2007, 3 pages.
International Patent Application No. PCT/US03/03917, International Search Report, dated Nov. 26, 2003, 1 page.
Jansen et al., Methotrexaat Buiten de Kliniek, Pharmaceutisch Weekblad, Nov. 1999, 134(46), pp. 1592-1596.
Japanese Patent Application No. 2007-552367, Office Action dated Apr. 9, 2011.
Katoulis et al., Efficacy of a New Needleless Insulin Delivery System Monitoring of Blood Glucose Fluctuations and Free Insulin Levels, The International Journal of Artificial Organs, 1989, 12(5), 333-339.
Kurnik et al., “Bioavailability of Oral vs. Subcutaneous low-dose Methotrexate in Patients with Crohn's Disease”, Aliment Pharmacol Ther., Apr. 2003, 18, pp. 57-63.
Malone et al., “Comparison of Insulin Levels After Injection by Jet Stream and Disposable Insulin Syringe”, Diabetes Care, Nov.-Dec. 1986, 9(6), 637-640.
“The Historical Development of Jet Injection and Envisioned Uses in Mass Immunization and Mass Therapy Based Upon Two Decades' Experience”, Military Medicine, Jun. 1963, 128, pp. 516-524.
Pehling et al, “Comparison of Plasma Insulin Profiles After Subcutaneous Administration of Insulin by Jet Spray and Conventional Needle Injection in Patients with Insulin-Dependent Diabetes Mellitus”, Mayo Clin. Proc., Nov. 1984, 59, pp. 751-754.
Reiss et al., “Atheroprotective Effects of Methotrexate on Reverse Cholesterol Transport Proteins and Foam Cell Transformation in Human THP-1 Monocyte/Macrophages”, Arthritis and Rheumatism, Dec. 2008, 58(12), pp. 3675-3683.
Taylor et al., “Plasma Free Insulin Profiles After Administration of Insulin by Jet and Conventional Syringe Injection”, Diabetes Care, May-Jun. 1981, 4(3), 337-339.
Weller et al., “Jet Injection of Insulin vs the Syringe-and-Needle Method”, JAMA, Mar. 1966, 195(10), pp. 844-847.
Westlake et al., “The Effect of Methotrexate on Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Systematic Literature Review”, Rheumatology, Nov. 2009, 49, pp. 295-307.
Worth, “Jet Injection of Insulin: Comparison with Conventional Injection by Syringe and Needle”, British Medical Journal, Sep. 1980, 281, pp. 713-714.
International Patent Application No. PCT/US2013/029085, Written Opinion, dated May 13, 2013, 5 pages.
International Patent Application No. PCT/US2010/028011, Written Opinion, dated Jun. 29, 2010, 5 pages.
Zachheim et al., “Subcutaneous Administration of Methotrexate”, Journal of the American Academy of Dermatology, 1992, 26(6), p. 1008.
Halle et al., “Twice-Daily Mixed Regular and NPH Insulin Injections with New Jet Injector Versus Conventional Syringes: Pharmacokinetics of Insulin Absorption”, Diabetes Care, May-Jun. 1986 9(3), pp. 279-282.
International Patent Application No. PCT/US2012/046639, International Search Report and Written Opinion dated Apr. 22, 2013, 8 pages.
Glynn-Barnhart et al., “Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy”, 1992, 12(5), abstract only, 2 pages.
Hamilton et al., “Why Intramuscular Methotrexate May be More Efficacious Than Oral Dosing in Patients with Rheumatoid Arthritis”, British Journal of Rheumatology, 1997, 36(1), pp. 86-90.
Stamp et al., “Effects of Changing from Oral to Subcutaneous Methotrexate on Red Blood Cell Methotrexate Polyglutamate Concentrations and Disease Activity in Patients with Rheumatoid Arthritis”, The Journal of Rheumatology, 2011, 38(12), 2540-2547.
Tukova et al., “Methotrexate Bioavailability after Oral and Subcutaneous Administration in Children with Juvenile Idiopathic Arthritis”, Clinical and Experimental Rheumatology, 2009, 27, 1047-1053.
Wright et al., “Stability of Methotrexate Injection in Prefilled Plastic Disposable Syringes”, International Journal of Pharmaceutics, Aug. 1988, 45(3), 237-244.
Lunenfeld, “Stable Testosterone Levels Achieved with Subcutaneous Testosterone Injections”, The aging Male, Mar. 2006, 9(1), 70 pages.
Related Publications (1)
Number Date Country
20180085531 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
60796939 May 2006 US
Continuations (3)
Number Date Country
Parent 14244916 Apr 2014 US
Child 15788943 US
Parent 13584317 Aug 2012 US
Child 14244916 US
Parent 12299274 US
Child 13584317 US