The present invention relates to an injector, and more particularly to an injector in which materials from at least two compartments are contained before the injection is made.
Known injection devices for injection of medicaments into a patient include traditional hypodermic needle syringes, needle-free jet injectors like the ones disclosed in U.S. Pat. Nos. 5,599,302; 5,062,830; and 4,790,824; needle-assisted injectors, such as those described in U.S. Patent Publication No. 2005/0033234; and self-injectors or autoinjectors like the ones disclosed in U.S. Pat. Nos. 4,553,962 and 4,378,015, and PCT Publications WO 95/29720 and WO 97/14455.
The liquid medicament preparations that are injected from such injection devices are also known to contain insoluble or particulate drug constituents. This can be due to the insolubility of the drug in the vehicle or medium in which it is stored. As a result, the insoluble or particulate drug constituents in the liquid preparations separate upon storage, even over short periods of time.
The particulates can potentially clog the needle, and this is particularly problematic in cases when the liquid pharmaceutical preparation containing insoluble particles is self-administered or administered in the home by non-professional care-givers. Ordinarily, when these liquid pharmaceutical preparations are administered in the hospital or other health-care providing institutions by trained staff, one can rely on adequate handling of the medication to ensure proper drug delivery, despite settled material and plugged needles. However when such pharmaceutical preparations are self-administered or administered in the home by non-professional care-givers, the risk for inadequate handling of the medication increases since the injection of such formulations requires that the administrator be able to adequately resuspend any settled material and clear the needle to ensure proper drug delivery.
Thus, an injector is needed that can facilitate reliable combination of injectable components prior to injection.
The invention is related to an injector for injecting a medicament into a patient. The preferred embodiment of the injector includes a container defining a first chamber containing a fluid therein, and a second chamber. An injection conduit is configured for directing the fluid fired from the container into the patient. The injector also includes a transfer mechanism operable by a user to transfer the fluid from the first chamber to the second chamber in a first stage of operation, and a firing mechanism operable by the user for firing the fluid from the second chamber through the injection conduit in a second stage of operation. An energy source is in powering association with the firing mechanism to drive firing mechanism in the first and second stages.
Preferably, the injector also includes a transfer control that is manually operable to operate the injector in the first stage of operation. The first stage preferably also includes venting the second chamber. The injection conduit preferably has a position that is initially fluidly incommunicated with the second chamber, and the transfer control preferably operates the transfer mechanism in the first stage of operation and fluidly communicates the injection conduit with the second chamber in the first stage of operation. Preferably, the transfer control includes a cap associated with the container and disposed to cover the injection conduit prior to the first stage of operation. Also, the cap is preferably separable from the injection conduit and container after the first stage of operation. Preferably, the injector includes a cap release in locking association with the cap to prevent operation thereof. The cap release is positionable in a release position in which the cap release releases the cap to permit operation thereof in the first stage of operation.
The injection conduit preferably includes a communicating needle portion, and the transfer control is operable to relatively move the communicating needle portion with respect to the second chamber to pierce the container to fluidly communicate the second chamber with the communicating needle portion in the first stage of operation. The injection conduit also preferably includes an injecting needle portion disposed and configured to pierce the skin of the patient for assisting the injection of the fluid in the second stage.
Preferably, the energy source and firing mechanism are configured for delivering the fluid in a jet to an injection site within the patient tissue remote from the injecting needle. The injection conduit preferably includes a jet nozzle disposed and configured to deliver the fluid in a jet into the patient during the second stage of operation to pierce the skin of the patient for assisting the injection of the fluid in the second stage.
Preferably, the second chamber comprises the medicament, and the fluid in the first chamber is a diluent configured for dissolving or suspending the medicament therein for injection into the patient. The energy source is preferably associated to power the transfer mechanism to transfer the fluid to the second chamber. The preferred injector also includes an injection trigger mechanism operably associated with the firing mechanism to operate the firing mechanism in the second stage. The transfer and firing mechanisms can include a firing ram that is movable over a first throw in the first stage of operation and a second throw in the second stage of operation, the energy source in biasing association with the ram in each stage of operation to power the ram. The injection trigger mechanism is configured to block movement of the ram beyond the first throw, the injection trigger being acuatable to release the ram to travel over the second throw.
The injector also preferably includes a retractable guard that is movable between a protecting position in which the injection conduit is disposed within the guard, and an injecting position in which an injection needle portion of the injection conduit is exposed for injection of the fluid in the patient. Preferably, the injection trigger mechanism is configured for operating the firing mechanism in the second stage after the retractable guard is retracted from the protecting position. Also, the retractable guard can be operably associated with the injection trigger mechanism to cause the injection trigger mechanism to operate the firing mechanism when the guard is retracted to the injecting position.
In another preferred embodiment, the injector includes a container that includes a fluid chamber containing a medicament therein, the fluid chamber comprising a needle hub at the distal end thereof, and an injection conduit configured for directing the medicament fired from the container into the patient, the injection conduit having a position that is fluidly incommunicated with the fluid chamber. The injector also includes a transfer control operable to fluidly communicate the injection conduit with the needle hub of the fluid chamber. The transfer control includes a cap associated with the container and disposed to cover the injection conduit, the cap being separable from the injection conduit upon operating the transfer control to fluidly communicate the injection conduit with the needle hub.
Preferably, the injection conduit includes a communicating needle portion, the transfer control being operable to relatively move the communicating needle portion with respect to the fluid chamber to pierce the container adjacent the needle hub to fluidly communicate the fluid chamber with the communicating needle portion.
A trigger device can be associated with the energy source and the firing mechanism, with the triggering device being operable in a first triggering stage, which causes the firing mechanism to operate in the first stage of operation. The triggering device can be configured such that only after the firing mechanism has operated in the first stage of operation, the triggering device is operable in a second triggering stage which causes the firing mechanism to operate in the second stage of operation. The triggering device can have a single control that is operable in the first and second triggering stages, or separate controls to operate in each of the first and second triggering stages.
The present invention thus provides an injector that enables reconstitution of a liquid medicament preparation, preferably just prior to injection, to enable easy and effective delivery of the medicament to a patient.
Referring to
A cap 100 is associated with the outer housing 12 at the distal end 8 and is configured for covering an injection conduit, which can be a needle 126, or a jet nozzle, for example. The cap 100 preferably includes engagement portions configured for removable engagement with outer housing 12. As shown in the preferred embodiment of
The distal end of the outer housing 12 also preferably includes engagement portions 106 configured for removable engagement with the cap 100. Engagement portions 106 extend distally from positions to engage the cap engagement portions 102, and in this embodiment are disposed diametrically opposite sides of the distal end 8 of the outer housing 12. Similar to the engagement portions 102 of the cap 100, the engagement portions 106 of the outer housing 12 preferably extend circumferentially around less than about a quarter, and more preferably less than about a fifth, of the total circumference of the distal end 8 of the outer housing 12. The inner radial surface of the engagement portions 106 is preferably a threaded surface 107. Additionally, the engagement portions 106 preferably define a pair of gaps 105 therebetween, the circumferential length of the gaps 105 preferably larger than the circumferential length of the engagement portions 102 of the cap 100.
Preferably, the width between circumferentially adjacent engagement portions 106 of the outer housing 12 is greater than the width between engagement portions 102 of the cap 100, such that when the cap 100 and outer housing 12 are engaged with each other as shown in
One or both of the engagement portions 106 preferably further includes a cap lock mechanism 110 that is moveable between a blocking position and a release position. The cap lock mechanism 110 includes an actuation portion 111 that is operable by the user, a blocking portion 112, and a pivot 113 that is mounted preferably to the outer housing 12. When the engagement portions 102 and 106 are in threaded association with each other such that the cap 100 and the outer housing 12 are engaged, each cap lock mechanism 110 is resiliently biased to the blocking position such that each blocking portion 112 is disposed within respective notches 104. In this position, the blocking portion 112 prevents rotation of the cap 100 with respect to the outer housing 12, at least in a direction that would allow cap release, and preferably in both directions. Movement of the cap 100 in the proximal direction with respect to the outer housing 12 is also thus prevented. Actuation of the cap lock mechanism 110, for example, by depressing the actuation portion 111 radially inward, causes the blocking portion 112 to pivot proximally about pivot 113 to a release position. As a result, the blocking member 112 pivots out of association with the notch 104 to a position in which rotation in a cap release direction is permitted, and no longer prevents or obstructs movement of the cap 100 in the proximal direction with respect to the outer housing 12. Preferably, the actuation portion 111 is a button, although it can be any other suitable actuation member in other embodiments, and alternative mechanisms can be used to lock the cap in a protective position. In other embodiments, the cap lock mechanism can be mounted on the cap and be disengageable with notches located on the engagement portions of the outer housing.
The interior of the cap 100 preferably includes a hub-engagement portion 120, which is preferably substantially annular, that defines a holding area 122 therein. The hub-engagement portion 120 is preferably configured for reception in axial opening 74 of guard 66 of the injector 10. Releasably mounted within the holding area 122 is a needle hub 124 to which an injection needle 126, or other injection conduit, is mounted. In a needle-free embodiment, a jet nozzle can be mounted thereto. The needle hub 124 preferably is in a snap-lock association with the holding area 122 of the cap 100, but alternatively can be abutting the cap for free removal therefrom. The needle 126 preferably includes a piercing end 125 and an injection end 127 that terminates in an injection tip. The injection end 127 is preferably configured as known in the art to penetrate the tissue of a patient, preferably the skin, at the injection location. A needle bore extends through the needle 126 forming a conduit for the medicament. Preferably, the needle hub 124 is attached to the needle 126 so that the piercing end 125 is oriented proximally, and the injection end 127 is oriented distally, with respect to the outer housing 12.
In other embodiments, the cap and distal end of the housing can have different configurations for allowing removable engagement therebetween. For example, the cap and housing can include associable bayonet fittings, latch fittings, snap fittings, or other suitable attachment structures.
The injector 10 also includes container support member 16 housed within and mounted with the inner housing 13. The container support member 16 is configured to hold and position a container within the injector 10. The container can be, for example, a cartridge 18 or any other suitable container for holding medicament therein. In the preferred embodiment, the container support member 16 is substantially fixed to the inner housing 13, such as by snaps, an adhesive, a weld, or another known attachment, but may be mounted therein in other manners.
The cartridge 18 preferably includes a container portion 24 that defines in its interior a diluent chamber 22, which is preferably prefilled with a liquid diluent, and a medicament or drug chamber 23, which is preferably prefilled with a particulate drug. The container portion 24 is preferably tubular or cylindrical in shape. The diluent chamber 22 is preferably aligned with and disposed proximally with respect to the medicament chamber 23. Additionally, the diluent chamber 22 is defined by a first plunger 28 at the proximal end of the chamber, a second plunger 29 at the distal end of the chamber, and by the wall of the container portion 24. Similarly, the medicament chamber 23 is defined by the second plunger 29 at the proximal end of the chamber, a membrane, septum 30, or stopper at the distal end of the chamber, and by the wall of the container portion 24. The distal end of the medicament chamber 23, adjacent the septum 30, is preferably configured for engagement and mounting of the needle hub 124 therewith.
A preferred material for the container portion 24 is glass, for example, borosilicate glass that is compatible with most medicaments, but other suitable materials can be used in other embodiments. The first and second plungers or stoppers 28, 29, and the septum 30 seal the respective contents of diluent chamber 22 and medicament chamber 23 therein.
The container 18 also preferably includes a by-pass or a reconstitution bulge 32 where the walls of the container are flared radially outward along a longitudinal length thereof. As such, the radial diameter of the reconstitution bulge 32 is preferably substantially larger than the remaining portions of the container 18. Preferably, the radial diameter and the longitudinal length of the reconstitution bulge 32 is also substantially larger than that of the second plunger 29. The reconstitution bulge 32 is preferably located within the medicament chamber 23 before the injection is commenced or the contents of the diluent and medicament chambers are combined.
The injector 10 also preferably includes a flex arm cam member 40, flex arms 44, and ram arms 48 contained within the outer housing 12, as shown in
The distal end of the of the flex arm 44 can be mounted to inner housing 13 or another suitable portion of the injector 10. The distal portion of the flex arms 44 are disposed radially inward with respect to the flex arm cams 42. The flex arms 44 extend proximally from the flex arm cams 42. The flex arms 44 are shown in a blocking position in
In the blocking position, the proximal ends of each flex arm 44 is disposed in longitudinal abutment with, and preferably in substantial longitudinal alignment with, the distal end of a respective ram arm 48. The ram arms 48 further extend proximally therefrom to respective shoulders 49, which extend radially inward from each ram arm 48. Preferably, the shoulder 49 is attached to ram 60, which is associated with and biased by an energy source, which in the embodiment of
The ram 60 also includes a proximal portion that includes a shaft 63 and terminates proximally at enlarged portion or end 64. The enlarged end 64 preferably has a radial diameter that is substantially greater than that of the shaft 63, and which is also too large to fit through aperture 58 between the trigger protrusions 56, which thus prevents or impedes distal movement of the ram 60 past where the trigger protrusions 56 would abut the enlarged end 64.
The features of the injector 10 as described above advantageously allow the injector 10 to complete a first stage of operation, which effectively prepares the medicament and readies the injector 10 for injection. Prior to commencement of the first stage of operation, the injector 10 is preferably oriented such that the cap 100, which is in threaded association with the outer housing 12, is above the rest of the injector 10, as shown in
In the preferred embodiment, the first stage of operation is initiated by actuation or depression of the cap lock mechanisms 110 to enable the cap 100 to be unlocked from fixed engagement with the outer housing 12. Upon actuation of the cap lock mechanisms 110, the blocking portions 112 are pivoted proximally about the pivot 113 to the release position, and thus the cap 100 is free to rotate. Upon rotation of the threads, the cap 100 moves proximally with respect to the outer housing 112, as shown in
In another embodiment, as shown in
In the preferred embodiment, rotation of the cap 100 with respect to the outer housing 12 disengages the engagement portions 102, 106 from threaded association with each other, thus allowing the cap 100 to be completely removed from association with the outer housing 12 by pulling the cap 100 distally away therefrom. Prior to such removal of the cap, however, movement of the cap 100 proximally with respect to the outer housing 12 also preferably initiates the first stage of operation, which preferably includes attaching the injection conduit in fluid communication with the medicament chamber 23.
For example, movement of the cap 100 in the proximal direction also moves the needle hub 124 proximally such that the needle hub 124 is received on the distal end of the medicament chamber 23 and securely mounted thereto. Preferably, the needle hub 124 has a snap-lock association with the distal end of the medicament chamber 23 that is of greater strength than the snap-lock association between the needle hub 124 and the holding area 122. Thus, the needle hub 124 will remain mounted to the distal end of the medicament chamber 23 even after removal of the cap 100 from the injector 10 by pulling the cap distally.
Additionally, upon moving the needle hub 124 proximally for mounting, the piercing end 125 of the needle 126 preferably pierces or punctures the septum 30 at the distal end of the medicament chamber 23. This puts the bore of the needle 126 in fluid communication with the medicament chamber 23 and the medicament therein, and is open at the needle tip 127 to inject the medicament therethrough. The fluid communication between the needle 126 and the medicament chamber 23 also acts to vent the chamber, thus allowing air within the chamber to escape or be released through the bore of the needle 126, such as upon movement of the plungers 28, 29 through the diluent and medicament chambers 22, 23. Orientation of the injector 10 with the cap 100 above the injector 10 advantageously facilitates efficient venting of the medicament chamber 23, without the medicament leaking from the needle hub 124.
Movement of the cap 100 in the proximal direction also causes a proximal side 80 of cap 100 to contact and push the base 41 of the flex arm cam member 40. Upon engagement by the proximal side 80, the flex arm cam member 40 is also moved in the proximal direction, sliding the flex arm cams 42 proximally along and against the distal portions of the flex arms 44. The flex arm cams 42 thus cam the flexible flex arms 44 radially inwardly from the blocking position to the release position with respect to the ram arms 48. Because the flex arms 44 in the release position are no longer longitudinally aligned with the ram arms 48, the spring 62 is able to move the ram 60 in the distal direction until the enlarged end 64 reaches aperture 58, where the trigger protrusions 56 prevent further distal movement of the ram 60. In the first stage operation, the ram 60 preferably moves longitudinally by a predetermined first amount, which is less than full travel. As the ram 60 moves distally, the ram arms 48 also slide distally radially over the flex arms 44, and the distal portions of the ram arms 48 are received within slots 43 between the flex arm cams 42.
Movement of the ram 60 distally also moves the first plunger 28 in the distal direction, pushing the diluent in the diluent chamber 22, which pushes the second plunger 29 in the distal direction until second plunger 29 reaches the reconstitution bulge 32. When the second plunger 29 enters the reconstitution bulge 32, a fluid passageway is created between the diluent chamber 22 and the medicament chamber 23, allowing diluent from the diluent chamber 22 to enter and mix with the medicament in the medicament chamber 23 as the diluent chamber 22 is reduced in volume because the first plunger 28 continues to move towards the second plunger 29. Preferably, the first stage mechanism is configured to move the first plunger 28 until contacting second plunger 29 in the bulge 32, but lesser or greater movement can be suitable in some embodiments.
Further mixing of the diluent and medicament in the medicament chamber 23 to suspend or dissolve the medicament in the diluent can be accomplished by shaking of the injector 10. In some embodiments, for example the embodiment shown in
At this point, the first stage of operation is completed and the injector 10 is ready for injection of the mixed medicament from the medicament chamber 23. Injection is preferably achieved by completion of a second stage of operation, which uses a second stage mechanism or firing mechanism that includes guard 66, trigger mechanism 52, and ram 60 in this embodiment. The user-operable trigger device to activate the device in both first and second stages of operation can include a single control that is operated in first and second triggering stages, or, as in the preferred embodiments described, can include separate user-manipulable controls that are operated separately from each other. For example, the control to initiate the second stage can be operable once the first stage is completed, but with the second stage mechanism keeping the injector from firing prior to its activation.
The injector 10 includes a trigger mechanism 52 that is preferably housed within the proximal end of the outer housing 12. The trigger mechanism 52 includes a portion of the inner portion or housing 13 that can be attached to the outer housing 12, such as by snaps, an adhesive, a weld, or other known attachment. Trigger protrusions 56 extend radially inwardly from the proximal end of trigger arms 57 and are resiliently biased outwardly. Trigger protrusions 56 form the aperture 58 about the shaft 63 of the ram 60, the shaft 63 being received in the aperture 58. The shaft 63 is preferably at least as long as the longitudinal movement of the ram 60 required in the first stage of operation. Upon movement of the ram 60 in the distal direction during the first stage of operation, the trigger protrusions 56 enter into blocking association with the enlarged end 64 of the ram 60 to prevent further distal movement of the ram 60 prior to the firing of the injector 10 upon actuation of the trigger mechanism 52.
A trigger member of the trigger mechanism 52, such as a latch portion or housing 61, is provided exterior to the inner housing 13 to retain the trigger protrusions 56 in the blocking association with the enlarged end 64 after the first stage of operation to prevent premature firing of the injector 10. The latch housing 61 is slideable inside the outer housing 12 with respect to the inner housing 13, preferably in an axial direction, and the latch housing 61 preferably surrounds the inner housing 13.
The distal end of the outer housing 12 preferably includes a needle guard 66 that is moveable with respect to the outer housing 12. The needle guard 66 is retractable between a protecting position and an injecting position. In the protecting position, the needle 126 is disposed within the guard 66. The needle guard 66 is retractable, preferably into the outer housing 12, in a proximal direction to the injecting position, in which the injection portion 127 of the needle 126 is exposed for insertion into a patient. In the preferred embodiment, the proximal movement of the guard is prevented substantially in the injecting position. The guard 66 is preferably resiliently biased distally towards the protecting position by compression coil spring 72. Also, the needle guard 66 has an axial opening 74 to allow the needle 126 pass there through, and which may be sized according to the type of injector desired. The needle guard 66 extends proximally through the injector 10 and is of unitary with the latch housing 61.
Other embodiments can incorporate alternative trigger mechanisms for actuating firing of the injector. For example, the injector can include a button or other suitable depressible member on the outer housing that, upon depression thereof, actuates firing of the injector.
In the preferred embodiment, the second stage of operation to fire the injector 10 is initiated by retracting the guard 66 to the injecting position, such as by pushing the guard against the patient's skin. The needle guard 66 is associated with the latch housing 61 such that when the guard 66 is displaced proximally, it slides the latch housing 61 also in a proximal direction to release the trigger protrusions 56 from blocking association with the enlarged end 64 of the ram 60. Preferably, the latch housing 61 has a latching portion that abuts the inner housing 13 in an association to bias and maintain the trigger protrusions 56 positioned in the blocking association with the enlarged end 64 prior to the firing of the injector 10. When the latch housing 61 is slid proximally by the retracting of the guard 66 to the injecting position, the latching portion slides beyond the portion of inner housing 13 that it contacts to flex the trigger protrusions 56, allowing the trigger protrusions 56 to move radially outwardly with respect to the shaft 63 and therefore from the blocking association with the enlarged end 64. When this happens, i.e., when the trigger mechanism 52 is actuated, the spring 62 biases the ram 60 against the first plunger 28 to fire the injector 10. The cartridge 18 is configured such that when the first plunger 28 is displaced in a distal direction, the volume of the medicament chamber 23 is decreased, forcing the mixed medicament out therefrom and through the bore of needle 24. Latch housing 61 preferably defines trigger openings adjacent to the latching portions, which are configured to receive a portion of the inner housing 13, such as the surface disposed radially outwardly from the trigger protrusions 56. A same energy source, such as spring 62, can be configured to power both first and second stages.
In the preferred embodiment, the user can push the distal end of the injector 10 against the patient's skin as shown in
Preferably, the injecting position of the guard 66 is such that a predetermined length of the end of needle 126 is exposed from the guard 66. In some embodiments, such as where the opening 74 is of a sufficiently large diameter, the skin of the patient maybe allowed to extend into the opening 74 when the device 10 is pressed there against, and a needle that does not protrude beyond the distal end of the guard 66 can be used. In most embodiments, the distance by which the needle tip extends past the distal end of the guard will be fairly close to the depth of the insertion of the needle. Additionally, in some embodiments, the distal surface of the guard can be discontinuous.
The injector 10 can be configured for various types of subcutaneous injections, intradermal injections, intravascular injections, or other types of injections. In the preferred embodiment, the guard 66 is configured to allow insertion of the needle to a penetration depth in the skin that is up to about 5 mm below the skin surface. More preferably, the penetration depth is less than about 4 mm, and in one embodiment is less than about 3 mm. Preferably, the insertion depth is at least about 0.5 mm and more preferably at least about 1 mm. In another embodiment, the distance by which the needle extends past the guard 66 or the distal surface of the guard 66 that contacts the skin is up to about 5 mm, more preferably up to about 4 mm, and in one embodiment up to about 3 mm. Preferably, extension distance is at least about 0.5 mm, more preferably at least about 1 mm, and most preferably at least about 2 mm. In a preferred embodiment, tip 127 of the needle 126 extends by a distance of around 2.5 mm beyond the portion of the guard 66 that contacts the skin in the injecting position. In alternative embodiments, the needle tip stops behind or proximal to the guard, and penetrates the skin that is pushed into the guard.
In another embodiment, such as for intramuscular injection, the injector is configured to allow the needle to be inserted into the patient to a penetration depth in the skin, or alternatively beyond the distal surface of the guard, by a distance of up to about 15 mm. In one embodiment, this distance is about between 10 mm and 14 mm. In an embodiment for jet injection of epinephrine for instance, a preferred penetration depth or distance beyond the guard is between about 12 mm and 13.5 mm, and most preferably around 12.7 mm. Jet injection with this length needle improves the distribution of the medicament in the patient tissue compared to non-jet injection. Other exposed needle lengths can be selected for jet injection to different depths below the skin, with a preferred overall penetration length of between about 0.5 mm and about 20 mm. In these embodiments, the needle guard is preferably configured for retracting from a protecting position, preferably covering the entire needle, to an injecting position, in which the desired length of the end of the needle is exposed.
In some embodiments, the energy source, which is preferably spring 62, and the container, which is preferably cartridge 18, are configured to jet inject the medicament into the patient to an injection site. The spring 62 applies a force on the ram 60 to bias the first plunger 28 that is preferably sufficient to elevate the pressure within the diluent and medicament chambers 22, 23 to a level high enough to eject the medicament from the needle 126 as a jet. Jet injection is to be understood as an injection with sufficient velocity and force to drive the medicament to locations remote from the needle tip 127. The jet injector embodiments deliver a jet injection, the medicament is jet injected distally or in other directions, such as generally radially by the elevated pressure jet, which beneficially improves the distribution of the medicament after the injection and keeps a large bolus from forming that can detrimentally force the medicament to leak back out of the patient around the needle or through the hole left behind by the needle after it is removed. In alternative autoinjector embodiments that use needles, the injection pressures are relatively very low, and the medicament exits the needle tip inside the patient and is typically deposited locally around the needle in a bolus.
Preferably, the needle 127 is between 26 and 28 gage, and are most preferably around 27 gage, but alternatively other needle gages can be used where the other components are cooperatively configured to produce the desired injection. Preferably, the components of the injector 10 are configured to jet inject the medicament to a subterraneous injection site.
Preferred injection rates are below about 0.75 mL/sec., more preferably below about 0.6 mL/sec., and preferably at least about 0.2 mL/sec., more preferably at least about 0.3 mL/sec, and most preferably at least about 0.4 mL/sec. Preferably, the injection of the entire amount of medicament is completed in less than about 4 seconds, more preferably in less than about 3 seconds, and most preferably in less than about 2.5 seconds. Preferably, the medicament injection takes at least about 1 second, and more preferably at least 1.5 seconds, and most preferably at least about 1.75 seconds. A preferred embodiment injects the medicament at about 0.5 mL/sec., completing the injection of 1 mL in about 2 seconds.
The entire amount of mixed medicament contained and injected from the container 18 is preferably between about 0.02 mL and 4 mL, and preferably less than about 3 mL, and in the preferred embodiment is around 1 mL. Larger volumes may also be selected depending on the particular medicament and dosage required. Preferably, the cartridge 18 shown in
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
The present application is a continuation of and claims the benefit of priority to U.S. Non-Provisional patent application Ser. No. 15/788,943 filed 20 Oct. 2017; which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/244,916 filed Apr. 4, 2014, now U.S. Pat. No. 9,808,582; which is a continuation of U.S. Non-Provisional patent application Ser. No. 13/584,317, filed Aug. 13, 2012, now U.S. Pat. No. 8,696,618; which is a continuation of U.S. Non-Provisional patent application Ser. No. 12/299,274, filed Jun. 3, 2009, now U.S. Pat. No. 8,251,947; which is a U.S. National Stage Entry of PCT/US2007/067986, filed May 2, 2007, which in turn claims the benefit of priority to U.S. Provisional Patent Application No. 60/796,939, filed May 3, 2006, all of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
547370 | Chalefou | Oct 1895 | A |
1465793 | Schilling | Aug 1923 | A |
1512294 | Marcy | Oct 1924 | A |
1687323 | Cook | Oct 1928 | A |
2354649 | Bruckner | Aug 1944 | A |
2607344 | Brown | Aug 1952 | A |
2645223 | Lawshe | Jul 1953 | A |
2648334 | Brown | Aug 1953 | A |
2687730 | Hein | Aug 1954 | A |
2688967 | Huber | Sep 1954 | A |
2699166 | Bickinson | Jan 1955 | A |
2717601 | Brown | Sep 1955 | A |
2728341 | Roehr | Dec 1955 | A |
2737946 | Hein, Jr. | Mar 1956 | A |
2813528 | Blackman | Nov 1957 | A |
2866458 | Mesa et al. | Dec 1958 | A |
2888924 | Dunmire | Jun 1959 | A |
2893390 | Lockhart | Jul 1959 | A |
3130724 | Higgins | Apr 1964 | A |
3166069 | Enstrom | Jan 1965 | A |
3375825 | Keller | Apr 1968 | A |
3382865 | Worrall | May 1968 | A |
3526225 | Hayamamachi | Sep 1970 | A |
3557784 | Shields | Jan 1971 | A |
3563098 | Gley | Feb 1971 | A |
3605744 | Dwyer | Sep 1971 | A |
3688765 | Gasaway | Sep 1972 | A |
3702609 | Steiner | Nov 1972 | A |
3712301 | Sarnoff | Jan 1973 | A |
3742948 | Post et al. | Jul 1973 | A |
3770026 | Isenberg | Nov 1973 | A |
3790048 | Luciano et al. | Feb 1974 | A |
3797489 | Sarnoff | Mar 1974 | A |
3797491 | Hurschman | Mar 1974 | A |
3811441 | Sarnoff | May 1974 | A |
3831814 | Butler | Aug 1974 | A |
3848593 | Baldwin | Nov 1974 | A |
3882863 | Sarnoff et al. | May 1975 | A |
3892237 | Steiner | Jul 1975 | A |
3895633 | Bartner et al. | Jul 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
4031893 | Kaplan et al. | Jun 1977 | A |
4067333 | Reinhardt et al. | Jan 1978 | A |
4127118 | Latorre | Nov 1978 | A |
4171698 | Genese | Oct 1979 | A |
4222392 | Brennan | Sep 1980 | A |
4227528 | Wardlaw | Oct 1980 | A |
4258713 | Wardlaw | Mar 1981 | A |
4282986 | af Ekenstam et al. | Aug 1981 | A |
4316463 | Schmitz et al. | Feb 1982 | A |
4316643 | Burk et al. | Feb 1982 | A |
4328802 | Curley et al. | May 1982 | A |
4333456 | Webb | Jun 1982 | A |
4333458 | Margulies et al. | Jun 1982 | A |
4338980 | Schwebel et al. | Jul 1982 | A |
4373526 | Kling | Feb 1983 | A |
4378015 | Wardlaw | Mar 1983 | A |
4411661 | Kersten | Oct 1983 | A |
4484910 | Sarnoff et al. | Nov 1984 | A |
4529403 | Kamstra | Jul 1985 | A |
4553962 | Brunet | Nov 1985 | A |
4558690 | Joyce | Dec 1985 | A |
4573971 | Kamstra | Mar 1986 | A |
4592745 | Rex et al. | Jun 1986 | A |
4624660 | Mijers et al. | Nov 1986 | A |
4634027 | Kanarvogel | Jan 1987 | A |
4661098 | Bekkering et al. | Apr 1987 | A |
4662878 | Lindmayer | May 1987 | A |
4664653 | Sagstetter et al. | May 1987 | A |
4664655 | Orentreich et al. | May 1987 | A |
4678461 | Mesa | Jul 1987 | A |
4719825 | LaHaye et al. | Jan 1988 | A |
4722728 | Dixon | Feb 1988 | A |
4774772 | Vetter et al. | Oct 1988 | A |
4790824 | Morrow et al. | Dec 1988 | A |
4818517 | Kwee et al. | Apr 1989 | A |
4820286 | van der Wal | Apr 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4830217 | Dufresne et al. | May 1989 | A |
4874381 | Vetter | Oct 1989 | A |
4883472 | Michel | Nov 1989 | A |
4913699 | Parsons | Apr 1990 | A |
4915701 | Halkyard | Apr 1990 | A |
4929238 | Baum | May 1990 | A |
4936833 | Sams | Jun 1990 | A |
4940460 | Casey et al. | Jul 1990 | A |
4966581 | Landau | Oct 1990 | A |
4968302 | Schluter et al. | Nov 1990 | A |
4973318 | Holm et al. | Nov 1990 | A |
4976701 | Ejlersen et al. | Dec 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4986816 | Steiner et al. | Jan 1991 | A |
5042977 | Bechtold et al. | Aug 1991 | A |
5062830 | Dunlap | Nov 1991 | A |
5064413 | McKinnon et al. | Nov 1991 | A |
5069670 | Vetter et al. | Dec 1991 | A |
5078680 | Sarnoff | Jan 1992 | A |
5080648 | D'Antonio | Jan 1992 | A |
5080649 | Vetter | Jan 1992 | A |
5085641 | Sarnoff et al. | Feb 1992 | A |
5085642 | Sarnoff et al. | Feb 1992 | A |
5092842 | Bechtold et al. | Mar 1992 | A |
5102388 | Richmond | Apr 1992 | A |
5102393 | Sarnoff et al. | Apr 1992 | A |
5104380 | Holman et al. | Apr 1992 | A |
5114406 | Gabriel et al. | May 1992 | A |
5137516 | Rand et al. | Aug 1992 | A |
5137528 | Crose | Aug 1992 | A |
5139490 | Vetter et al. | Aug 1992 | A |
5163907 | Szuszkiewicz | Nov 1992 | A |
5176643 | Kramer et al. | Jan 1993 | A |
5180370 | Gillespie | Jan 1993 | A |
5185985 | Vetter et al. | Feb 1993 | A |
5195983 | Boese | Mar 1993 | A |
5221348 | Masano | Jun 1993 | A |
5226895 | Harris | Jul 1993 | A |
5232459 | Hjertman | Aug 1993 | A |
5256142 | Colavecchio | Oct 1993 | A |
5263934 | Haak | Nov 1993 | A |
5271744 | Kramer et al. | Dec 1993 | A |
5279543 | Glikfeld et al. | Jan 1994 | A |
5279576 | Loo et al. | Jan 1994 | A |
5279585 | Balkwill | Jan 1994 | A |
5279586 | Balkwill | Jan 1994 | A |
5281198 | Haber et al. | Jan 1994 | A |
5290228 | Uemura et al. | Mar 1994 | A |
5295965 | Wilmot | Mar 1994 | A |
5300030 | Crossman et al. | Apr 1994 | A |
5304128 | Haber et al. | Apr 1994 | A |
5304152 | Sams | Apr 1994 | A |
5308341 | Chanoch | May 1994 | A |
5318522 | D'Antonio | Jun 1994 | A |
5320603 | Vetter et al. | Jun 1994 | A |
5330431 | Herskowitz | Jul 1994 | A |
5332399 | Grabenkort et al. | Jul 1994 | A |
5334144 | Alchas et al. | Aug 1994 | A |
5342308 | Boschetti | Aug 1994 | A |
5350367 | Stiehl et al. | Sep 1994 | A |
5354286 | Mesa et al. | Oct 1994 | A |
5358489 | Wyrick | Oct 1994 | A |
RE34845 | Vetter et al. | Jan 1995 | E |
5391151 | Wilmot | Feb 1995 | A |
5405362 | Kramer et al. | Apr 1995 | A |
5415648 | Malay et al. | May 1995 | A |
5425715 | Dalling et al. | Jun 1995 | A |
5451210 | Kramer et al. | Sep 1995 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5505694 | Hubbard et al. | Apr 1996 | A |
5514097 | Knauer | May 1996 | A |
5514107 | Haber et al. | May 1996 | A |
5540664 | Wyrick | Jul 1996 | A |
5542760 | Chanoch et al. | Aug 1996 | A |
5544234 | Terajima et al. | Aug 1996 | A |
5549561 | Hjertman | Aug 1996 | A |
5554134 | Bonnichsen | Sep 1996 | A |
5562625 | Stefancin, Jr. | Oct 1996 | A |
5567160 | Massino | Oct 1996 | A |
5569190 | D'Antonio | Oct 1996 | A |
5569192 | van der Wal | Oct 1996 | A |
5569236 | Kriesel | Oct 1996 | A |
5573042 | De Haen | Nov 1996 | A |
5593388 | Phillips | Jan 1997 | A |
5599302 | Lilley et al. | Feb 1997 | A |
5599309 | Marshall et al. | Feb 1997 | A |
5605542 | Tanaka et al. | Feb 1997 | A |
5637094 | Stewart, Jr. et al. | Jun 1997 | A |
5637100 | Sudo | Jun 1997 | A |
5649912 | Peterson | Jul 1997 | A |
5658259 | Pearson et al. | Aug 1997 | A |
5665071 | Wyrick | Sep 1997 | A |
5688251 | Chanoch | Nov 1997 | A |
5695472 | Wyrick | Dec 1997 | A |
5704911 | Parsons | Jan 1998 | A |
5725508 | Chanoch et al. | Mar 1998 | A |
5730723 | Castellano et al. | Mar 1998 | A |
5743889 | Sams | Apr 1998 | A |
5769138 | Sadowski et al. | Jun 1998 | A |
5785691 | Vetter et al. | Jul 1998 | A |
5788670 | Reinhard et al. | Aug 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5807309 | Lundquist et al. | Sep 1998 | A |
5820602 | Kovelman et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5827232 | Chanoch et al. | Oct 1998 | A |
5836911 | Marzynski et al. | Nov 1998 | A |
5843036 | Olive et al. | Dec 1998 | A |
5846233 | Lilley et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5851198 | Castellano et al. | Dec 1998 | A |
5860456 | Bydlon et al. | Jan 1999 | A |
5865795 | Schiff et al. | Feb 1999 | A |
5865799 | Tanaka et al. | Feb 1999 | A |
5868711 | Kramer et al. | Feb 1999 | A |
5873857 | Kriesel | Feb 1999 | A |
5875976 | Nelson et al. | Mar 1999 | A |
5879327 | DeFarges et al. | Mar 1999 | A |
5891085 | Lilley et al. | Apr 1999 | A |
5891086 | Weston | Apr 1999 | A |
5893842 | Imbert | Apr 1999 | A |
5919159 | Lilley et al. | Jul 1999 | A |
5921966 | Bendek et al. | Jul 1999 | A |
5925017 | Kriesel et al. | Jul 1999 | A |
5928205 | Marshall | Jul 1999 | A |
5935949 | White | Aug 1999 | A |
5951528 | Parkin | Sep 1999 | A |
5957897 | Jeffrey | Sep 1999 | A |
5960797 | Kramer et al. | Oct 1999 | A |
5989227 | Vetter et al. | Nov 1999 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6045534 | Jacobson et al. | Apr 2000 | A |
6056716 | D'Antonio et al. | May 2000 | A |
6077247 | Marshall et al. | Jun 2000 | A |
6083201 | Skinkle | Jul 2000 | A |
6090070 | Hager et al. | Jul 2000 | A |
6099504 | Gross et al. | Aug 2000 | A |
6123684 | Deboer et al. | Sep 2000 | A |
6132395 | Landau et al. | Oct 2000 | A |
6159181 | Crossman et al. | Dec 2000 | A |
6171276 | Lippe | Jan 2001 | B1 |
6203529 | Gabriel et al. | Mar 2001 | B1 |
6210369 | Wilmot et al. | Apr 2001 | B1 |
6221046 | Burroughs et al. | Apr 2001 | B1 |
6221053 | Walters et al. | Apr 2001 | B1 |
6223408 | Vetter et al. | May 2001 | B1 |
6231540 | Smedegaard | May 2001 | B1 |
6241709 | Bechtold et al. | Jun 2001 | B1 |
6245347 | Zhang et al. | Jun 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6264629 | Landau | Jul 2001 | B1 |
6270479 | Bergens et al. | Aug 2001 | B1 |
6309371 | Deboer et al. | Oct 2001 | B1 |
6319224 | Stout et al. | Nov 2001 | B1 |
6371939 | Bergens et al. | Apr 2002 | B2 |
6383168 | Landau et al. | May 2002 | B1 |
6391003 | Lesch, Jr. | May 2002 | B1 |
6406456 | Slate et al. | Jun 2002 | B1 |
6428528 | Sadowski et al. | Aug 2002 | B2 |
6471669 | Landau | Oct 2002 | B2 |
6494865 | Alchas | Dec 2002 | B1 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
6530904 | Edwards et al. | Mar 2003 | B1 |
6544234 | Gabriel | Apr 2003 | B1 |
6562006 | Hjertman et al. | May 2003 | B1 |
6565553 | Sadowski et al. | May 2003 | B2 |
6568259 | Saheki et al. | May 2003 | B2 |
6569123 | Alchas et al. | May 2003 | B2 |
6569143 | Alchas et al. | May 2003 | B2 |
6584910 | Plass | Jul 2003 | B1 |
6589210 | Rolfe | Jul 2003 | B1 |
6607508 | Knauer | Aug 2003 | B2 |
6620137 | Kirchhofer et al. | Sep 2003 | B2 |
6641561 | Hill et al. | Nov 2003 | B1 |
6645170 | Landau | Nov 2003 | B2 |
6656150 | Hill et al. | Dec 2003 | B2 |
6673035 | Rice et al. | Jan 2004 | B1 |
6682504 | Nelson et al. | Jan 2004 | B2 |
6689092 | Zierenberg et al. | Feb 2004 | B2 |
6706000 | Perez et al. | Mar 2004 | B2 |
6746429 | Sadowski et al. | Jun 2004 | B2 |
6767336 | Kaplan | Jul 2004 | B1 |
6805686 | Fathallah et al. | Oct 2004 | B1 |
6830560 | Gross et al. | Dec 2004 | B1 |
6899698 | Sams | May 2005 | B2 |
6932793 | Marshall et al. | Aug 2005 | B1 |
6932794 | Giambattista et al. | Aug 2005 | B2 |
6936032 | Bush, Jr. et al. | Aug 2005 | B1 |
6969370 | Langley et al. | Nov 2005 | B2 |
6969372 | Halseth | Nov 2005 | B1 |
6979316 | Rubin et al. | Dec 2005 | B1 |
6986758 | Schiffmann | Jan 2006 | B2 |
6997901 | Popovsky | Feb 2006 | B2 |
7018364 | Giambattista et al. | Mar 2006 | B2 |
7066907 | Crossman et al. | Jun 2006 | B2 |
7112187 | Karlsson | Sep 2006 | B2 |
7118552 | Shaw et al. | Oct 2006 | B2 |
7118553 | Scherer | Oct 2006 | B2 |
7169132 | Bendek et al. | Jan 2007 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7218962 | Freyman | May 2007 | B2 |
7220247 | Shaw et al. | May 2007 | B2 |
7247149 | Beyerlein | Jul 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7297136 | Wyrick | Nov 2007 | B2 |
7341575 | Rice et al. | Mar 2008 | B2 |
7361160 | Hommann et al. | Apr 2008 | B2 |
7390314 | Stutz, Jr. et al. | Jun 2008 | B2 |
7390319 | Friedman | Jun 2008 | B2 |
7407492 | Gurtner | Aug 2008 | B2 |
7416540 | Edwards et al. | Aug 2008 | B2 |
7442185 | Amark et al. | Oct 2008 | B2 |
7449012 | Young et al. | Nov 2008 | B2 |
7488308 | Lesch, Jr. | Feb 2009 | B2 |
7488313 | Segal et al. | Feb 2009 | B2 |
7488314 | Segal et al. | Feb 2009 | B2 |
7500964 | Shaw et al. | Mar 2009 | B2 |
7517342 | Scott et al. | Apr 2009 | B2 |
7519418 | Scott et al. | Apr 2009 | B2 |
7544188 | Edwards et al. | Jun 2009 | B2 |
7547293 | Williamson et al. | Jun 2009 | B2 |
7569035 | Wilmot et al. | Aug 2009 | B1 |
7611491 | Pickhard | Nov 2009 | B2 |
7621887 | Griffiths et al. | Nov 2009 | B2 |
7621891 | Wyrick | Nov 2009 | B2 |
7635348 | Raven et al. | Dec 2009 | B2 |
7635350 | Scherer | Dec 2009 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7648482 | Edwards et al. | Jan 2010 | B2 |
7648483 | Edwards et al. | Jan 2010 | B2 |
7654983 | De La Sema et al. | Feb 2010 | B2 |
7658724 | Rubin et al. | Feb 2010 | B2 |
7670314 | Wall et al. | Mar 2010 | B2 |
7704237 | Fisher et al. | Apr 2010 | B2 |
7717877 | Lavi et al. | May 2010 | B2 |
7722595 | Pettis et al. | May 2010 | B2 |
7731686 | Edwards et al. | Jun 2010 | B2 |
7731690 | Edwards et al. | Jun 2010 | B2 |
7736333 | Gillespie, III | Jun 2010 | B2 |
7744582 | Sadowski et al. | Jun 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7749195 | Hommann | Jul 2010 | B2 |
7762996 | Palasis | Jul 2010 | B2 |
7776015 | Sadowski et al. | Aug 2010 | B2 |
7794432 | Young et al. | Sep 2010 | B2 |
7811254 | Wilmot et al. | Oct 2010 | B2 |
7862543 | Potter et al. | Jan 2011 | B2 |
7896841 | Wall et al. | Mar 2011 | B2 |
7901377 | Harrison et al. | Mar 2011 | B1 |
7905352 | Wyrick | Mar 2011 | B2 |
7905866 | Haider et al. | Mar 2011 | B2 |
7918823 | Edwards et al. | Apr 2011 | B2 |
7927303 | Wyrick | Apr 2011 | B2 |
7931618 | Wyrick | Apr 2011 | B2 |
7947017 | Edwards et al. | May 2011 | B2 |
RE42463 | Landau | Jun 2011 | E |
7955304 | Guillermo | Jun 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
7988675 | Gillespie, III et al. | Aug 2011 | B2 |
8016774 | Freeman et al. | Sep 2011 | B2 |
8016788 | Edwards et al. | Sep 2011 | B2 |
8021335 | Lesch, Jr. | Sep 2011 | B2 |
8048035 | Mesa et al. | Nov 2011 | B2 |
8048037 | Kohlbrenner et al. | Nov 2011 | B2 |
8057427 | Griffiths et al. | Nov 2011 | B2 |
8066659 | Joshi et al. | Nov 2011 | B2 |
8083711 | Enggaard | Dec 2011 | B2 |
8100865 | Spofforth | Jan 2012 | B2 |
8105272 | Williamson et al. | Jan 2012 | B2 |
8105281 | Edwards et al. | Jan 2012 | B2 |
8110209 | Prestrelski et al. | Feb 2012 | B2 |
8123719 | Edwards et al. | Feb 2012 | B2 |
8123724 | Gillespie, III | Feb 2012 | B2 |
8162873 | Muto et al. | Apr 2012 | B2 |
8162886 | Sadowski et al. | Apr 2012 | B2 |
8167840 | Matusch | May 2012 | B2 |
8167866 | Klein | May 2012 | B2 |
8177758 | Brooks, Jr. et al. | May 2012 | B2 |
8187224 | Wyrick | May 2012 | B2 |
8216180 | Tschirren et al. | Jul 2012 | B2 |
8216192 | Burroughs et al. | Jul 2012 | B2 |
8226618 | Geertsen | Jul 2012 | B2 |
8226631 | Boyd et al. | Jul 2012 | B2 |
8233135 | Jansen et al. | Jul 2012 | B2 |
8235952 | Wikner | Aug 2012 | B2 |
8246577 | Schrul et al. | Aug 2012 | B2 |
8251947 | Kramer et al. | Aug 2012 | B2 |
8257318 | Thogersen et al. | Sep 2012 | B2 |
8257319 | Plumptre | Sep 2012 | B2 |
8267899 | Moller | Sep 2012 | B2 |
8267900 | Harms et al. | Sep 2012 | B2 |
8273798 | Bausch et al. | Sep 2012 | B2 |
8275454 | Adachi et al. | Sep 2012 | B2 |
8276583 | Farieta et al. | Oct 2012 | B2 |
8277412 | Kronestedt | Oct 2012 | B2 |
8277413 | Kirchhofer | Oct 2012 | B2 |
8298175 | Hirschel et al. | Oct 2012 | B2 |
8298194 | Moller | Oct 2012 | B2 |
8300852 | Terada | Oct 2012 | B2 |
RE43834 | Steenfeldt-Jensen et al. | Nov 2012 | E |
8308232 | Zamperla et al. | Nov 2012 | B2 |
8308695 | Laiosa | Nov 2012 | B2 |
8313466 | Edwards et al. | Nov 2012 | B2 |
8317757 | Plumptre | Nov 2012 | B2 |
8323237 | Radmer et al. | Dec 2012 | B2 |
8333739 | Moller | Dec 2012 | B2 |
8337472 | Edginton et al. | Dec 2012 | B2 |
8343103 | Moser | Jan 2013 | B2 |
8343109 | Marshall et al. | Jan 2013 | B2 |
8348905 | Radmer et al. | Jan 2013 | B2 |
8353878 | Moller et al. | Jan 2013 | B2 |
8357120 | Moller et al. | Jan 2013 | B2 |
8357125 | Grunhut et al. | Jan 2013 | B2 |
8361036 | Moller et al. | Jan 2013 | B2 |
8366680 | Raab | Feb 2013 | B2 |
8372031 | Elmen et al. | Feb 2013 | B2 |
8372042 | Wieselblad | Feb 2013 | B2 |
8376993 | Cox et al. | Feb 2013 | B2 |
8398593 | Eich et al. | Mar 2013 | B2 |
8409149 | Hommann et al. | Apr 2013 | B2 |
8435215 | Arby et al. | May 2013 | B2 |
20010039394 | Weston | Nov 2001 | A1 |
20010049496 | Kirchhofer et al. | Dec 2001 | A1 |
20020007149 | Nelson et al. | Jan 2002 | A1 |
20020045866 | Sadowski et al. | Apr 2002 | A1 |
20020173752 | Polzin | Nov 2002 | A1 |
20020183690 | Amisolle | Dec 2002 | A1 |
20020188251 | Staylor et al. | Dec 2002 | A1 |
20030040697 | Pass et al. | Feb 2003 | A1 |
20030083621 | Shaw et al. | May 2003 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20030130619 | Safabash et al. | Jul 2003 | A1 |
20030158523 | Hjertman et al. | Aug 2003 | A1 |
20030171717 | Farrugia et al. | Sep 2003 | A1 |
20030229330 | Hickle | Dec 2003 | A1 |
20030236502 | De La Serna et al. | Dec 2003 | A1 |
20040039336 | Amark et al. | Feb 2004 | A1 |
20040039337 | Letzing | Feb 2004 | A1 |
20040097783 | Peters et al. | May 2004 | A1 |
20040097883 | Roe | May 2004 | A1 |
20040143213 | Hunter et al. | Jul 2004 | A1 |
20040220524 | Sadowski et al. | Nov 2004 | A1 |
20040267207 | Veasey et al. | Dec 2004 | A1 |
20040267355 | Scott et al. | Dec 2004 | A1 |
20050020979 | Westbye et al. | Jan 2005 | A1 |
20050027255 | Lavi et al. | Feb 2005 | A1 |
20050033234 | Sadowski et al. | Feb 2005 | A1 |
20050080377 | Sadowski | Apr 2005 | A1 |
20050101919 | Brunnberg | May 2005 | A1 |
20050165360 | Stamp | Jul 2005 | A1 |
20050165363 | Judson et al. | Jul 2005 | A1 |
20050209569 | Ishikawa et al. | Sep 2005 | A1 |
20050215955 | Slawson | Sep 2005 | A1 |
20050240145 | Scott et al. | Oct 2005 | A1 |
20050256499 | Pettis et al. | Nov 2005 | A1 |
20050261634 | Karlsson | Nov 2005 | A1 |
20050273054 | Asch | Dec 2005 | A1 |
20060025747 | Sullivan et al. | Feb 2006 | A1 |
20060106362 | Pass et al. | May 2006 | A1 |
20060129122 | Wyrick | Jun 2006 | A1 |
20060224124 | Scherer | Oct 2006 | A1 |
20060258988 | Keitel et al. | Nov 2006 | A1 |
20060258990 | Weber | Nov 2006 | A1 |
20070017533 | Wyrick | Jan 2007 | A1 |
20070025890 | Joshi et al. | Feb 2007 | A1 |
20070027430 | Hommann | Feb 2007 | A1 |
20070088288 | Barron et al. | Apr 2007 | A1 |
20070093775 | Daly | Apr 2007 | A1 |
20070100288 | Bozeman et al. | May 2007 | A1 |
20070123818 | Griffiths et al. | May 2007 | A1 |
20070123829 | Atterbury et al. | May 2007 | A1 |
20070129686 | Daily et al. | Jun 2007 | A1 |
20070129687 | Marshall et al. | Jun 2007 | A1 |
20070185432 | Etheredge et al. | Aug 2007 | A1 |
20070191784 | Jacobs et al. | Aug 2007 | A1 |
20070219498 | Malone et al. | Sep 2007 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080154199 | Wyrick | Jun 2008 | A1 |
20080154200 | Lesch | Jun 2008 | A1 |
20080185069 | Clark | Aug 2008 | A1 |
20080262427 | Hommann | Oct 2008 | A1 |
20080262436 | Olson | Oct 2008 | A1 |
20080262445 | Hsu et al. | Oct 2008 | A1 |
20090124981 | Evans | May 2009 | A1 |
20090124997 | Pettis et al. | May 2009 | A1 |
20090204062 | Muto et al. | Aug 2009 | A1 |
20090254027 | Moller | Oct 2009 | A1 |
20090254035 | Kohlbrenner et al. | Oct 2009 | A1 |
20090292240 | Kramer et al. | Nov 2009 | A1 |
20090299278 | Lesch et al. | Dec 2009 | A1 |
20090304812 | Staniforth et al. | Dec 2009 | A1 |
20090312705 | Grunhut | Dec 2009 | A1 |
20090318361 | Noera et al. | Dec 2009 | A1 |
20100016326 | Will | Jan 2010 | A1 |
20100036318 | Raday et al. | Feb 2010 | A1 |
20100049125 | James et al. | Feb 2010 | A1 |
20100069845 | Marshall et al. | Mar 2010 | A1 |
20100076378 | Runfola | Mar 2010 | A1 |
20100076400 | Wall | Mar 2010 | A1 |
20100087847 | Hong | Apr 2010 | A1 |
20100094214 | Abry et al. | Apr 2010 | A1 |
20100094324 | Huang et al. | Apr 2010 | A1 |
20100100039 | Wyrick | Apr 2010 | A1 |
20100114058 | Weitzel et al. | May 2010 | A1 |
20100121272 | Marshall et al. | May 2010 | A1 |
20100137798 | Streit et al. | Jun 2010 | A1 |
20100152699 | Ferrari et al. | Jun 2010 | A1 |
20100152702 | Vigil et al. | Jun 2010 | A1 |
20100160894 | Julian et al. | Jun 2010 | A1 |
20100168677 | Gabriel et al. | Jul 2010 | A1 |
20100174268 | Wilmot et al. | Jul 2010 | A1 |
20100191217 | Hommann et al. | Jul 2010 | A1 |
20100204678 | Imran | Aug 2010 | A1 |
20100217105 | Yodfat et al. | Aug 2010 | A1 |
20100228193 | Wyrick | Sep 2010 | A1 |
20100249746 | Klein | Sep 2010 | A1 |
20100256570 | Maritan | Oct 2010 | A1 |
20100258631 | Rueblinger et al. | Oct 2010 | A1 |
20100262082 | Brooks et al. | Oct 2010 | A1 |
20100262083 | Grunhut et al. | Oct 2010 | A1 |
20100268170 | Carrel et al. | Oct 2010 | A1 |
20100274198 | Bechtold | Oct 2010 | A1 |
20100274273 | Schraga et al. | Oct 2010 | A1 |
20100288593 | Chiesa et al. | Nov 2010 | A1 |
20100292643 | Wilmot et al. | Nov 2010 | A1 |
20100292653 | Maritan | Nov 2010 | A1 |
20100298780 | Laiosa | Nov 2010 | A1 |
20100312196 | Hirschel et al. | Dec 2010 | A1 |
20100318035 | Edwards et al. | Dec 2010 | A1 |
20100318037 | Young et al. | Dec 2010 | A1 |
20100324480 | Chun | Dec 2010 | A1 |
20110021989 | Janek et al. | Jan 2011 | A1 |
20110034879 | Crow | Feb 2011 | A1 |
20110054414 | Shang et al. | Mar 2011 | A1 |
20110077599 | Wozencroft | Mar 2011 | A1 |
20110087192 | Uhland et al. | Apr 2011 | A1 |
20110098655 | Jennings et al. | Apr 2011 | A1 |
20110098656 | Burnell et al. | Apr 2011 | A1 |
20110125076 | Kraft et al. | May 2011 | A1 |
20110125100 | Schwirtz et al. | May 2011 | A1 |
20110137246 | Cali et al. | Jun 2011 | A1 |
20110137247 | Mesa et al. | Jun 2011 | A1 |
20110144594 | Sund et al. | Jun 2011 | A1 |
20110190725 | Pettis et al. | Aug 2011 | A1 |
20110196300 | Edwards et al. | Aug 2011 | A1 |
20110196311 | Bicknell et al. | Aug 2011 | A1 |
20110224620 | Johansen et al. | Sep 2011 | A1 |
20110238003 | Bruno-Raimondi et al. | Sep 2011 | A1 |
20110269750 | Kley et al. | Nov 2011 | A1 |
20110319864 | Beller et al. | Dec 2011 | A1 |
20120004608 | Lesch, Jr. | Jan 2012 | A1 |
20120016296 | Cleathero | Jan 2012 | A1 |
20120046609 | Mesa et al. | Feb 2012 | A1 |
20120053563 | Du | Mar 2012 | A1 |
20120059319 | Segal | Mar 2012 | A1 |
20120071829 | Edwards et al. | Mar 2012 | A1 |
20120095443 | Ferrari et al. | Apr 2012 | A1 |
20120101475 | Wilmot et al. | Apr 2012 | A1 |
20120116318 | Edwards et al. | May 2012 | A1 |
20120123350 | Giambattista et al. | May 2012 | A1 |
20120123385 | Edwards et al. | May 2012 | A1 |
20120130318 | Young | May 2012 | A1 |
20120130342 | Cleathero | May 2012 | A1 |
20120136303 | Cleathero | May 2012 | A1 |
20120136318 | Lanin et al. | May 2012 | A1 |
20120143144 | Young | Jun 2012 | A1 |
20120157931 | Nzike | Jun 2012 | A1 |
20120157965 | Wotton et al. | Jun 2012 | A1 |
20120172809 | Plumptre | Jul 2012 | A1 |
20120172811 | Enggaard et al. | Jul 2012 | A1 |
20120172812 | Plumptre et al. | Jul 2012 | A1 |
20120172813 | Plumptre et al. | Jul 2012 | A1 |
20120172814 | Plumptre et al. | Jul 2012 | A1 |
20120172815 | Holmqvist | Jul 2012 | A1 |
20120172816 | Boyd et al. | Jul 2012 | A1 |
20120172818 | Harms et al. | Jul 2012 | A1 |
20120172885 | Drapeau et al. | Jul 2012 | A1 |
20120179100 | Sadowski et al. | Jul 2012 | A1 |
20120179137 | Bartlett et al. | Jul 2012 | A1 |
20120184900 | Marshall et al. | Jul 2012 | A1 |
20120184917 | Bom et al. | Jul 2012 | A1 |
20120184918 | Bostrom | Jul 2012 | A1 |
20120186075 | Edginton | Jul 2012 | A1 |
20120191048 | Eaton | Jul 2012 | A1 |
20120191049 | Harms et al. | Jul 2012 | A1 |
20120197209 | Bicknell et al. | Aug 2012 | A1 |
20120197213 | Kohlbrenner et al. | Aug 2012 | A1 |
20120203184 | Selz et al. | Aug 2012 | A1 |
20120203185 | Kristensen et al. | Aug 2012 | A1 |
20120203186 | Vogt et al. | Aug 2012 | A1 |
20120209192 | Alexandersson | Aug 2012 | A1 |
20120209200 | Jones et al. | Aug 2012 | A1 |
20120209210 | Plumptre et al. | Aug 2012 | A1 |
20120209211 | Plumptre et al. | Aug 2012 | A1 |
20120209212 | Plumptre et al. | Aug 2012 | A1 |
20120215162 | Nielsen et al. | Aug 2012 | A1 |
20120215176 | Veasey et al. | Aug 2012 | A1 |
20120220929 | Nagel et al. | Aug 2012 | A1 |
20120220941 | Jones | Aug 2012 | A1 |
20120220953 | Holmqvist | Aug 2012 | A1 |
20120220954 | Cowe | Aug 2012 | A1 |
20120226226 | Edwards et al. | Sep 2012 | A1 |
20120230620 | Holdgate et al. | Sep 2012 | A1 |
20120232517 | Saiki | Sep 2012 | A1 |
20120245516 | Tschirren et al. | Sep 2012 | A1 |
20120245532 | Frantz et al. | Sep 2012 | A1 |
20120253274 | Karlsson et al. | Oct 2012 | A1 |
20120253287 | Giambattista et al. | Oct 2012 | A1 |
20120253288 | Dasbach et al. | Oct 2012 | A1 |
20120253289 | Cleathero | Oct 2012 | A1 |
20120253290 | Geertsen | Oct 2012 | A1 |
20120253314 | Harish et al. | Oct 2012 | A1 |
20120259285 | Schabbach et al. | Oct 2012 | A1 |
20120265153 | Jugl et al. | Oct 2012 | A1 |
20120267761 | Kim et al. | Oct 2012 | A1 |
20120271233 | Bruggemann et al. | Oct 2012 | A1 |
20120271243 | Plumptre et al. | Oct 2012 | A1 |
20120277724 | Larsen et al. | Nov 2012 | A1 |
20120283645 | Veasey et al. | Nov 2012 | A1 |
20120283648 | Veasey et al. | Nov 2012 | A1 |
20120283649 | Veasey et al. | Nov 2012 | A1 |
20120283650 | MacDonald et al. | Nov 2012 | A1 |
20120283651 | Veasey et al. | Nov 2012 | A1 |
20120283652 | MacDonald et al. | Nov 2012 | A1 |
20120283654 | MacDonald et al. | Nov 2012 | A1 |
20120283660 | Jones et al. | Nov 2012 | A1 |
20120283661 | Jugl et al. | Nov 2012 | A1 |
20120289907 | Veasey et al. | Nov 2012 | A1 |
20120289908 | Kouyoumjian et al. | Nov 2012 | A1 |
20120289909 | Raab et al. | Nov 2012 | A1 |
20120289929 | Boyd et al. | Nov 2012 | A1 |
20120291778 | Nagel et al. | Nov 2012 | A1 |
20120296276 | Nicholls et al. | Nov 2012 | A1 |
20120296287 | Veasey et al. | Nov 2012 | A1 |
20120302989 | Kramer et al. | Nov 2012 | A1 |
20120302992 | Brooks et al. | Nov 2012 | A1 |
20120310156 | Karlsson et al. | Dec 2012 | A1 |
20120310206 | Kouyoumjian et al. | Dec 2012 | A1 |
20120310208 | Kirchhofer | Dec 2012 | A1 |
20120310289 | Bottlang et al. | Dec 2012 | A1 |
20120316508 | Kirchhofer | Dec 2012 | A1 |
20120323177 | Adams et al. | Dec 2012 | A1 |
20120323186 | Karlsen et al. | Dec 2012 | A1 |
20120325865 | Forstreuter et al. | Dec 2012 | A1 |
20120330228 | Day et al. | Dec 2012 | A1 |
20130006191 | Jugl et al. | Jan 2013 | A1 |
20130006192 | Teucher et al. | Jan 2013 | A1 |
20130006193 | Veasey et al. | Jan 2013 | A1 |
20130006310 | Bottlang et al. | Jan 2013 | A1 |
20130012871 | Pommereu | Jan 2013 | A1 |
20130012884 | Pommerau et al. | Jan 2013 | A1 |
20130012885 | Bode et al. | Jan 2013 | A1 |
20130018310 | Boyd et al. | Jan 2013 | A1 |
20130018313 | Kramer et al. | Jan 2013 | A1 |
20130018317 | Bobroff et al. | Jan 2013 | A1 |
20130018323 | Boyd et al. | Jan 2013 | A1 |
20130018327 | Dasbach et al. | Jan 2013 | A1 |
20130018328 | Jugl et al. | Jan 2013 | A1 |
20130023830 | Bode | Jan 2013 | A1 |
20130030367 | Wotton et al. | Jan 2013 | A1 |
20130030378 | Jugl et al. | Jan 2013 | A1 |
20130030383 | Keitel | Jan 2013 | A1 |
20130030409 | Macdonald et al. | Jan 2013 | A1 |
20130035641 | Moller et al. | Feb 2013 | A1 |
20130035642 | Daniel | Feb 2013 | A1 |
20130035644 | Giambattista et al. | Feb 2013 | A1 |
20130035645 | Bicknell et al. | Feb 2013 | A1 |
20130035647 | Veasey et al. | Feb 2013 | A1 |
20130041321 | Cross et al. | Feb 2013 | A1 |
20130041324 | Daniel | Feb 2013 | A1 |
20130041325 | Helmer et al. | Feb 2013 | A1 |
20130041327 | Daniel | Feb 2013 | A1 |
20130041328 | Daniel | Feb 2013 | A1 |
20130041347 | Daniel | Feb 2013 | A1 |
20130060231 | Adlon et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
00081651 | Oct 2012 | AR |
082053 | Nov 2012 | AR |
2007253481 | Nov 2007 | AU |
2007301890 | Apr 2008 | AU |
2008231897 | Oct 2008 | AU |
2008309660 | Apr 2009 | AU |
2009217376 | Oct 2009 | AU |
2009272992 | Jan 2010 | AU |
2009299888 | Apr 2010 | AU |
2009326132 | Aug 2011 | AU |
2009326321 | Aug 2011 | AU |
2009326322 | Aug 2011 | AU |
2009326323 | Aug 2011 | AU |
2009326324 | Aug 2011 | AU |
2009326325 | Aug 2011 | AU |
2009341040 | Sep 2011 | AU |
2010233924 | Nov 2011 | AU |
2010239762 | Dec 2011 | AU |
2010242096 | Dec 2011 | AU |
2010254627 | Jan 2012 | AU |
2010260568 | Feb 2012 | AU |
2010260569 | Feb 2012 | AU |
2010287033 | Apr 2012 | AU |
2010303987 | May 2012 | AU |
2010332857 | Jul 2012 | AU |
2010332862 | Jul 2012 | AU |
2010337136 | Jul 2012 | AU |
2010338469 | Jul 2012 | AU |
2010314315 | Aug 2012 | AU |
2011212490 | Aug 2012 | AU |
2011212556 | Aug 2012 | AU |
2011212558 | Aug 2012 | AU |
2011212561 | Aug 2012 | AU |
2011212564 | Aug 2012 | AU |
2011212566 | Aug 2012 | AU |
2011212567 | Aug 2012 | AU |
2011214922 | Aug 2012 | AU |
2011221472 | Aug 2012 | AU |
2011231688 | Sep 2012 | AU |
2011231691 | Sep 2012 | AU |
2011224884 | Oct 2012 | AU |
2011231570 | Oct 2012 | AU |
2011231697 | Oct 2012 | AU |
2011233733 | Oct 2012 | AU |
2011234479 | Oct 2012 | AU |
2011238967 | Nov 2012 | AU |
2011244232 | Nov 2012 | AU |
2011244236 | Nov 2012 | AU |
2011244237 | Nov 2012 | AU |
2011249098 | Nov 2012 | AU |
2011262408 | Dec 2012 | AU |
2011270934 | Jan 2013 | AU |
2011273721 | Jan 2013 | AU |
2011273722 | Jan 2013 | AU |
2011273723 | Jan 2013 | AU |
2011273724 | Jan 2013 | AU |
2011273725 | Jan 2013 | AU |
2011273726 | Jan 2013 | AU |
2011273727 | Jan 2013 | AU |
2011273728 | Jan 2013 | AU |
0208013 | Mar 2004 | BR |
0308262 | Jan 2005 | BR |
PI712805 | Oct 2012 | BR |
PI0713802-4 | Nov 2012 | BR |
0214721 | Dec 2012 | BR |
2552177 | Jul 1999 | CA |
2689022 | Nov 2002 | CA |
2473371 | Jul 2003 | CA |
2557897 | Oct 2005 | CA |
02702412 | Dec 2008 | CA |
101094700 | Dec 2007 | CN |
101128231 | Feb 2008 | CN |
101184520 | May 2008 | CN |
101400394 | Apr 2009 | CN |
101405582 | Apr 2009 | CN |
101479000 | Jul 2009 | CN |
101511410 | Aug 2009 | CN |
101516421 | Aug 2009 | CN |
101557849 | Oct 2009 | CN |
101563123 | Oct 2009 | CN |
101563124 | Oct 2009 | CN |
101594898 | Dec 2009 | CN |
101600468 | Dec 2009 | CN |
101605569 | Dec 2009 | CN |
101610804 | Dec 2009 | CN |
101626796 | Jan 2010 | CN |
101678166 | Mar 2010 | CN |
101678172 | Mar 2010 | CN |
101678173 | Mar 2010 | CN |
101687078 | Mar 2010 | CN |
101687079 | Mar 2010 | CN |
101687080 | Mar 2010 | CN |
101715371 | May 2010 | CN |
101909673 | Dec 2010 | CN |
101912650 | Dec 2010 | CN |
101939034 | Jan 2011 | CN |
101939036 | Jan 2011 | CN |
102548599 | Jul 2012 | CN |
102548601 | Jul 2012 | CN |
102548602 | Jul 2012 | CN |
102573955 | Jul 2012 | CN |
102573958 | Jul 2012 | CN |
102573960 | Jul 2012 | CN |
102573963 | Jul 2012 | CN |
102630172 | Aug 2012 | CN |
102630173 | Aug 2012 | CN |
102630174 | Aug 2012 | CN |
102639170 | Aug 2012 | CN |
102639171 | Aug 2012 | CN |
102648014 | Aug 2012 | CN |
102655899 | Sep 2012 | CN |
102665800 | Sep 2012 | CN |
102665802 | Sep 2012 | CN |
102686255 | Sep 2012 | CN |
102686256 | Sep 2012 | CN |
102686258 | Sep 2012 | CN |
102695531 | Sep 2012 | CN |
102695532 | Sep 2012 | CN |
102711878 | Oct 2012 | CN |
102727965 | Oct 2012 | CN |
102740907 | Oct 2012 | CN |
102753222 | Oct 2012 | CN |
102753223 | Oct 2012 | CN |
102753224 | Oct 2012 | CN |
102753227 | Oct 2012 | CN |
102770170 | Nov 2012 | CN |
102770173 | Nov 2012 | CN |
102781499 | Nov 2012 | CN |
102781500 | Nov 2012 | CN |
102802699 | Nov 2012 | CN |
102802702 | Nov 2012 | CN |
102802703 | Nov 2012 | CN |
102665801 | Dec 2012 | CN |
102821801 | Dec 2012 | CN |
102821802 | Dec 2012 | CN |
102821805 | Dec 2012 | CN |
102834133 | Dec 2012 | CN |
102869399 | Jan 2013 | CN |
102895718 | Jan 2013 | CN |
102905613 | Jan 2013 | CN |
102905742 | Jan 2013 | CN |
102905743 | Jan 2013 | CN |
102905744 | Jan 2013 | CN |
102905745 | Jan 2013 | CN |
102917738 | Feb 2013 | CN |
102917743 | Feb 2013 | CN |
102006041809 | Mar 2008 | DE |
202011110155 | Dec 2012 | DE |
1646844 | Dec 2009 | DK |
2229201 | Jul 2012 | DK |
2023982 | Oct 2012 | DK |
2274032 | Oct 2012 | DK |
02346552 | Nov 2012 | DK |
1888148 | Jan 2013 | DK |
2288400 | Jan 2013 | DK |
2373361 | Jan 2013 | DK |
1885414 | Feb 2013 | DK |
2174682 | Feb 2013 | DK |
2310073 | Feb 2013 | DK |
25844 | Sep 2012 | EG |
0072057 | Feb 1983 | EP |
0103664 | Mar 1984 | EP |
1752174 | Mar 1986 | EP |
245895 | Nov 1987 | EP |
255044 | Feb 1988 | EP |
361668 | Apr 1990 | EP |
0518416 | Dec 1992 | EP |
525525 | Feb 1993 | EP |
1067823 | Jan 2001 | EP |
1161961 | Dec 2001 | EP |
1307012 | May 2003 | EP |
1518575 | Mar 2005 | EP |
1140260 | Aug 2005 | EP |
1944050 | Jul 2008 | EP |
2174682 | Apr 2010 | EP |
2258424 | Dec 2010 | EP |
2258425 | Dec 2010 | EP |
02275158 | Jan 2011 | EP |
2364742 | Sep 2011 | EP |
2393062 | Dec 2011 | EP |
2471564 | Jul 2012 | EP |
02477681 | Jul 2012 | EP |
02484395 | Aug 2012 | EP |
2526987 | Nov 2012 | EP |
02529773 | Dec 2012 | EP |
02529774 | Dec 2012 | EP |
02529775 | Dec 2012 | EP |
2549789 | Jan 2013 | EP |
02385630 | Jul 2012 | ES |
2389866 | Nov 2012 | ES |
2392667 | Dec 2012 | ES |
02393173 | Dec 2012 | ES |
2394556 | Feb 2013 | ES |
2506161 | Nov 1982 | FR |
2635009 | Feb 1990 | FR |
6677523 | Aug 1952 | GB |
1181037 | Feb 1970 | GB |
1216813 | Dec 1970 | GB |
2463034 | Mar 2010 | GB |
171247 | Aug 2012 | IL |
198750 | Oct 2012 | IL |
10-507935 | Aug 1998 | JP |
11-347121 | Dec 1999 | JP |
2000-245839 | Sep 2000 | JP |
2001-523485 | Nov 2001 | JP |
5016490 | May 2008 | JP |
5026411 | Nov 2008 | JP |
5033792 | Nov 2008 | JP |
5074397 | Feb 2009 | JP |
2009-529395 | Aug 2009 | JP |
5066177 | Sep 2009 | JP |
5039135 | Nov 2009 | JP |
5044625 | Dec 2009 | JP |
2010-005414 | Jan 2010 | JP |
2010-046507 | Mar 2010 | JP |
4970282 | Jul 2012 | JP |
4970286 | Jul 2012 | JP |
4972147 | Jul 2012 | JP |
4977209 | Jul 2012 | JP |
4977252 | Jul 2012 | JP |
4979686 | Jul 2012 | JP |
4982722 | Jul 2012 | JP |
2012515566 | Jul 2012 | JP |
2012515585 | Jul 2012 | JP |
2012515587 | Jul 2012 | JP |
2012516168 | Jul 2012 | JP |
2012516736 | Jul 2012 | JP |
2012516737 | Jul 2012 | JP |
4990151 | Aug 2012 | JP |
4992147 | Aug 2012 | JP |
4994370 | Aug 2012 | JP |
5001001 | Aug 2012 | JP |
2012143646 | Aug 2012 | JP |
2012148198 | Aug 2012 | JP |
2012519508 | Aug 2012 | JP |
2012519511 | Aug 2012 | JP |
2012519514 | Aug 2012 | JP |
2012176295 | Sep 2012 | JP |
2012183322 | Sep 2012 | JP |
2012520128 | Sep 2012 | JP |
2012521821 | Sep 2012 | JP |
2012521825 | Sep 2012 | JP |
2012521826 | Sep 2012 | JP |
2012521827 | Sep 2012 | JP |
2012521828 | Sep 2012 | JP |
2012521829 | Sep 2012 | JP |
2012521830 | Sep 2012 | JP |
2012521831 | Sep 2012 | JP |
2012521834 | Sep 2012 | JP |
2012522547 | Sep 2012 | JP |
2012-525172 | Oct 2012 | JP |
2012-525180 | Oct 2012 | JP |
2012-525185 | Oct 2012 | JP |
2012523876 | Oct 2012 | JP |
2012525200 | Oct 2012 | JP |
5084825 | Nov 2012 | JP |
2012232151 | Nov 2012 | JP |
2012528618 | Nov 2012 | JP |
2012528619 | Nov 2012 | JP |
2012528620 | Nov 2012 | JP |
2012528621 | Nov 2012 | JP |
2012528622 | Nov 2012 | JP |
2012528623 | Nov 2012 | JP |
2012528624 | Nov 2012 | JP |
2012528625 | Nov 2012 | JP |
2012528626 | Nov 2012 | JP |
2012528627 | Nov 2012 | JP |
2012528628 | Nov 2012 | JP |
2012528629 | Nov 2012 | JP |
2012528630 | Nov 2012 | JP |
2012528631 | Nov 2012 | JP |
2012528632 | Nov 2012 | JP |
2012528633 | Nov 2012 | JP |
2012528634 | Nov 2012 | JP |
2012528635 | Nov 2012 | JP |
2012528636 | Nov 2012 | JP |
2012528637 | Nov 2012 | JP |
2012528638 | Nov 2012 | JP |
2012528640 | Nov 2012 | JP |
2012530576 | Dec 2012 | JP |
2012532635 | Dec 2012 | JP |
2012532636 | Dec 2012 | JP |
2012532717 | Dec 2012 | JP |
2012532720 | Dec 2012 | JP |
2012532721 | Dec 2012 | JP |
2012532722 | Dec 2012 | JP |
5112330 | Jan 2013 | JP |
5113847 | Jan 2013 | JP |
101160735 | Jul 2012 | KR |
20120091009 | Aug 2012 | KR |
20120091153 | Aug 2012 | KR |
20120091154 | Aug 2012 | KR |
20120095919 | Aug 2012 | KR |
20120099022 | Sep 2012 | KR |
20120099101 | Sep 2012 | KR |
20120102597 | Sep 2012 | KR |
20120106754 | Sep 2012 | KR |
20120106756 | Sep 2012 | KR |
20120112503 | Oct 2012 | KR |
2012006694 | Jul 2012 | MX |
332622 | Oct 2003 | NO |
572765 | Aug 2012 | NZ |
587235 | Aug 2012 | NZ |
00590352 | Oct 2012 | NZ |
2023982 | Nov 2012 | PL |
2274032 | Oct 2012 | PT |
2346552 | Nov 2012 | PT |
2462275 | Mar 2011 | RU |
2459247 | Aug 2012 | RU |
2011104496 | Aug 2012 | RU |
2460546 | Sep 2012 | RU |
2011109925 | Oct 2012 | RU |
2011119019 | Nov 2012 | RU |
181710 | Jul 2012 | SG |
181790 | Jul 2012 | SG |
184182 | Oct 2012 | SG |
184328 | Nov 2012 | SG |
184500 | Nov 2012 | SG |
184501 | Nov 2012 | SG |
184502 | Nov 2012 | SG |
2274032 | Dec 2012 | SI |
2346552 | Dec 2012 | SI |
WO 8808724 | Nov 1988 | WO |
WO 9113299 | Sep 1991 | WO |
WO 9113430 | Sep 1991 | WO |
WO 9219296 | Nov 1992 | WO |
WO 9409839 | May 1994 | WO |
WO 9411041 | May 1994 | WO |
WO 9529720 | Nov 1995 | WO |
WO 9529730 | Nov 1995 | WO |
WO 9621482 | Jul 1996 | WO |
WO 9714455 | Apr 1997 | WO |
WO 9721457 | Jun 1997 | WO |
WO 199741907 | Nov 1997 | WO |
WO 9748430 | Dec 1997 | WO |
WO 1998031369 | Jul 1998 | WO |
WO 1998032451 | Jul 1998 | WO |
WO 9831369 | Jul 1998 | WO |
WO 9832451 | Jul 1998 | WO |
WO 9903521 | Jan 1999 | WO |
WO 9910030 | Mar 1999 | WO |
WO 9922790 | May 1999 | WO |
WO 9922789 | May 1999 | WO |
WO 1999062525 | Dec 1999 | WO |
WO 9962525 | Dec 1999 | WO |
WO 0006228 | Feb 2000 | WO |
WO 0024441 | May 2000 | WO |
WO 0029050 | May 2000 | WO |
WO 0193926 | Dec 2001 | WO |
WO 02083216 | Oct 2002 | WO |
WO 2002089805 | Nov 2002 | WO |
WO 2089805 | Nov 2002 | WO |
WO 3047663 | Jun 2003 | WO |
WO 2003070296 | Aug 2003 | WO |
WO 3068290 | Aug 2003 | WO |
WO 03070296 | Aug 2003 | WO |
WO 2003097133 | Nov 2003 | WO |
WO 3097133 | Nov 2003 | WO |
WO 2004028598 | Apr 2004 | WO |
WO 2004041331 | May 2004 | WO |
WO 2004047892 | Jun 2004 | WO |
WO 2004108194 | Dec 2004 | WO |
WO 2005002653 | Jan 2005 | WO |
WO 2005005929 | Jan 2005 | WO |
WO 2005009515 | Feb 2005 | WO |
WO 2005053778 | Jun 2005 | WO |
WO 2006079064 | Jul 2006 | WO |
WO 2006086899 | Aug 2006 | WO |
WO 2006125328 | Nov 2006 | WO |
WO 2006130098 | Dec 2006 | WO |
WO 2007047200 | Apr 2007 | WO |
WO 2007063342 | Jun 2007 | WO |
WO 2007100899 | Sep 2007 | WO |
WO 2006079064 | Nov 2007 | WO |
WO 2007129106 | Nov 2007 | WO |
WO 2007131013 | Nov 2007 | WO |
WO 2007131025 | Nov 2007 | WO |
WO 2007143676 | Dec 2007 | WO |
WO 2008005315 | Jan 2008 | WO |
WO 2008009476 | Jan 2008 | WO |
WO 2008058666 | May 2008 | WO |
WO 2008089886 | Jul 2008 | WO |
WO 2008100576 | Aug 2008 | WO |
WO 2008107378 | Sep 2008 | WO |
WO 2008112472 | Sep 2008 | WO |
WO 2007104636 | Dec 2008 | WO |
WO 2009049885 | Apr 2009 | WO |
WO 2008071804 | Aug 2009 | WO |
WO 2009114542 | Sep 2009 | WO |
WO 2009132778 | Nov 2009 | WO |
WO 2009141005 | Nov 2009 | WO |
WO 2010003569 | Jan 2010 | WO |
WO 2010043533 | Apr 2010 | WO |
WO 2010046394 | Apr 2010 | WO |
WO 2010097116 | Sep 2010 | WO |
WO 2010108116 | Sep 2010 | WO |
WO 2011023736 | Mar 2011 | WO |
WO 2011023882 | Mar 2011 | WO |
WO 2011035877 | Mar 2011 | WO |
WO 2011036133 | Mar 2011 | WO |
WO 2011036134 | Mar 2011 | WO |
WO 2011039163 | Apr 2011 | WO |
WO 2011039201 | Apr 2011 | WO |
WO 2011039202 | Apr 2011 | WO |
WO 2011039207 | Apr 2011 | WO |
WO 2011039208 | Apr 2011 | WO |
WO 2011039209 | Apr 2011 | WO |
WO 2011039211 | Apr 2011 | WO |
WO 2011039216 | Apr 2011 | WO |
WO 2011039217 | Apr 2011 | WO |
WO 2011039218 | Apr 2011 | WO |
WO 2011039219 | Apr 2011 | WO |
WO 2011039228 | Apr 2011 | WO |
WO 2011039231 | Apr 2011 | WO |
WO 2011039232 | Apr 2011 | WO |
WO 2011039233 | Apr 2011 | WO |
WO 2011039236 | Apr 2011 | WO |
WO 2011040861 | Apr 2011 | WO |
WO 2011045385 | Apr 2011 | WO |
WO 2011045386 | Apr 2011 | WO |
WO 2011045611 | Apr 2011 | WO |
WO 2011046756 | Apr 2011 | WO |
WO 2011048223 | Apr 2011 | WO |
WO 2011048422 | Apr 2011 | WO |
WO 2011050359 | Apr 2011 | WO |
WO 2011053225 | May 2011 | WO |
WO 2011054648 | May 2011 | WO |
WO 2011054775 | May 2011 | WO |
WO 2011056127 | May 2011 | WO |
WO 2011060087 | May 2011 | WO |
WO 2011067187 | Jun 2011 | WO |
WO 2011067268 | Jun 2011 | WO |
WO 2011067320 | Jun 2011 | WO |
WO 2011067615 | Jun 2011 | WO |
WO 2011068253 | Jun 2011 | WO |
WO 2011069936 | Jun 2011 | WO |
WO 2011073302 | Jun 2011 | WO |
WO 2011073307 | Jun 2011 | WO |
WO 2011076280 | Jun 2011 | WO |
WO 2011080092 | Jul 2011 | WO |
WO 2011081867 | Jul 2011 | WO |
WO 2011081885 | Jul 2011 | WO |
WO 2011089206 | Jul 2011 | WO |
WO 2011089207 | Jul 2011 | WO |
WO 2011095478 | Aug 2011 | WO |
WO 2011095480 | Aug 2011 | WO |
WO 2011095483 | Aug 2011 | WO |
WO 2011095486 | Aug 2011 | WO |
WO 2011095488 | Aug 2011 | WO |
WO 2011095489 | Aug 2011 | WO |
WO 2011095503 | Aug 2011 | WO |
WO 2011099918 | Aug 2011 | WO |
WO 2011101349 | Aug 2011 | WO |
WO 2011101351 | Aug 2011 | WO |
WO 2011101375 | Aug 2011 | WO |
WO 2011101376 | Aug 2011 | WO |
WO 2011101377 | Aug 2011 | WO |
WO 2011101378 | Aug 2011 | WO |
WO 2011101379 | Aug 2011 | WO |
WO 2011101380 | Aug 2011 | WO |
WO 2011101381 | Aug 2011 | WO |
WO 2011101382 | Aug 2011 | WO |
WO 2011101383 | Aug 2011 | WO |
WO 2011107805 | Sep 2011 | WO |
WO 2011109205 | Sep 2011 | WO |
WO 2011110464 | Sep 2011 | WO |
WO 2011110465 | Sep 2011 | WO |
WO 2011110466 | Sep 2011 | WO |
WO 2011111006 | Sep 2011 | WO |
WO 2011112136 | Sep 2011 | WO |
WO 2011113806 | Sep 2011 | WO |
WO 2011117212 | Sep 2011 | WO |
WO 2011117284 | Sep 2011 | WO |
WO 2011117404 | Sep 2011 | WO |
WO 2011121003 | Oct 2011 | WO |
WO 2011121061 | Oct 2011 | WO |
WO 2011123024 | Oct 2011 | WO |
WO 2011124634 | Oct 2011 | WO |
WO 2011126439 | Oct 2011 | WO |
WO 2012020084 | Feb 2012 | WO |
WO 2012022771 | Feb 2012 | WO |
WO 2012090186 | Jul 2012 | WO |
WO 2011042537 | Aug 2012 | WO |
WO 2011042540 | Aug 2012 | WO |
WO 2011043714 | Aug 2012 | WO |
WO 2011051366 | Sep 2012 | WO |
WO 2012122643 | Sep 2012 | WO |
Entry |
---|
“Skin”, American Medical Association (AMA) Current Procedural Terminology , 1998, http://www.ama-assn.org/ama/pub/category/print/7176.html, 1 page. |
Becks et al., “Comparison of Conventional Twice-Daily Subcutaneous Needle Injections to Multiple Jet Injections of Insulin in Insulin-Dependent Diabetes”, Clinical and Investigative Medicine, 1981, p. 33B. |
Binder, “Absorption of Injected Insulin”, ACTA Pharmacological ET Toxicologica, 1969, 27(Supp 2), 3 pages. |
Bonetti et al., “An Extended-Release formulation of Methotrexate for Subcutaneous Administration”, Cancer Chemotherapy Pharmacology, 1994, 33, 303-306. |
Braun et al., “Comparison of the Clinical Efficacy and Safety of Subcutaneous Versus Oral Administration of Methotrexate in Patients with Active Rheumatoid Arthritis”, Arthritis and Rheumatism, Jan. 2008, 58(1), pp. 73-81. |
Chen et al., “Blood Lipid Profiles and Peripheral Blood Mononuclear Cell Cholesterol Metabolism Gene Expression in Patients with and Without Methotrexate” BMC Medicine, 2011, 9(4), 9 pages. |
Chiasson et al., “Continuous Subcutaneous Insulin Infusion (Mill-Hill Infuser) Versus Multiple Injections (Medi-Jector) in the Treatment of Insulin-Dependent Diabetes Mellitus and the Effects of Metabolic Control on Microangiopathy” Diabetes Care, Jul.-Aug. 1984, 7(4), pp. 331-337. |
Cohn et al., “Clincal Experience with Jet Insulin Injection in Diabetes Mellitus Therapy: A Clue to the Pathogenesis of Lipodystrophy”, Ala. J. Med. Sci., 1974, 11(3), pp. 265-272. |
Cowie et al., “Physical and Metabolic Characteristics of Persons with Diabetes”, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 1995, 95(1468), pp. 117-120. |
European Patent Application No. 03707823.5, Supplementary European Search Report, dated Mar. 30, 2005 with Communication dated Apr. 25, 2005 regarding Proceeding Further with the European Patent Application Pursuant to Article 96(1), and Rule 51(1) EPC, 3 pages. |
European Patent Application No. 00976612.2, Communication Pursuant to Article 96(2) EPC, dated May 10, 2004, 5 pages. |
Hingson et al., “A Survey of the Development of Jet Injection in Parenteral Therapy”, Nov./Dec. 1952, 31(6), pp. 361-366. |
Hoekstra et al., Bioavailability of Higher Dose Methotrexate Comparing Oral and Subcutaneous Administration i n Patients with Rheumatoid Arthritis, The Journal of Rheumatology, 2004, 31(4), pp. 645-648. |
International Patent Application No. PCT/US2012/46742, International Search Report and Written Opinion dated Nov. 16, 2012, 11 pages. |
International Patent Application No. PCT/US2009/052835, International Search Report dated Mar. 15, 2010, 5 pages. |
International Patent Application No. PCT/US2013/029085, International Search Report dated May 13, 2013, 2 pages. |
International Patent Application No. PCT/US2010/028011, International Search Report, dated Jun. 29, 2010, 5 pages. |
International Patent Application No. PCT/US2009/036682, International Search Report, dated Jul. 7, 2009, 5 pages. |
International Patent Application No. PCT/US2007/068010, International Search Report, dated Sep. 24, 2007, 3 pages. |
International Patent Application No. PCT/US03/03917, International Search Report, dated Nov. 26, 2003, 1 page. |
Jansen et al., Methotrexaat Buiten de Kliniek, Pharmaceutisch Weekblad, Nov. 1999, 134(46), pp. 1592-1596. |
Japanese Patent Application No. 2007-552367, Office Action dated Apr. 9, 2011. |
Katoulis et al., Efficacy of a New Needleless Insulin Delivery System Monitoring of Blood Glucose Fluctuations and Free Insulin Levels, The International Journal of Artificial Organs, 1989, 12(5), 333-339. |
Kurnik et al., “Bioavailability of Oral vs. Subcutaneous low-dose Methotrexate in Patients with Crohn's Disease”, Aliment Pharmacol Ther., Apr. 2003, 18, pp. 57-63. |
Malone et al., “Comparison of Insulin Levels After Injection by Jet Stream and Disposable Insulin Syringe”, Diabetes Care, Nov.-Dec. 1986, 9(6), 637-640. |
“The Historical Development of Jet Injection and Envisioned Uses in Mass Immunization and Mass Therapy Based Upon Two Decades' Experience”, Military Medicine, Jun. 1963, 128, pp. 516-524. |
Pehling et al, “Comparison of Plasma Insulin Profiles After Subcutaneous Administration of Insulin by Jet Spray and Conventional Needle Injection in Patients with Insulin-Dependent Diabetes Mellitus”, Mayo Clin. Proc., Nov. 1984, 59, pp. 751-754. |
Reiss et al., “Atheroprotective Effects of Methotrexate on Reverse Cholesterol Transport Proteins and Foam Cell Transformation in Human THP-1 Monocyte/Macrophages”, Arthritis and Rheumatism, Dec. 2008, 58(12), pp. 3675-3683. |
Taylor et al., “Plasma Free Insulin Profiles After Administration of Insulin by Jet and Conventional Syringe Injection”, Diabetes Care, May-Jun. 1981, 4(3), 337-339. |
Weller et al., “Jet Injection of Insulin vs the Syringe-and-Needle Method”, JAMA, Mar. 1966, 195(10), pp. 844-847. |
Westlake et al., “The Effect of Methotrexate on Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Systematic Literature Review”, Rheumatology, Nov. 2009, 49, pp. 295-307. |
Worth, “Jet Injection of Insulin: Comparison with Conventional Injection by Syringe and Needle”, British Medical Journal, Sep. 1980, 281, pp. 713-714. |
International Patent Application No. PCT/US2013/029085, Written Opinion, dated May 13, 2013, 5 pages. |
International Patent Application No. PCT/US2010/028011, Written Opinion, dated Jun. 29, 2010, 5 pages. |
Zachheim et al., “Subcutaneous Administration of Methotrexate”, Journal of the American Academy of Dermatology, 1992, 26(6), p. 1008. |
Halle et al., “Twice-Daily Mixed Regular and NPH Insulin Injections with New Jet Injector Versus Conventional Syringes: Pharmacokinetics of Insulin Absorption”, Diabetes Care, May-Jun. 1986 9(3), pp. 279-282. |
International Patent Application No. PCT/US2012/046639, International Search Report and Written Opinion dated Apr. 22, 2013, 8 pages. |
Glynn-Barnhart et al., “Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy”, 1992, 12(5), abstract only, 2 pages. |
Hamilton et al., “Why Intramuscular Methotrexate May be More Efficacious Than Oral Dosing in Patients with Rheumatoid Arthritis”, British Journal of Rheumatology, 1997, 36(1), pp. 86-90. |
Stamp et al., “Effects of Changing from Oral to Subcutaneous Methotrexate on Red Blood Cell Methotrexate Polyglutamate Concentrations and Disease Activity in Patients with Rheumatoid Arthritis”, The Journal of Rheumatology, 2011, 38(12), 2540-2547. |
Tukova et al., “Methotrexate Bioavailability after Oral and Subcutaneous Administration in Children with Juvenile Idiopathic Arthritis”, Clinical and Experimental Rheumatology, 2009, 27, 1047-1053. |
Wright et al., “Stability of Methotrexate Injection in Prefilled Plastic Disposable Syringes”, International Journal of Pharmaceutics, Aug. 1988, 45(3), 237-244. |
Lunenfeld, “Stable Testosterone Levels Achieved with Subcutaneous Testosterone Injections”, The aging Male, Mar. 2006, 9(1), 70 pages. |
International Patent Application No. PCT/US14/23883, International Search Report, dated Jul. 10, 2014, 3 pages. |
International Patent Application No. PCT/US14/23485, International Search Report, dated Jul. 7, 2014, 2 pages. |
International Patent Application No. PCT/US14/24530, International Search Report, dated Jul. 15, 2014, 2 pages. |
International Patent Application No. PCT/US14/24543, International Search Report, dated Jul. 28, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20200316307 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
60796939 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15788943 | Oct 2017 | US |
Child | 16908136 | US | |
Parent | 14244916 | Apr 2014 | US |
Child | 15788943 | US | |
Parent | 13584317 | Aug 2012 | US |
Child | 14244916 | US | |
Parent | 12299274 | US | |
Child | 13584317 | US |