Two-state zoom folded camera

Information

  • Patent Grant
  • 11635596
  • Patent Number
    11,635,596
  • Date Filed
    Monday, August 12, 2019
    4 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
A zoom camera comprising an optical path folding element (OPFE) for folding the light from a first optical path to a second optical path, a first lens having a first optical axis and a first effective focal length EFLL1, the first optical axis being along the second optical path, a collimating lens having a second optical axis, and an image sensor located on the second optical path, wherein the collimating lens is movable between at least a first state and a second state, wherein in the first state the collimating lens is positioned in the second optical path between the OPFE and the first lens such that light entering the first lens arrives only from the image side of the collimating lens, and wherein in the second state the collimating lens is positioned outside the first optical path such that light entering the first lens does not arrive from the image side of the collimating lens.
Description
BACKGROUND

Cameras with folded optical paths (also referred to as “folded cameras”) and zoom capabilities (also referred to herein as “zoom folded camera”), with lenses having lens elements in which relative lens element position is changed are known. In existing camera design, a high accuracy in relative lens shift is required, which leads to high costs and/or low manufacturing yield. This is particularly true in “miniature” or “compact” folded cameras of the type that may be used in mobile devices such as smartphones.


There is therefore a need for, and it would be advantageous to have miniature zoom cameras with high optical tolerance to low accuracy in relative lens shift.


SUMMARY

In exemplary embodiments there are provided zoom cameras comprising an OPFE for folding the light from a first optical path to a second optical path, a first lens having a first optical axis and a first effective focal length EFLL1, the first optical axis being along the second optical path, a collimating lens having a second optical axis, and an image sensor located on the second optical path, wherein the collimating lens is movable between at least two (first and second) states, wherein in the first state the collimating lens is positioned in the second optical path between the OPFE and the first lens such that light entering the first lens arrives only from the image side of the collimating lens, and wherein in the second state the collimating lens is positioned outside the first optical path, such that light entering the first lens does not arrive from the image side of the collimating lens.


In an exemplary embodiment, in the first state the camera has a first combined effective focal length EFLC1 different than EFLL1, and in the second state the camera has a second combined effective focal length EFLc2 equal to EFLL1.


In an exemplary embodiment, a difference between EFLC1 and EFLC2 is of at least ±10%.


In an exemplary embodiment, a difference between EFLC1 and EFLC2 is of at least ±50%.


In an exemplary embodiment, a difference between EFLC1 and EFLC2 is of at least ±80%.


In an exemplary embodiment, in the first state, the first and second optical axes are parallel and a distance between the two optical axes does not change EFLC1.


In an exemplary embodiment, in the first state, a distance between the first and collimating lenses does not change EFLC1.


In some exemplary embodiments, the collimating lens is a telescopic lens.


In some exemplary embodiments, the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects, embodiments and features disclosed herein will become apparent from the following detailed description when considered in conjunction with the accompanying drawings.



FIG. 1A shows an embodiment of a two-state zoom folded camera in a first state disclosed herein in a first operational mode in isometric view;



FIG. 1B shows the two-state zoom folded camera in a second operational mode in isometric view;



FIG. 1C shows the first and second operational mode of the camera of FIGS. 1A and 1B in a top view;



FIG. 2A shows a camera as in FIG. 1 with an exemplary optical design;



FIG. 2B shows the camera of FIG. 2A in a first operational state with ray tracing;



FIG. 2C shows the camera of FIG. 2A in a second operational state with ray tracing.





DETAILED DESCRIPTION


FIG. 1A shows an embodiment of a two-state zoom folded camera disclosed herein and numbered 100. FIGS. 1A and 1B show camera 100 from an isometric view in two different operational states, while FIG. 1C shows camera 100 from a top view, with camera 100 shown in two operational modes for illustration. The operational modes are described in more detail below. Camera 100 comprises an optical path folding element 102 (OPFE) (e.g. mirror, a prism), a first, imaging lens 104 with a first optical axis 106, a second, collimating lens 108 with a second optical axis 110 and an image sensor 112. OPFE 102 is capable of folding a light from a first optical path 114 to a second optical path 116. First lens 104 has a first effective focal length EFLL1. First optical axis 106 is perpendicular to first optical path 114. Image sensor 112 is positioned with an image plane normal parallel to second optical axis 110 (i.e. the plane is perpendicular to the second optical axis). Camera 100 may include additional elements that are common in known cameras and are therefore not presented for simplicity. Such elements may comprise a protective shield, a protective optical window between the first lens and the image sensor to protect from dust and/or unneeded or unwanted light wavelengths (e.g. IR, ultraviolet (UV)), and other elements known in the art. In one example (shown below in FIGS. 2A-C), a protective optical window 202 between the first lens and the image sensor is presented.


Imaging lens 104 and collimating lens 108 may comprise each a single lens element or a plurality of lens elements. Embodiments of lenses 104 and 108 are shown in FIG. 1C with three and four lens elements respectively in an illustrative manner only. The number of lens elements in each lens may change (e.g. between 1 and 7 lens elements per lens).


In zoom camera 100, collimating lens 108 may shift mechanically between at least two operational states (or simply “states”).



FIG. 1A show camera 100 in a first operational state in which collimating lens 108 is located along second optical 116 path between OPFE 102 and first lens 104. In the first operational state, the camera 100 has a first effective camera focal length (EFLC) EFLC1 that is equal to the combined power of the two lenses 104 and 108.



FIG. 1B show a second operational state in which collimating lens 108 is located away from the second optical path. In the second operational state, camera 100 has a second (combined) effective camera focal length EFLC2 equal to the first effective focal length EFLL1 of first lens 104.



FIG. 1C shows a top view of the system in the two operation modes, where an arrow 118 shows the motion direction of collimating lens 108.


The optical design of collimating lens 108 is such that EFLC2 is different from EFLC1. According to an example, collimating lens 108 may be a telescopic lens, such that the introduction of the collimating lens 108 into the second optical path 116 increases or decreases EFLC from EFLC2 to EFLC1. According to an example, EFLC2 is different (smaller or larger) by more than 10% from EFLC1. According to an example, EFLC2 is different by more than 80% from EFLC2. According to an example, EFLC2 is in the range of 10-18 mm and EFLC1 is in the range of 20-36 mm According to an example, EFLC2 is in the range of 10-18 mm and EFLC1 is in the range of 5-9 mm.



FIGS. 2A-C show an embodiment of a camera numbered 200 that has an exemplary optical design given in Tables 1-3 below. FIG. 2A shows camera 200 in the first operational state. In camera 200, first lens 104 comprises five lens elements marked L1 to L5 and collimating lens 108 comprises 4 lens elements marked Z1 to Z4. As mentioned, the number of lens elements in each lens is exemplary, and in other optical designs the number of lens elements may be different (e.g. 1-7 lens element in each lens). In camera 200, OPFE 102 is a prism. In camera 200, a protective glass 202 is added to the optical design.


Tables 1-3 below provide the optical design of camera 200. The surfaces of various optical elements are listed starting from the sensor 112 (image) side to the prism 102 (object) side. Table 1 provide data for all the surfaces except the prism surfaces: “type” is the surface type (flat or aspheric), R is the surface radius of curvature, T is the surface thickness, Nd is the surface refraction index, Vd is the surface Abbe number, D/2 is the surface semi diameter. Table 2 provide aspheric data for aspheric surfaces in Table 1, according to the following formula:


Q type 1 surface sag formula:






z
=



c


r
2



1
+


1
-


(

1
+
k

)



c
2



r
2






+


D

c

o

n




(
u
)











D

c

o

n




(
u
)


=


u
4






n
=
0

N




A
n




Q
n

c

o

n




(

u
2

)












u
=

r

r
max



,

x
=

u
2










Q
0

c

o

n




(
x
)


=


1






Q
1

c

o

n



=



-

(

5
-

6

x


)








Q
2

c

o

n



=


1

5

-

14


x


(

3
-

2

x


)













Q
3

c

o

n


=



-

{


3

5

-

1

2


x


[


1

4

-

x


(


2

1

-

1

0

x


)



]




}








Q
4

c

o

n



=



7

0

-

3

x


{


1

6

8

-

5


x


[


8

4

-

1

1


x


(

8
-

3

x


)




]




}







Q
5

c

o

n




=

-

[


1

2

6

-

x


(


1

2

6

0

-

1

1

x


{


4

2

0

-

x


[


7

2

0

-

1

3


x


(


4

5

-

1

4

x


)




]



}



)



]









where {z, r} are the standard cylindrical polar coordinates, c is the paraxial curvature of the surface, k is the conic parameter, rmax is one half of the surfaces clear aperture, and An are the polynomial coefficients shown in lens data tables.


Table 3 provide data for surfaces of prism 202 only: A is the prism (without bevel) face length, W is the face width, and other fields are like in Table 1. Note that a prism may or may not have a bevel.


In camera 200, first lens 104 has an EFL of 15 mm. The design of second (collimating) lens 108 is of a telescopic lens. Lens 108 in camera 200 has a magnification ratio of 2: two lens elements L1 and L2 form a positive doublet with a focal length of 15 mm and two lens elements L3 and L4 form a negative doublet with a focal length of −7.5 mm. As a result, when in the first operational state, the camera has an EFL of EFLC1=30 mm. When in the second operation state, the camera has an EFL of EFLC2=EFLC1=15 mm. In another example, replacing collimating lens 108 with a lens having a magnification ratio of 0.5 (e.g. by using a first negative doublet with a focal length of −15 mm and a second positive doublet with a focal length of 7.5 mm) would result in decreasing EFLC by factor of 2. Thus, in this example, the ratio EFLC1/EFLC2 in cameras 100 and 200 can be in the range of 0.2 to 5.


The telescopic design of collimating lens 108 allows for a less accurate positioning of collimating lens 108 relative to first lens 104: a shift and/or tilt of collimating lens 108 in any direction (in particular shift along first optical axis 106, shift perpendicular to first optical axis 106, and/or rotation of the lens) will not change the magnification ratio. For example, relative to a nominal position (presented in FIG. 2 and Tables 1-3) in which first optical axis 106 of first lens 104 and second optical axis 110 of collimating lens 108 coincide (merge), and distances between the first lens and the collimating lens are given (Table 1), the collimating lens can move in any direction (X,Y,Z) by up to 50 μm, 100 μm or even 0.2 mm, and rotate in any direction (yaw, pitch, roll) by 0.5 degree, 1 degrees or 2 degrees without affecting or minimally affecting camera operation.


Note that in the first state, the first and second optical axes are parallel and a change in distance between the two optical axes does not change EFLC1. Similarly, a change in distance between the first and collimating lenses does not change EFLC1. That is, in the first state, EFLC1 is substantially independent of the distance between optical axes of, or distances between lenses 104 and 108.



FIG. 2B shows camera 200 in the first operational state with ray tracing. The optical design of camera 200 is such that in the first state light entering first lens 104 at an object side 130 is coming (arrives) only from an image side 132 of collimating lens 108. FIG. 2C shows camera 200 in the second operational state with ray tracing. The optical design of camera 200 is such that in the second operational state light entering first lens 104 at object side 130 is not coming from image side 132 of collimating lens 108 (i.e. it bypasses collimating lens 108) but comes directly from OPFE 102.


In cameras 100 and 200, focusing in both operational states may be performed by moving first lens 104 along first optical axis 106. In both cameras, optical image stabilization (OIS) in both operational states may be performed by moving first lens 104 perpendicular to optical axis 106 and/or by tilting OPFE 102 and/or by combining shift of first lens 104 and tilt of OPFE 102. These actions may be performed using actuators or mechanisms known in the art.
















TABLE 1






Com-





D/2


#
ment
Type
R [mm]
T [mm]
Nd
Vd
[mm]







S1 
Image
flat
Infinity
0.500


1.878


S2 
IR
flat
Infinity
0.210
1.516
64.167
1.900



Filter








S3 

flat
Infinity
5.460


1.900


S4 
L5S2
Q-Type Aspheric
−13.571
0.853
1.650
21.513
1.831


S5 
L5S1
Q-Type Aspheric
−2.840
0.079


1.797


S6 
L4S2
Q-Type Aspheric
−3.728
0.436
1.534
55.663
1.706


S7 
L4S1
Q-Type Aspheric
6.712
0.368


1.648


S8 
L3S2
Q-Type Aspheric
−248.667
0.883
1.534
55.663
1.654


S9 
L3S1
Q-Type Aspheric
−4.471
0.081


1.706


S10
L2S2
Q-Type Aspheric
−5.197
0.518
1.650
21.513
1.706


S11
L2S1
Q-Type Aspheric
9.451
2.152


1.895


S12
L1S2
Q-Type Aspheric
−24.950
1.523
1.484
84.146
2.250


S13
L1S1
Q-Type Aspheric
−3.349
−0.840 


2.250


S14
Stop
flat
Infinity
2.435


2.250


S15
Z4S2
Q-Type Aspheric
−3.166
0.500
1.829
42.726
2.230


S16
Z4S1
Q-Type Aspheric
38.480
0.060


2.230


S17
Z3S2
Q-Type Aspheric
12.476
1.111
1.650
21.513
2.230


S18
Z3S1
Q-Type Aspheric
−11.693
3.270


2.230


S19
Z2S2
Q-Type Aspheric
88.558
2.000
1.665
55.117
2.300


S20
Z2S1
Q-Type Aspheric
−5.530
0.060


2.300


S21
Z1S2
Q-Type Aspheric
−5.556
0.500
2.005
21.000
2.300


S22
Z1S1
Q-Type Aspheric
−7.644
0.500


2.300
























TABLE 2





#
k
rmax
A0
A1
A2
A3
A4
A5























S4 
−0.834
1.858
3.55E−02
−6.06E−03 
2.26E−04
5.15E−04
−2.26E−04 
−2.10E−05 


S5 
−6.008
1.858
1.50E−02
−1.73E−02 
6.19E−03
−1.50E−03 
7.16E−05
−1.84E−05 


S6 
−17.754
1.833
3.32E−02
−1.56E−02 
6.87E−03
−4.24E−03 
1.27E−03
−4.59E−04 


S7 
−8.169
1.833
1.56E−01
−1.90E−02 
4.15E−03
−8.86E−04 
5.73E−03
4.55E−04


S8 
116.131
1.903
2.11E−03
2.66E−02
3.50E−02
1.36E−02
1.03E−02
2.09E−03


S9 
−1.064
1.903
7.70E−02
−3.48E−03 
9.94E−03
−3.66E−03 
−1.75E−03 
−1.37E−03 


S10
−1.581
1.953
−1.10E−01 
−8.34E−02 
−4.32E−02 
−2.31E−02 
−9.94E−03 
−2.84E−03 


S11
−3.312
1.953
−7.74E−02 
3.73E−03
−3.48E−03 
5.87E−04
−3.68E−04 
5.19E−05


S12
−81.481
2.754
−8.12E−02 
6.15E−03
4.95E−05
1.13E−04
−6.61E−05 
−1.87E−06 


S13
−0.263
2.754
−6.88E−02 
−8.71E−03 
−1.15E−03 
−1.54E−05 
−6.84E−07 
9.92E−08


S15
−0.624
3.600
8.51E−01
−2.00E−01 
2.69E−02
−4.74E−03 
0.00E+00
0.00E+00


S16
−99.998
3.600
5.34E−02
−3.81E−01 
1.98E−02
−1.08E−02 
0.00E+00
0.00E+00


S17
5.259
3.600
1.69E+00
1.57E−01
6.69E−02
−5.86E−03 
0.00E+00
0.00E+00


S18
−3.735
3.600
2.85E+00
6.02E−01
8.16E−02
2.81E−04
0.00E+00
0.00E+00


S19
−29.541
3.750
5.18E−02
2.26E−02
−2.67E−03 
−7.68E−04 
0.00E+00
0.00E+00


S20
−0.096
3.750
−4.51E−02 
2.86E−02
3.54E−03
2.66E−04
0.00E+00
0.00E+00


S21
0.022
3.750
−5.04E−02 
3.29E−02
9.80E−03
2.21E−03
0.00E+00
0.00E+00


S22
0.548
3.750
−1.41E−02 
−1.70E−02 
−4.03E−03 
−7.61E−04 
0.00E+00
0.00E+00























TABLE 3







R
T


A/2
W/2


#
Type
[mm]
[mm]
Nd
Vd
[mm]
[mm]






















S23
Prism
Infinity
3.050
1.840
23.000
2.850
3.000



Object









side








S24
Prism
Infinity
−2.650
1.840
23.000





Reflective









face








S25
Prism
Infinity



2.850
3.000



Image









side









While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A zoom camera comprising: a) a single optical path folding element (OPFE) for folding the light from a first optical path to a second optical path;b) a first lens having a first optical axis and a first effective focal length EFLL1, the first optical axis being along the second optical path;c) a collimating lens having a second optical axis; andd) an image sensor located on the second optical path,wherein the collimating lens is movable to provide at least a first state and a second state, wherein in the first state the collimating lens is positioned in the second optical path between an image side of the single OPFE and the first lens such that light entering the first lens arrives only from the image side of the collimating lens, and wherein in the second state the collimating lens is positioned outside the second optical path such that light entering the first lens arrives directly from the image side of the single OPFE and does not arrive from the image side of the collimating lens.
  • 2. The zoom camera of claim 1, wherein in the first state the camera has a first combined effective camera focal length EFLc1 different than EFLL1, and wherein in the second state the camera has a second combined effective camera focal length EFLc2 equal to EFLL1.
  • 3. The zoom camera of claim 2, wherein a difference between EFLL1 and EFLc2 is of at least ±10%.
  • 4. The zoom camera of claim 3, wherein the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.
  • 5. The zoom camera of claim 2, wherein a difference between EFLL1 and EFLc2 is of at least ±50%.
  • 6. The zoom camera of claim 5, wherein the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.
  • 7. The zoom camera of claim 2, wherein a difference between EFLL1 and EFLc2 is of at least ±80%.
  • 8. The zoom camera of claim 7, wherein the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.
  • 9. The zoom camera of claim 1, wherein the collimating lens is a telescopic lens.
  • 10. The zoom camera of claim 1, wherein the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.
  • 11. The zoom camera of claim 2, wherein the collimating lens is a telescopic lens.
  • 12. The zoom camera of claim 2, wherein the first lens is operative to move along the first optical axis to change camera focus in both the first state and second state.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a 371 application of international patent application PCT/IB2019/056846 filed Aug. 12, 2019, and claims the benefit of priority from U.S. provisional patent application No. 62/720,939 filed Aug. 22, 2018, which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/056846 8/12/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/039302 2/27/2020 WO A
US Referenced Citations (289)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5926190 Furkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070126911 Nanjo Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100097707 Seo Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110025866 Seo Feb 2011 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150138381 Ahn May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160241751 Park Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170242225 Fiske Aug 2017 A1
20170289458 Song et al. Oct 2017 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20190121103 Bachar et al. Apr 2019 A1
Foreign Referenced Citations (39)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102739949 Oct 2012 CN
103024272 Apr 2013 CN
103841404 Jun 2014 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2006238325 Sep 2006 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2010204341 Sep 2010 JP
2011085666 Apr 2011 JP
2013106289 May 2013 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20140014787 Feb 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (16)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Related Publications (1)
Number Date Country
20210325643 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
62720939 Aug 2018 US