The present invention generally relates to a method of chemical sensing and more particularly to detecting ionic activity of hydroxyl containing molecules by integrating molecular recognition and signal transduction.
Chemical sensors are used to detect chemical information, such as the presence of a specific molecule, and provide an alert to a user of the sensor when the presence is detected. Users of chemical sensors may include emergency response personal or industrial laborers, for example. Chemical sensors typically comprise a chemical recognition system and a physicochemical transducer. Molecular recognition, the selective binding of a molecule to a molecular receptor, can be used to fabricate a sensor system. Molecular recognition includes both chemical (non-covalent intermolecular) and physical (size and shape) recognition.
Molecularly imprinted polymers (MIPs) are man-made molecular recognition systems that mimic natural molecular recognition, such as antibody and antigen. MIPs are prepared by polymerization of functional monomers in the presence of a molecular template. The elution of the template results in cavities which are complementary in size, shape and chemical functionality with the template. These complementary cavities thus allow rebinding of target molecules with a high specificity, sometimes comparable to that of antibodies [Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., “Drug assay using antibody mimics made by molecular imprinting”, Nature 1993, v. 361, pgs. 645-647]. Surface imprinting is a new molecular imprinting technique that provides for cavities within an imprinted polymer on the surface of a transducer with no bonding between monomer and template molecules [“Surface imprinting—integration of recognition and transduction”, In Immunoassay and Other Bioanalytical Techniques, Zhou, Y., Yu, B., Levon, K. Ed: J. van Emon, CRC Press, Dec. 19, 2006]. U.S. Patent Publication 2004/0058380 describes this molecular surface imprinting technique wherein a polymer and template molecules are co-adsorbed onto a surface. There is no interaction between monomer and template molecule as in traditional MIPs. The template molecules are then removed to define cavities having a size and shape that selectively detects target molecules when exposed thereto (the target molecules being identical to the template molecules). However, this Patent Publication fails to provide a method for detecting hydroxyl containing molecules because hydroxyl containing molecules compete with the hydroxyl groups on the surface of a transducer and form a covalent bond with the monomer, e.g. octadecyltrichlorosilane (OTS), resulting in no polymer formed or molecular imprinted. The key principle of surface imprinting is no interaction between the monomer (such as OTS) and the template molecules (e.g. hydroxyl containing molecules, such as ethanol), or alkanethiols SAMs and metal ions (Hg2+, Cd2+, Pb2+ etc), or conducting polymer based surface imprinting technique, such as monomer pyrrole, aniline, with thiol, dialkylamine containing molecules (mercaptoethanol, mercaptoacetic acid, pyrrolidine, piperidine, morpholine).
Accordingly, it is desirable to provide a method for chemical sensing and more particularly for detecting of hydroxyl containing molecules, heavy metal ions, or thiol- or dialkylamine containing molecules by integrating molecular recognition and sensor transduction. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
A method is provided for chemical sensing and more particularly for detecting ionic activity by integrating molecular recognition and sensor transduction. The method comprises sparsely adsorbing monomers on a support surface, subsequently adsorbing template molecules on the support surface within the polymer, and removing the template molecules from the support surface.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
The fabrication of surface-imprinted sensors for the detection of hydroxyl containing molecules, for example, water, ethanol (CH3CH2OH), methanol (CH3OH), propanol (CH3CH2CH2OH), butanol (CH3CH2CH2CH2—OH), isopropanol (OH—H3C—CH3), and a hydroxyl containing molecule comprises a two step process of coating a support surface with a polymer and template molecules. The preferred support surface comprises an indium-tin oxide (ITO)-coated glass electrode, but may comprise other surfaces including electrodes, optic fibers, polymer films, metal, alloys of metal, oxides, glassy carbon, graphite, metal foil, crystals, mica, silicon, semiconductors, quartz, glass, gold, platinum, and ceramics. The polymer may be absorbed on the support surface by soaking the support surface in a solution containing polymer monomers. The monomers which have headgroup ligand molecules in solution energetically arrange themselves to form a monolayer on the surface via molecular self-assembly processes, thus forming a self-assembled monolayer.
Hydroxyl containing template molecules are then absorbed on the support surface by adding the template molecules to the solution subsequent to the polymer being adsorbed on the support surface. The template molecules interact with the self-assembled molecules or monomers and position themselves near the support surface inside the film. A film or monolayer of polymers may be formed by electropolymerizing or simple adsorption. The specific template molecules absorbed is determined by the desired analyte (target molecules) to be detected by the sensor. Those template molecules may comprise one of water, alcoholic molecules, alcoholic vapors, hydroxyl containing compounds, and molecules that react with alkyltrichlorosilane. Alternately, target molecules that do not contain hydroxyl groups such as heavy metals including Hg2+, Cu2+, Pb2+, Cd2+ and those heavy metal ions that could form a complex with headgroup ligand molecules can be used.
The template molecules are then removed from the polymer film or monolayer to provide cavities for target molecules. The template molecules may be removed, for example, by solvent extraction, chemical cleavage, adding overpotential, hydrolytic cleavage, aging, thermal treatment, drying, conventional immersion extraction, ultrasonic-assisted extraction, microwave-assisted extraction, Soxhlet extraction, or neutral pH buffer. Since the template molecules are the same or similar in structure to the target molecules, the cavities are specific with regards to size, geometry (e.g., shape), and functionality for receiving (absorbing, detecting, sensing) the target molecules. This process provides stability (the polymer is covalently bound to the support surface), high selectivity (physical recognition of desired specificity target molecules to the exclusion of other molecules), higher sensitivity (close proximity to the support surface), and a simpler process (no interaction between the monomer and template molecules or functionalization of monomer or template).
Referring to
The template molecules 18 comprising ethanol are then added to the solution of octadecyltrichlorosilane (OTS, C18H37SiCl13 as a silylating agent) in CHCl3/CCl4 solution to position themselves within the ODS coating 16 and absorbed on the substrate surface 14 (
Once absorbed on the ITO-coated glass surface 14, the template molecules 18 are removed by rinsing the electrode with CHCl3 to create cavities 20 (
Surface molecular imprinting technology is combined with signal transduction and molecular recognition to detect molecules in solution. Surface imprinting technology gives sensors selectivity by creating a cavity with specific geometric features into which only molecules with complementary geometry (target molecules) may fit. Surface-molecularly imprinted sensors may be combined with an electrochemical detection system to generate an output signal associated with recognizing the target molecule.
Referring to
Though this process may be applied to the detection of any hydroxyl containing molecule, an optimization process for ethanol will be described as one exemplary embodiment. Four optimization steps will be discussed: ethanol concentration and OTS monomer concentration in the deposition solution, OTS coating time, and ethanol template molecule insertion time. Additionally, a method of optimizing the sensing condition by controlling the pH level will be discussed.
Tests for the optimization of ethanol concentration and OTS concentration in the imprinting solution, OTS coating time, ethanol insertion time, and the effect of pH on detection of the target molecules were conducted. Referring to
Referring to
The effect of pH 122 on the detection of target molecules is illustrated in
Though this process may be applied to the detection of any hydroxyl containing molecule, tests for selectivity were conducted for methanol 131, ethanol 132, propanol 133, butanol 134, and isopropanol 135. The potential difference for each of these molecules is shown in the graph of
A two step process for fabricating a surface-molecularly imprinted sensor includes coating a support surface first with a molecule templatable film comprise either a self-assembling molecules or conducting polymers in a solution and subsequently adding template molecules to the solution has been disclosed. Previously known processes, of co-adsorbing polymers and template molecules, for example, prevented the use of hydroxyl containing template molecules, such as ethanol. The selective and rapid detection of highly flammable ethanol and its vapor is of vital importance to public safety and the industry. This two step process provides ease of manufacture, high selectivity in detection, and ease of use.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road-map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.