The present disclosure relates to a mechanical returnless fuel system, and more specifically, to a two step pressure control of a fuel pump module.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art. Conventional vehicular fuel systems, such as those installed in vehicles, such as automobiles, may employ a “return fuel system” whereby a fuel supply tube is utilized to supply fuel to an engine and a fuel return line is utilized to return, hence “return fuel system,” unused fuel to a fuel tank. Such return fuel systems require the use of both a supply line to and a return fuel line from the engine. More modern vehicles typically employ a “returnless fuel system” that may either be mechanically or electronically controlled.
Regarding such returnless fuel systems, such as a mechanical returnless fuel system (“MRFS”), only a fuel supply line from a fuel tank to the engine is utilized; therefore, no return fuel line from the engine to the fuel tank is necessary. As a result, an MRFS delivers the volume of fuel required by an engine, regardless of the varying degree of the volume of fuel required; however, the fuel pump operates at 100% capacity irrespective of engine demand, with excess fuel being discharged through a fuel pump module via the pressure regulator. In a MRFS, interaction with an electronic control module or vehicle body control module may not normally occur.
During operation of a vehicle employing an MRFS such as that discussed above, the engine typically cycles through periods of acceleration, intermediate speed operation, deceleration, idle and engine off conditions. The MRFS pumps fuel to the rail to maintain a constant pressure based on the pressure regulator. However, the rail pressure may increase or decrease due to the various cycles.
An additional problem may occur upon engine start-up when the vehicle is exposed to high ambient temperatures after engine shutoff. In such a circumstance, residual engine heat, along with the ambient heat, may cause fuel pressure within the fuel rail to vaporize thereby compromising engine restart.
A fuel system comprises a fuel line that supplies fuel to an engine at a fuel line pressure. A first fuel pump or delivery module selectively supplies fuel to the fuel line at a first pressure, while a second fuel pump or delivery module selectively supplies fuel to the fuel line at a second pressure that is greater than the first pressure. A check valve may have an inlet in communication with an exit port of the first fuel pump and an outlet in communication with the fuel line.
The fuel system check valve is closed when a difference between the fuel line pressure and the first pressure is greater than a predetermined check valve opening pressure, such as 20 kPa. The check valve prevents the first fuel pump from supplying fuel to the fuel line. The fuel system positions the check valve when a difference between the fuel line pressure and the first pressure is less than or equal to a check valve opening pressure. The check valve allows the first fuel pump to supply fuel to the fuel line. The second fuel pump supplies fuel to the fuel line during an engine start.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. With reference to
The two step pressure control fuel pump system of the present disclosure may provide two fuel pressures to satisfy engine fueling demands. The fuel pump system may include a first fuel pump and a second fuel pump. The first fuel pump includes a first pressure regulator to maintain fuel pressure at a first pressure. The second fuel pump includes a second pressure regulator to maintain fuel pressure at a second pressure that is greater than the first pressure.
A check valve in communication with the first pressure regulator and the fuel line may open and close based on a differential pressure between the first pressure and the pressure in the fuel line. The first pump may be activated when the ignition system or engine power is on. The first pump operates at a constant speed to supply fuel at the first pressure to the fuel line while the engine is running.
The second pump may be used to increase the fuel line pressure during an engine start or during other operating conditions such as high engine loads. The second pump may operate at a constant speed to supply fuel at a second pressure that is greater than a first pressure of the first pump. The second pump may be activated based on various engine operating conditions such as air and coolant temperatures, engine on/off times, engine speed, and engine load.
When the second pump is activated, the fuel line pressure may increase to the second pressure. The differential pressure between the fuel line pressure and the first pressure forces the check valve closed and blocks fuel from the first pump. The first pump may continue to circulate or recirculate fuel through various jet pumps and to the second pump. When the second pump is deactivated, the second pressure decreases or is removed from the fuel line. The differential pressure decreases until the check valve opens and allows the first pump to supply fuel to the fuel line at the first pressure.
Upon compression of the spring 32 or springs, the flange 28 is secured to the top surface 30 of the fuel tank 16 by a locking ring (not shown) or similar device. While the flange 28 creates a seal around the periphery of the mounting location 26, the reservoir 38 is securely held against the bottom floor of the fuel tank 16. While the fuel pump module 18 of
Now, a more detailed explanation of the teachings of the disclosure will be presented beginning with
First pressure regulator 50 maintains a constant first fuel pressure while primary pump 40 is powered on. Excess fuel may be recirculated in the fuel pump module 18 through a jet pump tube 52 extending from the regulator 50 to a jet pump 54. The jet pump 54 may cause a Venturi effect to draw fuel into the reservoir 38 from the fuel tank 16. Fuel is pumped via the first pressure regulator 50 to an inlet 55 of a flow check valve 56 when the valve 56 is open. Fuel may continue to an outlet 57 of the flow check valve 56. Fuel continues through a connecting tube 58 that leads to a T-joint 59. T-joint 59 connects with the fuel line 14 and a second fuel pump, which is discussed below.
With continued reference to
The fuel pump module 18 may include a second fuel pump 60 which may be a secondary fuel pump. Secondary pump 60 may be activated when engine power is on and other operating conditions exist as discussed below. When secondary pump 60 is activated, fuel flows similarly to the primary pump 40. That is, fuel within the reservoir 38 is drawn through a fuel sock 62 and into the secondary pump 60 and exits through an exit port 64. The fuel may pass through a second pressure check valve 71, similar un operation to check valve 46, and then a second filter (not shown) before reaching a second pressure regulator 70.
The second pressure regulator 70 maintains a constant second fuel pressure, which is greater than the first fuel pressure provided by the primary pump 40, while the secondary pump 60 is powered on. The check valve opening pressure of a check valve associated with the second pump 60 is less than the difference between the second pressure and the first pressure. Excess fuel may be recirculated directly into the reservoir 38 or through a second jet pump tube and jet pump (both not depicted). Fuel then passes via the second pressure regulator 70 to the T-joint 59. Fuel may be supplied to the fuel line 14 at the second pressure while secondary pump 60 is powered on.
In
Continuing with
Referring now to
The vaporization of fuel may cause the fuel pressure to increase as the fuel expands. As a result, less liquid fuel may remain in the fuel line 14. When fuel pressure is low and/or fuel flow is low in the fuel line 14, the secondary pump 60 may be activated or powered on. For example, secondary pump 60 may be activated during engine starts. Secondary pump 60 may be activated based on an engine air temperature measured by an intake air temperature sensor, an engine-off time, fuel pressure, or an engine-on time determined by an engine controller. Secondary pump 60 may be activated on all engine starts.
While the secondary pump 60 may be activated during an engine start along with pump 1, the fuel line pressure in fuel line 14 increases to the second pressure, which is the pressure produced by the second pump 60. The differential pressure between the first pressure and the fuel line pressure is greater than the check valve opening pressure, so the pressure differential forces the flow check valve 56 to close. When flow check valve 56 is closed, fuel from primary pump 40 is blocked from the fuel line 14. Primary pump 40 continues to pump fuel through the jet pumps 54 and 78 and to draw fuel into the reservoirs 38 and 72. The second pressure generated by the secondary pump 60 causes re-absorption of any vapor in the fuel line 14 and increases liquid fuel mass.
When the secondary pump 60 is deactivated, such as after a successful engine start, the fuel line pressure decreases. The differential pressure between the first pressure and the fuel line pressure decreases below the check valve opening pressure because the first pressure, or pressure just before inlet 55, is greater than the pressure in the fuel line 14, or the pressure just after the outlet 57, with respect to the flow of fuel. When the pressure differential is less than the check valve opening pressure, the flow check valve 56 opens. When the flow check valve 56 is open, fuel from primary pump 40 flows to the fuel line 14. The fuel line pressure is no longer high enough to keep the flow check valve 56 closed because secondary pump 60 is powered off.
Additionally, secondary pump 60 may be activated to increase the fuel flow to the engine 12 when fuel flow from the primary pump 40 is insufficient to meet the volume of fuel required by the engine load. During high engine loads such as during wide open throttle (WOT), primary pump 40 may not be able to supply fuel at the first pressure, or that pressure and volume demanded, to meet the engine load. Pressure in the fuel line 14 may decrease below the first pressure as a fuel flow to the engine 12 increases. Secondary pump 60 may be activated to increase the fuel line pressure and fuel flow when the fuel line pressure decreases. A pressure sensor may be used to detect such a change in pressure.
For example only, when the fuel line pressure is less than or equal to a predetermined pressure, the secondary pump 60 may be activated to increase the fuel line pressure. The predetermined pressure may be based on feedback from sensors on the engine 12 such as a fuel rail pressure sensor. The secondary pump 60 may be activated based on feedback from oxygen sensors in the exhaust gas. The secondary pump may also be activated by a fuel pressure sensor. Oxygen sensors may detect when the engine receives an insufficient amount of fuel. The fuel line pressure may increase due to the second pressure and force the check valve 56 closed. Secondary pump 60 supplies fuel to the fuel line causing the fuel line pressure to increase to the second pressure.
The fuel line pressure may continue to decrease under continuing high engine loading. When the difference between the fuel line pressure and the first pressure is less than the check valve opening pressure, such as when the fuel line 14 pressure is greater than first pressure, the flow check valve 56 may open again. For example only, the secondary pump 60 alone may not supply a sufficient fuel flow to the engine 12. The pressure in the fuel line 14 may decrease and flow check valve 56 may open while the secondary pump 60 is activated. The fuel line pressure may decrease until the differential pressure across the check valve 56 is no longer sufficient to keep the flow check valve 56 closed. The primary pump 40 may then supply fuel to the fuel line 14 in addition to fuel from the secondary pump 60. The fuel flow rate may increase due to the added flow of the primary pump 40. The fuel line pressure may be maintained by the first pressure regulator 50 while the primary pump 40 and secondary pump 60 are both on and the flow check valve 56 is open.
Secondary pump 60 is not activated as seen in block 312. Fuel does not flow through the optional filter in block 314 or to the second pressure regulator 70 in block 316. Fuel is supplied to the engine in block 318 at the constant pressure maintained by the first pressure regulator 50 in block 306.
Secondary pump 60 is activated in block 412 during the engine start and may pump fuel through an optional filter in block 414 and on to the second pressure regulator 70. In block 416, second pressure regulator 70 maintains fuel pressure at the second pressure. The fuel line pressure increases to the second pressure. The difference between the second pressure and the first pressure is greater than the opening pressure of the check valve 56 in block 410. Therefore, flow check valve 56 is closed in block 410. Fuel is supplied to the engine 12 at the second pressure during the engine start in block 418.
As fuel flow and fuel pressure in the fuel line 14 decrease due to increased engine demand, secondary pump 60 is activated in block 512. Secondary pump 60 may pump fuel through an optional filter in block 514 and on to the second pressure regulator 70. Secondary pump 60 may be activated when the engine is under high load and fuel pressure in the fuel rail 24 decreases below the first pressure. In block 516, the second pressure regulator 70 maintains fuel pressure at the second pressure.
The fuel line pressure may increase to the second pressure and force the flow check valve 56 to close when the secondary pump 60 is activated. As engine load increases or continues at a high load, the fuel line pressure may continue to decrease. When the difference between the fuel line pressure and the first pressure are less than the check valve opening pressure, such as when the fuel pressure in the fuel line 14 is less than the first pressure, the flow check valve 56 may open again. Primary pump 40 may supply fuel to the fuel line at the first pressure. The additional fuel flow from the primary pump 40 increases the fuel flow rate in the fuel line 14 and the first pressure regulator 50 maintains the fuel line pressure at the first pressure. The flow check valve 56 may continue to open and close, with both the first pump 40 and the second pump 60 pumping fuel, as needed based on the difference between the fuel line pressure and the first pressure. The fuel line pressure may vary between the second pressure and the first pressure.
The system may further employ a second fuel pump 60 with an exit port 64 and a second fuel pump check valve 71. A second pressure regulator 70 may govern a pressure of fuel pumped by the second fuel pump 60 to a second pressure. A second pressure regulator exit tube may have a second exit tube first end and a second exit tube second end. The second exit tube first end may be attached to the second pressure regulator 70 to receive fuel pumped through the second pressure regulator 70. An engine fuel line 14 may deliver fuel to the engine 12 at an engine fuel line pressure. A flow check valve 56 may have a predetermined flow check valve open setting, such as a type governed with a spring, for example. The flow check valve 56 may also have a flow check valve inlet 55 and a flow check valve outlet 57. The flow check valve inlet 55 may be attached to the first exit tube second end. A connecting tube 58 may have a connecting tube first end and a connecting tube second end. The connecting tube first end may attach to the flow check valve outlet 57. A T-joint 59 may function as a fluid juncture and connect to the connecting tube second end, the second exit tube second end, and the engine fuel line 14. An open and close position of the flow check valve 56 may be governed by the predetermined flow check valve open pressure setting and an engine fuel line pressure.
The check valve open pressure setting may be less than a difference between the second pressure and the first pressure. The flow check valve is closed when a difference between the fuel line pressure of the fuel line 14 and the first pressure is greater than the flow check valve open pressure. The flow check valve is open when a difference between the fuel line pressure and the first pressure is less than the flow check valve open pressure. The flow check valve is open when a difference between the fuel line pressure and the first pressure is equal to the flow check valve open pressure. Fuel from the first fuel pump 40 en route to the fuel line 14 flows through the flow check valve 56, and the second fuel pump 60 supplies fuel to the fuel line 14 at the second pressure during engine starting.
As related to the present teachings, a method of controlling a fuel volume and a fuel pressure in an engine fuel line may entail providing fuel to an engine 12 through the engine fuel line 14 at a fuel line pressure; providing a first fuel pump 40, a first pump check valve 46, a first pressure regulator 50 and a first pressure regulator exit tube; providing a second fuel pump 60, a second pump check valve 71, a second pressure regulator 70 and a second pressure regulator exit tube; providing a flow check valve 56 with a flow check valve inlet 55 connected to an exit end of the first pressure regulator exit tube; providing a connector tube 58 to an outlet of the flow check valve 56; providing a joint, such as a T-joint 59, to fluidly join the second pressure regulator exit tube, the connector tube 58, and the engine fuel line 14.
Continuing, a method of operation may employ pumping a first volume of fuel from the first fuel pump 40, through the first pump check valve 46, through the first pressure regulator 50 and into a first pressure regulator exit tube, through the flow check valve 56 and into the connector tube 58, the first volume of fuel being at a first pressure. The flow check valve is closed when the fuel line pressure plus the flow check valve open pressure is greater than the first pressure. The flow check valve is open when the first pressure is greater than the fuel line pressure plus the flow check valve open pressure.
A second fuel pump may be employed for pumping a second volume of fuel from the second fuel pump, through the second pump check valve, through the second pressure regulator and into the second pressure regulator exit tube, the second volume of fuel being at a second pressure. The flow check valve allows fuel from the first fuel pump to supply fuel to the engine fuel line. The flow check valve may be positioned to a close position when an engine fuel line pressure is greater than the first pressure. The flow check valve may be positioned open when the fuel line pressure is less than the first pressure and the first pressure is greater than the check valve opening pressure. Pumping a second volume of fuel from the second fuel pump may further comprise activating the second fuel pump only during engine starting, with either the first pump turned on or off. Pumping a second volume of fuel from the second fuel pump may further comprise activating the second fuel pump only during engine wide open throttle. The first pump may reside in a first side of a saddle fuel tank and the second pump may reside in a second side of a saddle fuel tank.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
The broad teachings of the disclosure may be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification, and the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5477829 | Hassinger et al. | Dec 1995 | A |
5572974 | Wakeman | Nov 1996 | A |
5731515 | Tominaga et al. | Mar 1998 | A |
6024064 | Kato et al. | Feb 2000 | A |
6253735 | Miyajima | Jul 2001 | B1 |
6279317 | Morgan | Aug 2001 | B1 |
6318344 | Lucier et al. | Nov 2001 | B1 |
6705298 | Ramamurthy et al. | Mar 2004 | B2 |
7284539 | Fukasawa | Oct 2007 | B1 |
7318415 | Fukasawa | Jan 2008 | B2 |
7318421 | Fukasawa | Jan 2008 | B2 |
7383822 | Ramamurthy et al. | Jun 2008 | B2 |
7431020 | Ramamurthy | Oct 2008 | B2 |
20030219346 | Abe et al. | Nov 2003 | A1 |
20040074995 | Okada | Apr 2004 | A1 |
20050155582 | Schelhas et al. | Jul 2005 | A1 |
20060065246 | Zdroik | Mar 2006 | A1 |
20070186908 | Fukasawa | Aug 2007 | A1 |
20080184971 | Lubinski et al. | Aug 2008 | A1 |
20080236550 | Kobayashi et al. | Oct 2008 | A1 |
20090000673 | Ramamurthy | Jan 2009 | A1 |
20100101536 | Nakata | Apr 2010 | A1 |
20100263634 | Futa et al. | Oct 2010 | A1 |
20100307459 | Steinbach et al. | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100242923 A1 | Sep 2010 | US |