This application is based on and claims Convention priority to Japanese patent application No. 2010-141276, filed Jun. 22, 2010 and Japanese patent application No. 2011-114499, filed May 23, 2011, the entire disclosure of which is herein incorporated by reference as a part of this application.
1. (Field of the Invention)
The present invention relates to a two-stroke cycle combustion engine of an air scavenging type that is used as a drive source for a compact work machine such as, for example, a brush cutter.
2. (Description of the Related Art)
The two-stroke cycle combustion engine of an air scavenging type has been well known in the art, in which prior to the combustion chamber being scavenged with an air/fuel mixture, leading scavenging with air is performed to suppress an eventual blow-off of the air/fuel mixture from the exhaust port. The JP Laid-open Patent Publication No. 2004-360656, published Dec. 24, 2004, discloses this type of the combustion engine, in which a pair of first scavenging passage and a pair of second scavenging passages are provided inside a cylinder block and a crankcase so that an air introduced from the outside into an air passage can be once introduced into the second scavenging passages through an introducing passage and, during the scavenging stroke, the air from the second scavenging passages can be supplied into the combustion chamber prior to the supply of the air/fuel mixture from the first scavenging passages to thereby suppress the eventual blow-off of the air/fuel mixture from the exhaust passage. In this known combustion engine, the introducing passage communicating the air passage with the second scavenging passages is formed between a recess, defined in an outer peripheral portion of the cylinder block, and a plate-shaped lid for closing such recess.
The engine cylinder block manufactured by means of casting is apt to have casting burrs around openings such as, for example, an scavenging opening (a scavenging port) and cast mating sites. Such casting burrs are generally removed by means of a complicated and time consuming work of removing the burrs with a cutting tool such as, for example, a file having been inserted into the cylinder block through the recess defined in the cylinder blocks.
On the other hand, the JP Laid-open Patent Publication No. 2008-138602, published Jun. 19, 2008, discloses a different type of two-stroke cycle combustion engine, in which a space communicated with the air passage is defined between an inner surface of an opening, formed in the cylinder block, and an inner surface of a covering member capped into such opening and is divided by a partition segment, formed integrally with the covering, so as to communicate with a second scavenging port of a second scavenging passage for the supply of an air and in which a recess for reserving the air is formed at an outer periphery portion of the reciprocating piston so that such recess is communicated with the second scavenging port upon the ascending motion during the scavenging stroke. In this known combustion engine, since the partition segment for defining the wall surface of a passage for guiding the air towards the second scavenging port is formed integrally with the covering member, the first and second scavenging ports in the cylinder block in a condition before the covering member is fitted to such cylinder block are exposed to the outside through the opening and, therefore, the removal of the burrs in the cylinder block can be easily performed.
However, since the combustion engine disclosed in the above mentioned publication No. 2008-138602 is so designed that the air from the air passage is introduced from the second scavenging port into the second scavenging passage by way of the recess in the outer periphery of the reciprocating piston, the cost of manufacture becomes high as a result of complication in structure. Also, since the amount of the air introduced into the second scavenging passage is determined depending on the shape of the recess in the reciprocating piston which is a relatively large casting, setting and adjustment of the amount of the air so introduced cannot be accomplished easily.
In view of the foregoing, the present invention has for its object to provide a two-stroke cycle combustion engine of an air scavenging type, in which while such engine has an inexpensive and simplified structure, removal of the burrs in the cylinder block and adjustment of the amount of the air can be easily performed.
In order to accomplish the foregoing object, the present invention provides a two-stroke cycle combustion engine of an air scavenging type which includes one or more scavenging passages for communicating a crank chamber and a combustion chamber, an air passage for supplying an air, an introducing passage for intruding the air from the air passage into an upper portion of each scavenging passage from a direction radially outwardly of a cylinder block, a covering member for covering the introducing passage from an outer side, and a scavenging block forming the upper portion of each scavenging passage and a part of the introducing passage between the scavenging block and the covering member.
According to this construction, since the scavenging block is formed with the upper portion of the scavenging passage and the part of the introducing passage, the scavenging port in the cylinder block in a condition before the scavenging block is fitted to such cylinder block is exposed to the outside through an opening of a large open area into which the scavenging block is inserted and, accordingly burrs developed in, for example, an open edge portion of the scavenging port during the removal from the casting mold assembly can be easily removed with a high workability. Also, since the structure necessary to introduce the air from the air passage into the scavenging passage through the introducing passage is provided between the scavenging block and the covering member, secured to the cylinder block, and the cylinder block, the structure can be simplified and can therefore be manufacture inexpensively as compared with the structure, in which the air is introduced into the scavenging passage through the recess in the outer periphery of the reciprocating piston such as disclosed in the previously mentioned patent publication No. 2008-138602.
In a preferred embodiment of the present invention, an upper edge of the scavenging port opening towards the combustion chamber may be formed by a scavenging port upper edge portion in a peripheral wall of the cylinder block, in which case a radially inner end of the upper portion of the scavenging block is positioned at a location radially outwardly of the scavenging port upper edge portion. This is particularly advantageous that since the timing, at which the scavenging port is opened during the descending motion of the reciprocating piston, is determined uniquely by the position of the upper edge portion of the scavenging port formed in the peripheral wall of the cylinder block itself, there is no possibility that the timing of scavenging with the air will be varied even though a radially inner end of the upper portion of the scavenging block displaces in position relative to the upper edge of the scavenging port in the cylinder block. This characteristic structure can readily be accomplished by, for example, allowing the radially inner end of the upper portion of the scavenging block to engage a stepped portion defined in a radially outer portion of the peripheral wall of the cylinder block relative to the scavenging port upper edge portion.
In a preferred embodiment of the present invention, the scavenging block may be received within a scavenging opening defined in a peripheral wall of the cylinder block so as to extend completely through a portion of such peripheral wall, and the covering member may be fitted to a radially outer end face of the scavenging opening. According to this construction, since each of the scavenging block and the covering member are prepared using the members separate from each other, the freedom of choice in, for example, shape and manufacturing method of the respective scavenging block can be increased.
In another preferred embodiment of the present invention, there may be provided a first scavenging passage for supplying mainly an air/fuel mixture within the crank chamber to the combustion chamber and a second scavenging passage for supplying mainly an air from the introducing passage to the combustion chamber and in which the introducing passage is communicated with the second scavenging passage through a radially outer side of the first scavenging passage. By so doing, that part of the introducing passage communicated with the second scavenging passage by way of the radially outer side of the first scavenging passage can be easily formed integrally with the scavenging block. Also, by setting the passage area of the communicating portion leading from the introducing passage in the scavenging block towards the second scavenging passage to an arbitrarily chosen value, the amount of the air introduced from the air passage into the second scavenging passage can be adjusted.
In a further preferred embodiment of the present invention, a radially outer side portion of a passage wall forming the first scavenging passage may be formed with an introducing hole through which the air within the introducing passage is introduced. This is particularly advantageous that introduction of the air, guided from the air passage into the introducing passage, also into the first scavenging passage makes it possible to secure the amount of the air sufficient to avoid an undesirable blow-off in combination in cooperation with the air within the second scavenging passage.
Where the use of the first and second scavenging passages is made, the scavenging block referred to above is preferably formed integrally with a passage upper wall portion extending in a radial direction, and first and second partition wall portions extending downwardly from an inner side half of the passage upper wall portion occupying a region from a radially inner end portion of the passage upper wall portion to an intermediate portion thereof and, also, an upper portion of the first scavenging passage is preferably formed between the first partition wall portion and the second partition wall portion and an upper portion of the second scavenging passage is formed between the second partition wall portion and the cylinder block. With this construction, since the first and second partition wall portions are integrally formed the scavenging block, the upper portions of the first and second scavenging passages can be easily formed.
Where the first partition wall portion and the second partition wall portion are formed integrally with the scavenging block, first and second guide wall portions are further formed integrally with the scavenging block so as to extend downwardly from a lower surface of the passage upper wall portion and continued to respective upper side faces of the first partition wall portion and the second partition wall portion and, also, the first and second guide wall portions preferably have a length as measured in a vertical direction, which is smaller than the respective heights of the first and second partition wall portions and also preferably have respective guide faces inclined diagonally upwardly from corresponding lower end portions towards inner ends. Since the air/fuel mixture and the air are guided respectively by the guide faces to be supplied into the combustion chamber diagonally upwardly, the air/fuel mixture and the air charged in the combustion chamber with high efficiency.
Where the first partition wall portion and the second partition wall portion are formed integrally with the scavenging block, the scavenging block is preferably connected with a scavenging opening in the cylinder block; an upstream portion of the introducing passage is formed between a peripheral wall of the scavenging opening and the first partition wall portion and, also, a downstream portion of the introducing passage is preferably formed below an outer half of the passage upper wall portion ranging from sites aligned with radially outer ends of the first and second partition wall portions in the passage upper wall portion to a radially outer end of the passage upper wall portion. With this construction, the introducing passage can be easily provided by a combination of the peripheral wall of the scavenging opening with the scavenging block.
In a yet further preferred embodiment of the present invention, a first stepped portion may be formed in a front end region of a passage upper wall portion in the scavenging block so as to protrude upwardly, and a second stepped portion depressed upwardly to allow the first stepped portion to contact therewith may then be formed in a radially outer portion of an upper edge of the scavenging port open towards the combustion chamber in the cylinder block. According to this structural feature, since the upper edge of the first scavenging port is formed by the scavenging port upper edge portion in the peripheral wall of the cylinder block, even when variation occurs in a vertical position of the front end region of the passage upper wall portion in the scavenging block, the timing at which the first scavenging port is opened is uniquely determined by the upper edge portion of the first scavenging port without being affected by such variation, with the variation consequently minimized as much as possible.
Any combination of at least two of the various constructions disclosed in the appended claims, the specification and/or the accompanying drawings in this application should be construed as included within the spirit of the present invention. In particular, any combination of two or more of the appended claims should also be construed as included within the spirit of the present invention.
In any event, the present invention will become more clearly understood from the following description of preferred embodiments thereof, when taken in conjunction with the accompanying drawings. However, the embodiments and the drawings are given only for the purpose of illustration and explanation, and are not to be taken as limiting the scope of the present invention in any way whatsoever, which scope is to be determined by the appended claims. In the accompanying drawings, like reference numerals are used to denote like parts throughout the several views, and:
Hereinafter, preferred embodiments of the present invention will be described in detail with particular reference to the accompanying drawings. In particular, in a two-stroke cycle combustion engine designed in accordance with a first preferred embodiment of the present invention shown in
A carburetor 3 and an air cleaner 4, forming respective parts of a fuel supply device which in turn forms an intake system, are connected with an one side portion (right side portion as viewed in
A crankshaft 8 is operatively supported within the crankcase 2 by means of bearings 81 for rotation about its own longitudinal axis. The crankshaft 8 has a hollow crank pin 82 mounted on a portion thereof offset from the longitudinal axis of the crankshaft 8, and the crank pin 82 and a hollow piston pin 71, provided in the reciprocating piston 7 for movement together therewith, are operatively connected with each other by means of a connecting rod 83 through a large end bearing 86 and a small end bearing 87. The crankshaft 8 is provided with a crank web 84, and an ignition plug P is provided on a top area of the cylinder block 1.
An insulator 9 made of a resinous material is interposed between the cylinder block 1 and the carburetor 3 for thermally insulating the carburetor 3 from heat evolved in the cylinder block which is heated to an elevated temperature during the operation of the combustion engine. A portion of an air passage 10 for supplying an air A, which has been drawn from the outside, is formed within an upper region of the insulator 9 and, also, a portion of an air/fuel mixture passage 11 is formed within a lower region of the insulator 9 at a location below the air passage 10 so as to extend substantially parallel to the air passage 10. The air/fuel mixture passage 11 is communicated with a mixture port 11a defined in the cylinder block 1 so as to open at an inner peripheral surface of the cylinder block 1 in communication with the cylinder bore.
The carburetor 3 is operable to adjust both of respective passage cross-sectional areas (hereinafter referred to as “passage area”) of the air passage 10 and the air/fuel mixture passage 10 by means of a single rotary valve (not shown). Also, the cylinder block 1 is formed with an exhaust passage 12 having an exhaust port 12a open at the inner peripheral surface of the cylinder block 1 in communication with the cylinder bore. The exhaust port 12a and the air/fuel mixture port 11a referred to previously are defined in the inner peripheral surface of the cylinder block 1 at respective locations spaced 180° from each other in a direction circumferentially of the cylinder bore. Exhaust gases (combustion gases) discharged from the combustion chamber 1a into the exhaust passage 12 through the exhaust port 12a are subsequently discharged from an exhaust opening (not shown) to the outside by way of the muffler 5.
As shown in
As best shown in
The air A flowing through the air passage 10 in the insulator 9 is once introduced into the second scavenging passages 14 through associated introducing passages 16 (best shown in
As best shown in
Each of those radial scavenging openings 18 has an open edge 18a defined at a location remote from the cylinder bore, and an introducing passage downstream portion 16b is defined in the cylinder block 1 so as to extend between the open edge 18a of each of the radial scavenging openings 18 and the adjacent first and second scavenging passages 13 and 14. Each of the radial scavenging openings 18 is closed from the outer side by a corresponding covering member 21, while such scavenging block 20 as will be described in detail later, is engaged in the corresponding scavenging opening 18. The covering member 21 for each of the scavenging openings 18 is secured to the cylinder block 1 with bolts 30 threaded into a pair of respective threaded holes 18c which are defined in a rectangular opening peripheral wall 18b surrounding the corresponding scavenging opening 18 in the cylinder block 1 as shown in
The details of each of the scavenging blocks 20, secured to the cylinder block 1 in the manner described above, are best shown in
The scavenging block 20 is secured to the cylinder block 1 by means of the bolts 30 (
The first scavenging passage 13 formed in the peripheral wall of the cylinder block 1 as shown in
The passage upper wall portion 22 of each of the scavenging blocks 20 is inserted along an upper edge portion of the corresponding scavenging opening 18 and has its radially inner end 22a positioned in flush with a peripheral wall inner surface of the cylinder block 1. Accordingly, an upper end portion of the first scavenging port 13a is defined by the passage upper wall portion 22 of the respective scavenging block 20.
The first partition wall portion 23 of the scavenging block 20 partitions between the introducing passage downstream portion 16b and the upper portion of the first scavenging passage 13 and an introducing hole 31 for introducing an air within the introducing passage downstream portion 16b into the first scavenging passage 13 is formed between a lower end of the first guide wall portion 25 and a lower portion of the opening peripheral wall 18b of the cylinder block 1. Accordingly, during the intake stroke with the reciprocating piston 7 ascending towards the top dead center position, a portion of the air A flowing through each of the introducing passages 16 is introduced through the corresponding introducing hole 31 into the upper portion of the first scavenging passage 13 for supplying mainly the air/fuel mixture M within the crank chamber 2a to the combustion chamber 1a.
It is to be noted that in the practice of the present invention, the use of the introducing holes 31 one for each of the first scavenging passage 13 may be dispensed with.
As best shown in
In this way, the introducing passage upstream portion 16a is formed between the opening peripheral wall 18b of the scavenging opening 18, best shown in
Even in the second scavenging passage 14 best shown in
The second partition wall portion 24 of the scavenging block 20 partitions between an upper portion of the first scavenging passage 13 (as shown in
In other words, as best shown in
The operation of the two-stroke cycle combustion engine of the construction described herein before will now be described.
When as shown in
When as hereinabove described the reed valve 15 is opened by the effect of the negative pressure inside the crank chamber 2a, best shown in
During the subsequent scavenging stroke, as best shown in
The amount of the air A jetted from the first scavenging ports 13a is smaller than that from the second scavenging port 14a and the first scavenging port 13a mainly supplies the air/fuel mixture M to the combustion chamber 1a. It may occasionally occur that the air A is mainly supplied from the second scavenging ports 14a into the combustion chamber 1a and, following the air A so supplied, a small amount of the air/fuel mixture M is supplied into the combustion chamber 1a.
Since the air/fuel mixture M and the air A are guided respectively by the guide faces 25a and 26a to be supplied into the combustion chamber 1a diagonally upwardly, the air/fuel mixture M and the air A charged in the combustion chamber 1a with high efficiency.
In the two-stroke cycle combustion engine designed according to the foregoing embodiment, each of the scavenging blocks 20 best shown in
Also, since each of the scavenging blocks 20 made up of a number of members formed integrally therewith comes to have a large shape, each of the scavenging openings 18 defined in the cylinder block 1 for receiving therein the corresponding scavenging block 20 can have an increased open area, thus facilitating removal of the casting burrs or flashes. Yet, since the structure is employed between the cylinder block 1 and each of the scavenging blocks 20, in which the air A from the air passage 10 can be introduced into the first and second scavenging passages 13 and 14 through the corresponding introducing passage 16, as compared with the structure in which the air is introduced into the scavenging passage through the recess defined in the outer periphery of the reciprocating piston such as disclosed in the previously mentioned JP Laid-open Patent Publication No. 2008-138602, the structure can be simplified, allowing it to be manufactured at a low cost.
Also, as
Also, since each of the introducing passages 16 is of such a structure as to extend radially outwardly of the adjacent first scavenging passage 13, the corresponding introducing hole 31, through which the air A within the respective introducing passage 16 is introduced also into the first scavenging passage 13, can be easily formed between the cylinder block 1 and the partition wall portions 23 and 24 forming respective parts of passage walls of the first and second scavenging passages 13 and 14 in the associated scavenging block 20. Accordingly, the amount of the air sufficient to avoid the undesirable blow-off of the air/fuel mixture M can be secured owning to the air A introduced from the introducing passages 16 into the associated first scavenging passages 13.
In the two-stroke cycle combustion engine according to the previously described first embodiment, there is the possibility that when the respective scavenging block 20 is secured to the cylinder block 1 as shown in
In contrast thereto, in the two-stroke cycle combustion engine designed according to the second embodiment, the upper edge of the first scavenging port 13a open towards the combustion chamber 1a shown in
As shown in
As shown in
Although in this embodiment, reference has been made to the use of the spring pin 62 as the first fitting member, each of the scavenging blocks 20A may be fitted to the respective scavenging opening 18 in the cylinder block 1 by the use of a bonding agent or by means of spot welding. Also, each scavenging block 20A can be fitted inside the associated scavenging opening 18 when screw holes are formed in the covering member 21 and, on the other hand, respective screw members are threaded into those screw holes so that free ends of the screw members can be brought into abutment with the radially outwardly oriented end face (outer side face) of the respective scavenging block 20A to press the latter.
According to the third embodiment described hereinabove, since each of the scavenging blocks 20A and the associated covering member 21 are prepared using the members separate from each other, the freedom of choice in, for example, shape and manufacturing method of the respective scavenging block 20A can be increased.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings which are used only for the purpose of illustration, those skilled in the art will readily conceive numerous changes and modifications within the framework of obviousness upon the reading of the specification herein presented of the present invention. Accordingly, such changes and modifications are, unless they depart from the scope of the present invention as delivered from the claims annexed hereto, to be construed as included therein.
Number | Date | Country | Kind |
---|---|---|---|
2010-141276 | Jun 2010 | JP | national |
2011-114499 | May 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4306522 | Fotsch | Dec 1981 | A |
6662766 | Araki et al. | Dec 2003 | B2 |
6978744 | Yuasa et al. | Dec 2005 | B2 |
7089891 | Yuasa et al. | Aug 2006 | B2 |
7458153 | Uhl et al. | Dec 2008 | B2 |
7520253 | Mochizuka et al. | Apr 2009 | B2 |
8459217 | Ogura et al. | Jun 2013 | B2 |
20040244738 | Yuasa et al. | Dec 2004 | A1 |
20040255883 | Yuasa et al. | Dec 2004 | A1 |
20080098992 | Mochizuka et al. | May 2008 | A1 |
20090013982 | Yuasa et al. | Jan 2009 | A1 |
20090095269 | Zama | Apr 2009 | A1 |
20100288251 | Ogura et al. | Nov 2010 | A1 |
20130291840 | Ono et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
101029607 | Sep 2007 | CN |
2004-360656 | Dec 2004 | JP |
2008-111339 | May 2008 | JP |
2008-138602 | Jun 2008 | JP |
Entry |
---|
Chinese Patent Application No. 201110161940.5 Office Action dated Mar. 5, 2013, 11 pages with partial English translation. |
Chinese Patent Application No. 201110161940.5 Office Action dated Nov. 4, 2013, 8 pages with partial English translation. |
Number | Date | Country | |
---|---|---|---|
20110308507 A1 | Dec 2011 | US |