The present invention relates to two stroke internal combustion engines and, particularly, to such engines with a rotatable disk valve in the engine for modulating gas passages.
A particular field of application of the invention is a two stroke internal combustion engine. One application of the invention is to a small high speed two stroke engine, such as utilized in hand-held power equipment such as leaf blowers, string trimmers, hedge trimmers, also in wheeled vehicle applications such as mopeds, motorcycles, scooters, and in small outboard boat engines. The small two stroke engine has many desirable characteristics, including simplicity of construction, low cost of manufacturing, high power-to-weight ratios, high speed operational capability and, in many parts of the world, ease of maintenance.
Inherent drawbacks of two stroke engines are high emission levels and poor fuel economy due to short-circuit loss of fuel and air charge during the scavenging process. One drawback of the simple two stroke engine is a loss of a portion of the fresh unburned fuel charge from the cylinder during the scavenging process. In the two stroke engine, the homogeneous charge enters the cylinder through transfer ports during the scavenging process, when the exhaust port is also open. As such, some of the charge escapes through the exhaust port leading to high levels of hydrocarbons (HC) in the tailpipe. This leads to the poor fuel economy and high emission of unburned hydrocarbon, thus, rendering the simple two stroke engine difficult to comply with increasingly stringent governmental pollution restrictions. This drawback can be relieved by separating the scavenging of the cylinder, with fresh air, from the charging of the cylinder, with fuel. This separation can be achieved by injecting the liquid fuel into the cylinder or, more preferably, by injecting the fuel charge by utilizing a pressurized air or lean charge source, separate from the fresh air scavenge, to spray the fuel into the cylinder.
Several concepts and technologies have been proposed or tried to circumvent the short-circuit loss of fresh charge. Among these techniques are direct or indirect fuel injection, stratified scavenging, air head, air assisted fuel injection, and compressed wave injection. Most of these technologies are either complex, expensive or have limitations as to the benefits throughout the operating range of an engine. The fuel injection technology is not economical for small engines but air head scavenging and stratified scavenging are promising.
An air assisted fuel injection system using compressed wave injection is disclosed in U.S. Pat. No. 6,273,037. The compressed wave injection system engine uses the piston to control the charge induction and, thus, the opening and closing time of induction is symmetrical about the TDC. Also, the charge depends on the wave dynamics for injection. This may lead to an optimum performance only at a certain operating range of speed and load.
U.S. Pat. No. 4,253,433, March 1981, by G. P. Blair, discloses a stratified scavenging system in which the retention of charge in the injection tube during induction depends on the length of the tube and has no timing system to start and end induction and injection of the charge. As such, the system may perform best in a narrow range of engine speed and load.
It is desirable to have a two stroke engine with flexibility to vary the injection passage volume and timing during operation of the engine. It is also desirable to have a two stroke engine with ability to optimize engine variables for a variety and range of engine operating condition from idle through full load and speed. It is also desirable to have a two stroke engine with a charge induction and injection timing in a stratified scavenging system that can be varied continuously and, in real time and, the volume of the charge inducted that can also be changed. The design is also applicable to inlet timing, in a rotary valve system, where charge inlet and closing timing can be varied. Also, the same system can be used to vary the transfer port timing. Further, the system can be used to vary the transfer or boost port timing and passage volume. It is also desirable to have fixed unsymmetrical timing for charge induction and injection, and/or for scavenging process.
A two stroke internal combustion engine includes at least one gaseous communication passage between a crankcase chamber and a combustion chamber of the engine and a rotatable circular disk rotatably connected to a crankshaft of the engine. At least one rotary shut-off valve is located in a radially outermost section of the circular disk bordered by a periphery of the circular disk and operatively disposed between the passage and the crankcase chamber for opening and closing gaseous communication between the passage and the crankcase chamber. One embodiment of the rotary shut-off valve includes at least one circumferentially extending pathway that extends axially at least partially through the disk. The pathway is rotatably disposed between the passage and the crankcase chamber for opening and closing gaseous communication between the passage and the crankcase chamber. In the exemplary embodiment, the pathway extends circumferentially less than 180 degrees. One embodiment of the pathway is a circumferentially extending annular slot that extends axially at least partially through the periphery of the circular disk. The disk may be disposed within the crankcase chamber and also may be a crank web of the engine.
Some embodiments of the rotary shut-off valve include at least two circumferentially spaced apart and circumferentially extending pathways extending axially at least partially through the disk. The pathways extend circumferentially less than 180 degrees and the pathways are rotatably disposed between the passage and the crankcase chamber for opening and closing gaseous communication between the passage and the crankcase chamber.
Other embodiments of the engine include an angularly adjustable ring having an annular channel disposed between the circumferentially extending pathway and the passage and a ring port through the ring leading to the annular channel. More particular embodiments of the engine include a rotary shut-off valve with at least two circumferentially spaced apart and circumferentially extending pathways extending axially at least partially through the disk and extending circumferentially less than 180 degrees. The pathways are rotatably disposed between the passage and the crankcase chamber for opening and closing gaseous communication between the passage and the crankcase chamber. A fixed lip extending into the annular channel may be incorporated to vary the volume of channel by rotating the ring and the channel.
One embodiment of the pathway is a circumferentially extending annular rectangular cross-sectional slot that extends axially at least partially through the periphery of the circular disk. Another embodiment of the pathway is an annular L-shaped pathway having a radially inwardly extending annular slot intersecting an axially extending annular slot. The radially inwardly extending annular slot includes a radially outwardly facing radial inlet in the periphery. The axially extending annular slot includes an axially facing axial outlet located radially inwardly of the periphery.
Other embodiments of the engine include an angularly adjustable ring concentrically disposed around the periphery of the circular disk, an annular ring channel extending circumferentially partway through the angularly adjustable ring and disposed between the crankcase chamber and the passage, and a ring port in the adjustable ring that is rotatably open to the radially inwardly extending annular slot through the radially outwardly facing radial inlet.
Another embodiment of the engine includes the circumferentially extending annular rectangular cross-sectional slot axially adjacent to the L-shaped pathway, both of which extend axially at least partially through the periphery of the circular disk. Axially adjacent first and second angularly adjustable rings concentrically surrounding the circular disk and first and second annular ring channels extending circumferentially partway through the first and second angularly adjustable rings, respectively. The first annular ring channel is disposed between the crankcase chamber and the one gaseous communication passage and the second annular ring channel is disposed between the crankcase chamber and a second gaseous communication passage. The first and second annular ring channels include first and second ring ports, respectively, with the first ring port being rotatably open to the radially inwardly extending annular slot through the radially outwardly facing radial inlet in the periphery and the second ring port being rotatably open to the annular rectangular cross-sectional slot.
A more particular embodiment of the two stroke internal combustion engine includes a carburetor including first and second barrels in gaseous flow communication with a charge injection port and a main inlet port, respectively. The charge injection port and the main inlet port lead into a combustion chamber of a cylinder bore of the engine. A first flow passage extends between the first barrel and the charge injection port. An injection passage extends between the first flow passage and the crankcase chamber. At least one rotary shut-off valve located in a radially outermost section of the circular disk bordered by a periphery of the circular disk is operatively disposed between the injection passage and the crankcase chamber for opening and closing gaseous communication between the injection passage and the crankcase chamber. At least one transfer passage connects in gaseous communication the crankcase chamber and the combustion chamber in the cylinder bore of the engine.
Another more particular embodiment of the two stroke internal combustion engine includes a cylinder block housing a cylinder bore and a piston disposed within the cylinder bore connected by means of a connecting rod to a crank throw on a circular crank web of a crankshaft. The crankshaft is journaled for rotation about a crankshaft axis within a crankcase chamber of a crankcase affixed to a lower end of the cylinder block. A combustion chamber is defined within the cylinder bore above the piston and at least one transfer passage connects in gaseous communication to the crankcase chamber and the combustion chamber in the cylinder bore of the engine. First and second piston ports are disposed in a skirt of the piston and connected in gaseous communication by an air channel. The first piston port is translatably alignable with an air inlet port disposed through the cylinder block to the cylinder bore. The second piston port is translatably alignable with a transfer port leading to the transfer passage. A rotatable circular disk is rotatably connected to a crankshaft of the engine and at least one rotary shut-off valve located in a radially outermost section of the circular disk bordered by a periphery of the circular disk and operatively disposed between the transfer passage and the crankcase chamber for opening and closing gaseous communication between the transfer passage and the crankcase chamber.
The foregoing aspects and other features of the invention are explained in the following description, taken in connection with the accompanying drawings where:
Illustrated in
A rich fuel/air mixture is inducted into the combustion chamber 30 of the cylinder bore 14 by a charge induction system 32 which includes a carburetor 34, a one-way non-return valve 36, an injection tube 38, and a charge injection port 40 extending through the cylinder block 12 into the cylinder bore 14 to point below the combustion chamber 30. The injection tube 38 provides an injection passage 39 for gaseous communication between the combustion chamber 30 and the crankcase chamber 26. The charge injection port 40 is used for injection of the rich charge contained in the injection tube 38 which occurs only during an injection portion of a scavenging process that is during the descending of piston or early compression process. An injection insert 303 having a curved passage is disposed between the injection passage 39 and the charge injection port 40. The curved passage is aimed upward into the combustion chamber 30 to direct the charge toward the top of the combustion chamber away from the exhaust port 50 thus keeping the flow of charge closer to the cylinder wall 14 opposite to the exhaust port 50. The injector insert may be made of two pieces for ease of manufacturing.
The injection passage 39 leads to and is in fluid communication with a crankcase port 41 in the crankcase 28 which is open to a rotary shut-off valve 48. The timing of the induction of the fuel/air mixture and injection of fuel is controlled by the rotary shut-off valve 48 mounted on the circular disk which, in this embodiment, is a crank web 21 that is rotatably connected to the crankshaft 22. Circumferentially extending first and second axial gas pathways, illustrated as rectangular cross-sectional annular slots 44 and 45, extend axially at least partially through a radially outermost section 52 of the circular disk or crank web 21 bordered by a periphery 43 of the circular disk or crank web 21 and are alignable with a crankcase port 41 open to the passage or injection tube 38.
The annular slots 44 and 45 of the engine 10 engine illustrated in
The start of injection occurs when the crankcase port 41 is opened by the slots 44 and 45 in the crank web 21. Induction of rich charge into the injection tube 38 occurs during ascending of piston when the crankcase port 41 is opened again by the slot 44 in the crank web. The rich charge is regulated by a barrel regulating valve 81 in a first barrel 300 of the carburetor 34 illustrated in
A main inlet port 84 in the cylinder block 12 through to the cylinder bore 14 allows a lean charge to flow directly into the crankcase chamber 26 below the charge injection port 40. The lean charge flow flows though and is controlled by a lean charge barrel regulating valve 79 in a second barrel 310 of the carburetor 34, as illustrated in
The first and second slots 44 and 45 are cut through the crank web 21 though other types of disks attached to the crankshaft 22 may be used. The first and second slots 44 and 45 are cut-away sections of the crank web 21. The first and second slots 44 and 45 open and close fluid communication between the injection tube 38 and the crankcase chamber 26 as the crank web 21 rotates with the crankshaft 22, thus, providing the valving function of the rotary shut-off valve 48. Opening and closing each of the first and second slots 44 and 45 between the injection tube 38 and the crankcase chamber 26 induces a fuel/air mixture charge through one of the slots into the injection passage 39 on one cycle of the engine, or a first half rotation of the crank web 21. The fuel/air mixture is discharged through the injection tube 38 into the combustion chamber 30 during the next cycle of the engine 10.
Timing of the opening and closing of the slots 44 and 45 and, thus, the rotary shut-off valve 48 is asymmetric. By not having the second slot 45, the injection tube 38 will be closed by the crank web at the crankcase end of the injection tube 38. In that case, the injection of charge is achieved by the compressed air assisted injection principle as described in U.S. Pat. No. 6,273,037. However, the advantage with this embodiment is that the crank web offers unsymmetrical timing for start and end of charge induction into the injection tube 38.
The engine's operation is illustrated in
Referring back to
After or during closing of the charge induction, the main intake system is carried out in a usual manner and is regulated by a butterfly valve 80 illustrated in
Rotary intake type may also be used. As the piston moves downwardly during the expansion stroke, the crankcase pressure rises, during which time the crankcase port 41 is closed as illustrated in
A three-way scavenging system illustrated in
The annular channel 58 is in fluid communication with the injection passage 39 through a ring port 60 in the ring 56 leading to one end of the annular channel 58. The annular channel 58 is designed to hold a fraction of the total volume of charge or volume of the injection tube 38 and, thus, operates as an extension of the injection passage 39 leading from the charge injection port 40 to the crankcase port 41 in the crankcase 28. A segment of a ring may be used instead of a full ring. The ring is a stationary angularly adjustable component, meaning that it does not rotate with the crankshaft but can be angularly adjusted or rotated in order that it can be phase shifted with respect to the crankshaft. The ring can be in a fixed position to provide a fixed volume and fixed asymmetric timing. The ring can be adjacent to the crank web outside the crankcase as illustrated in
Referring to
In operation, as the piston 16 moves upward, the first injection port 40 is closed by the piston (which also closes exhaust and transfer ports 50 and 33), and the pressure in the crankcase 28 drops. At an appropriate time, the ring port 60 is opened by the crank web 21 by aligning one of the slots 44 with the ring port, thus, allowing the fuel/air charge to flow into the injection passage 39 through the carburetor 34. The charge continues to fill the injection passage 39 and the channel 58 in the ring until the crank web 21 closes the ring port 60. The timing of the opening of the ring port and the total volume of the injection passage 39 are fixed for a given angular position of the ring 56. The main intake occurs in a usual manner through an air lean charge regulating butterfly valve 80 into the crankcase. A reed valve 82 type inlet with the regulating butterfly valve 80 is illustrated in FIG. 4. Alternatively, the main air/lean charge intake may occur in a usual manner through an air/lean charge butterfly type regulating valve 80 into the crankcase through a piston controlled main inlet port 84 of a piston port type inlet engine as illustrated in
As the piston 16 moves down during the expansion process, the crankcase pressure rises compressing the crankcase charge. Depending on the ring port 60 timing, the charge may or may not be subject to this crankcase compression. The piston 16 opens the exhaust port 50 causing blow down. The transfer ports 33 are open after a few crank degrees later, leading to scavenging process. The ring port 60 is later opened by the crank web 21 injecting the rich charge into the combustion chamber 30 through charge injection port 40. Thus, with the appropriate angle of one of the slots on the crank web 21, the start of injection can be optimized and continuously be varied by rotating the ring 56.
Referring to in
It is also possible with the crank web timing system to have a delayed charge injection, where the injection of charge may be started when the piston begins to move upward after BDC. This is accomplished by closing the scavenging and injection a few degrees before the piston reached BDC during the expansion cycle. Thus, a crankcase pressure may be built for later utilization for injection through the charge injection port 40. Thus, only air/lean mixture is injected into the combustion chamber 30 during early part of the scavenging process. The rich charge injected later is most likely to be trapped. Therefore, it is the air/lean charge that gets short-circuited and this lowers the HC emission and improves trapping of fuel.
By rotating the timing ring 56, the timing of the ring port 60 can be advanced or retarded. The ring port timing affects the charge induction and injection timing which also affects the charge volume. For example, at higher speeds the timing can be advanced while the charge volume is increased. The volume can be made to decrease which depends on the angular location of the ring port 60 with respect to direction of crankshaft rotation.
A CWI with a fixed length tube may have optimum performance in narrow ranges of speed and loads. The variable length compressed wave injection tube engine illustrated in
Illustrated in
A two stroke engine 10 illustrated in
In some conventional engine designs, each transfer duct is provided with a cut-off valve (typically a reed valve) at its junction with the crankcase, the transfer passage having a length selected for best pressure wave effect to fulfill the requirements. In the present invention, the timing may be controlled by the crank web, in which the timing is variable and the transfer passage length also can be varied to optimize the performance at wider ranges of speeds. The added advantage is that the exhaust port lead is very much reduced in comparison with that normally employed. Consequently, when exhaust port opens a high pressure plug of exhaust gas enters the transfer port. By this time, however, the crankcase port at the other end of the duct is closed and the gas in the duct is thus compressed under a positive pressure. The explosion end pressure (cylinder pressure) is dropping all the time as exhaust port opens and, concurrently with this, a reverse low pressure wave is initiated in the transfer duct, following the original positive wave. This not only evacuates the plug of exhaust gas from the transfer duct to follow the residuals out of the exhaust port but, by causing a depression at the lower end of the duct, it assists the flow from crankcase to cylinder through the crankcase port which is now open.
The variable ring 56 in the scavenging system can reduce exhaust port lead which increases effective expansion ratio of the engine. It can reduce the probability of exhaust gas entering the crankcase in any circumstances and regardless of the pressure value at any particular instant. It can improve scavenge pressure resulting from the reverse wave action in the transfer duct and the fact that because the crank port can be closed as soon as the crankcase content is discharged. The variable ring scavenging system can reduce any tendency for a reversal of flow in the transfer duct when the piston is rising after BDC. The effective length of the duct can be varied for effective pressure wave effect at all the speeds. When the piston is rising after BDC, the effective crankcase volume is lower in the variable ring scavenging system than in a conventional system because the transfer duct volume is removed from the total volume which helps breathing characteristics.
In some conventional engines disclosed in U.S. Pat. No. 6,491,006, the blow down of exhaust into the transfer duct is intentional. This is believed to delay the discharge of fresh charge into the cylinder and hence lower the scavenging loss of charge. The variable ring scavenging system provides a variable length transfer duct and adjustable ring port timing which enhance the benefits of blow down of exhaust into transfer duct. Blow down into long transfer ducts are used as a means of delaying the discharge of fresh charge into the cylinder and the exhaust blown down into the transfer duct also acts as a buffer medium. The rotatable ring provides a means for changing the duct length and, thus, the buffer medium volume. The ring port is open to crankcase and is not timed by the crank web for start of the scavenging process.
The engine 10 illustrated in
As the piston moves upward, the drop in pressure in the crankshaft chamber 26 causes the ambient air to flow into the transfer passage 11 through an air passage 88 and reed valve 89 as illustrated in FIG. 31. The quantity of air is regulated by an air control barrel valve 94. And air control valve 94 is linked to an air/fuel mixture regulating valve 80. The ring port 60 and the crank web 21 mounted rotary shut-off valve 48 control the timing of flow of air. The variable ring 56 position alters the total transfer passage volume and timing. Thus, the trapped air in the transfer passage is more controllable in this design. Using the rotatable variable ring 56 and the crank web 21 controlled scavenging system, the start of injection of air ahead of fresh charge can be varied. Thus, the air entering the cylinder bore 14 ahead of the charge acts as a buffer medium between the burnt gas and the fresh charge. It is the air that is likely to be short-circuited that minimizes the loss of fuel and hence lowers the unburned hydrocarbon emission.
A conventional single barrel carburetor such as a single butterfly valve type carburetor may be used to operate the air head scavenged engine. This is accomplished because the volume of air trapped in the transfer passage 11 is constant at all speeds and may be used to lower the hydrocarbon emission even at idle. Thus, only the main charge going into the crankcase chamber may be regulated for load and speed control while full air is supplied into the transfer passage without having to dilute the crankcase chamber charge with the air. The excess air is shut-off from getting into the crankcase during the idling and wide open throttle. During the scavenging process, the start of injection of air into the combustion chamber 30 may be delayed by the crank web. An air filter may be provided right at the air reed valve 89 and, thus, eliminating the need for any air pipe or passage 88. This means the air is supplied to top of transfer passage during intake process at all operating conditions, and there is no need for the regulating air control barrel valve 94 illustrated in
There can be more than two transfer passages in the engine. In U.S. Pat. No. 6,491,004, for example, the engine has two pairs of transfer passages. One transfer passage of the first pair in on each side of the exhaust port and is used for air head scavenging as described above and the second pair is located for use as in a conventional engine. The rotary shut-off valve 48, as described above, may be used as shut-off valve either for both the pair of transfer passages or for just one pair of transfer passages that handle air. When two pairs of transfer passages are used, the disk valve may delay one pair of transfer passage opening into crankcase to delay discharge of charge into the combustion chamber 30 while providing the other pair that handle air with advanced passage opening timing for air head scavenging. For example, this embodiment would add a rotary shut-off valve to the lower end of transfer passages in the engine disclosed in U.S. Pat. Nos. 6,289,856, 6,112,708, 6,240,886, and 5,425,346.
The engines disclosed in U.S. Pat. Nos. 6,289,856, 5,425,346, and 5,379,732 are examples of engines having air head scavenging controlled by piston ports and channels in piston skirts. The lower ends of the transfer passages are constantly open into the crankcase chamber, thus, making it possible for air to flow into the crankcase chamber during wide open or full throttle running condition. At idle, the air flow into the transfer passages is either completely shut-off or partial. In such engines, as the piston travels downward the crankcase pressure builds up which may lead to reverse flow of air back into the ambient.
The pressure difference between the crankcase chamber 26 and ambient allows the air to flow into the transfer passage 11 through air control barrel valve 94, air inlet port 98, air channel 96, and the second piston port 101, transfer port 33 on the cylinder bore 14 and into the transfer passage 11 until such time the piston closes the air inlet port 98 in the cylinder bore 14. Just about the same time, the crank web 21 closes the lower end 100 of the transfer passage 11 at the crankcase port 41. This cuts off the gaseous flow communication between the crankcase and the transfer passage.
In a piston ported induction system, as illustrated in
At a certain position, the piston will again uncover the air inlet port. At this time, a rise in crankcase pressure may cause the charge to flow into the transfer passage and, thus, force the air and charge to flow out back through the air channel 96 into the atmosphere. However, since the crank web can have asymmetrical timing, the web keeps the lower end of transfer passage closed at the crankcase port 41. Thus, the loss of air or charge is prevented by using a web as a shut-off valve in a controlled transfer passage system, which is novel as described here. The crank web opens the transfer passage 11 for regular scavenging just before the piston 16 opens the transfer port 33. During the scavenging process, it is the air that enters the combustion chamber first and is most likely to be short-circuited into the exhaust port. Thus, air acts as a buffer medium between the burnt gas and the fresh charge, which minimizes the emission and improves fuel economy. The design of the crank web controlling the transfer passage for improved sealing between the crankcase chamber 26 and the transfer passage (and ambient), particularly as the piston descends, may be used with any of the piston channel systems described in the U.S. Pat. Nos. 6,289,856 and 5,425,346.
In a scavenging process similar to that of the air head scavenging system explained above, the exhaust gas can be used as a buffer medium during an early part of the scavenging process. The exhaust gas is brought in to the top of the transfer passage 11 through piston channels in the piston as described in U.S. Pat. No. 5,425,341. In U.S. Pat. No. 5,425,341, the piston channels are inside the piston. Piston channels 97 outside the piston 16 are illustrated in
A multiple ring scavenging system, illustrated in
The first and second angularly adjustable rings 109 and 110 are disposed between the crankcase chamber 26 and the injection passages 39 and between the crankcase chamber 26 and the transfer passage 11 respectively. The first annular ring channel 180 is rotatably alignable with the lower end 37 of the charge passage 39. The second annular ring channel 182 is rotatably alignable with the lower end 100 of the transfer passage 11. The first ring port 188 in the angularly adjustable ring 109 is rotatably open to the third and fourth radially inwardly extending annular slots 158 and 160 through the radially outwardly facing third and fourth radial inlets 170 and 172 respectively in the periphery 43. The second ring port 186 in the angularly adjustable ring 110 is rotatably open to the first and second annular slots 144 and 145. The first annular ring channel 180 controls transfer passage volume and timing, while the second annular ring channel 182 controls charge induction volume and timing through the injection passage 39.
One embodiment of the crank web 21 is a step type where a larger diameter disk section controls the transfer port timing either of fixed or variable timing type illustrated in FIG. 44. The main intake system is a rotary valve type with variable inlet timing, as illustrated in FIG. 44. Angularly adjustable rings to control intake and charge induction could be mounted concentrically to the web and adjacent to each other. The main intake system illustrated in
Illustrated in
A rich fuel/air mixture is inducted into the combustion chamber 30 of the cylinder bore 14 by a charge induction system which includes a three-way carburetor 132, an air filter 95, a one-way non-return valve 36, a tube 38, and a charge injection port 40 to the cylinder bore 14 in the cylinder block 12. The tube 38 provides a passage 39 for gaseous communication between the combustion chamber 30 and the crankcase chamber 26. The passage 39 leads to and is in fluid communication with a crankcase charge port 46 in the crankcase 28 which is controlled by and open to a first rotary shut-off valve 148. The timing of the induction of the rich fuel/air mixture and injection of fuel is controlled by the first rotary shut-off valve 148 mounted on a disk which, in this embodiment, is the second crank web 142 that is rotatably connected to the crankshaft 22.
The first rotary shut-off valve 148 includes circumferentially extending first and second gaseous pathways illustrated as slots 44 and 45 formed in the second crank web 142. The slots 44 and 45 are alignable with the crankcase charge port 46 open to the injection passage 39. The second crank web 142 closes off the crankcase charge port 46 and the injection passage 39 in the injection tube 38 until the crankcase charge port 46 is circumferentially aligned with the first or second slots 44 and 45, thus, allowing gaseous communication between the crankcase chamber 26 and the passage 39.
The first and second slots 44 and 45 are cut in the second crank web 142, though other types of disks attached to the crankshaft 22 may be used. The first and second slots 44 and 45 are cut-away sections of the second crank web 142. The first and second slots 44 and 45 open fluid communication between the tube 38 and the crankcase chamber 26 as the second crank web 142 rotates with the crankshaft 22. The first rotary valve 148 formed in the second crank web opens and closes off the crankcase charge port 46, thus, providing the valving function of the first rotary shut-off valve 148 as the second crank web 142 rotates with the crankshaft 22.
Opening and closing each of the first and second slots 44 and 45 between the tube 38 and the crankcase chamber 26 induces a fuel/air mixture charge into the passage 39 during fraction of one cycle of the engine, or a fraction of a first half rotation of the second crank web 142, and a discharge of the fuel/air mixture through the tube 38 into the combustion chamber 30 during the next cycle of the engine 20. Timing of the opening and closing of the slots 44 and 45 by the first rotary shut-off valve 148 is asymmetric.
In a variation to the opening of the crankcase charge port 46 by the slot 45 for injection of charge in the charge passage into combustion chamber 30, the crankcase charge port 46 may be kept closed by the first rotary valve 148 for the blow down pressure into the passage 39 to reflect off of the first rotary valve 148 to perform like a compressed air assisted wave injection engine such as the one disclosed in U.S. Pat. No. 6,273,037.
Transfer passages 11 provide fluid communication between the combustion chamber 30 at the transfer ports 33 and crankcase chamber 26 at crankcase transfer ports. The crankcase transfer ports are controlled by second rotary shut-off valves 149 on the first and second crank webs 121 and 142. Each of the second rotary shut-off valves 149 includes first and second tabs 190 and 191 on each of the first and second crank webs 121 and 142. The first and second tabs 190 and 191 are alignable with crankcase transfer ports 111.
During the first half rotation of the crankshaft, when the piston is ascending, the crankcase transfer ports 111 are opened by the second rotary shut-off valves 149 and the crankcase is in fluid communication with the ambient air. As the crankcase pressure is lower than the ambient, air fills the transfer passage 11. The air flow is supplied to the transfer passages 11 through one-way reed valves 89 at the end of air passages 88 as illustrated in FIG. 52. The air flow is supplied to the transfer passages 11 by an air intake system including an air control valve 94 of a three-way carburetor 132 leading to air passages 88 illustrated in FIG. 51. The air control valve 94 controls only the air, a fuel/air mixture valve 81 is used for controlling fuel/air mixture, and the two valves are linked to each other.
At an appropriate time, the engine ports 111 are closed by the first tabs 191 to prevent the flow of air into the crankcase. Closing off of the transfer passages 11 from the crankshaft chamber 26 lowers the effective crankshaft chamber volume for further induction of lean charge during ascending of the piston 16. This allows the lean charge to flow into the crankshaft chamber 26 from the carburetor 132 through the lean passage 107 and through the main inlet port 84. As the piston 16 descends, the crankshaft chamber 26 pressure is increased. While air is retained in the transfer passages 11, the rich charge is retained in the passage 39. During a fraction of the ascending stroke and during the fraction of the descending stroke, the air is trapped between the transfer ports 33 and the engine ports 111.
The transfer ports 33 are shut-off by the piston and the engine ports 111 are shut-off by the first and second tabs 190 and 191 of the second rotary shut-off valves 149. Similarly, the rich charge in the tube 38 is trapped between the injection port 40 and the crankcase port 46. The piston shuts off the injection port 40 in the cylinder and the first rotary shut-off valve 148 cuts off the crankcase port 46. Control of engine ports 111 for the transfer passages 11 and control of the crankcase port 46 allows the engine to have unsymmetrical induction and injection timing for both the charge and air to achieve stratified scavenging and charging. During the scavenging process, the engine ports 111 are opened first to allow the air to lead the lean charge into the combustion chamber 30 and allow the air to act as a buffer medium between the fresh charge and the burnt gas. Rich charge injected later through the charge injection port 40 is timed by the first rotary shut-off valve 148 for low emission.
Piston channel controlled air head system may also be used for induction of air into transfer passages as illustrated in
An example of port timings for a piston ported two stroke engine is illustrated in the chart below. The timings can be optimized depending on intake system, application, and engine size.
The three-way carburetor 132 is illustrated in more detail in
Fuel is mixed with the air in the rich and lean charge venturi passages 405 and 406. As air passes through the rich and lean charge venturi passages 405 and 406, the pressures in the venturi passages drop. The differential pressure between a fuel metering chamber 412 and the rich and lean charge venturi passages 405 and 506 causes the fuel to be discharged into air streams in the venturi passages through respective lean and rich jets 410 and 411.
A pulse line 426 is in communication with the crankcase chamber 26 and the pulse chamber 427. Positive and negative pressures in the crankcase chamber 26 causes the pump diaphragm 418 to pulsate drawing fuel from the fuel tank 421 through the fuel supply line 420 and the second flapper valve 419 into the pump chamber 417. As crankcase chamber pressure rises, the pulse chamber 427 exerts pressure on the pump diaphragm 418 which causes the fuel in the pump chamber 417 to flow into the metering chamber 412 through the first flapper valve 416 and first fuel line 415. The diaphragm needle valve assembly 413 controls the flow of fuel into the metering chamber. The metering diaphragm 414 activates the needle valve assembly 413. As the fuel flows into the venturi passages the pressure drops in the metering chamber which causes the needle valve to allow the fuel to flow from the pump chamber.
The fuel jet assembly 409 consists of a combination of lean jet 410 and a rich jet 411.
The rotation of barrel valve body 479 causes a throttle cam 408 to ride on a cam pin 425 which causes the barrel 403 to rise. The main needle 407 attached to the barrel 403 also rises which increases the fuel flow area in the V shaped slot 430. The flow of fuel increases in proportion to the flow of air through the rich charge venturi passage 405. As the throttle is opened more and more, a larger fraction of the total fuel (fuel through lean jet 410 plus fuel through rich jet 411) flows through the rich jet 411. As a result the ratio of fuel through rich jet to the fuel through lean jet depends on the throttle position. It may therefore be fair to assume that the richness of air-fuel ratio flowing through the lean venturi passage directly into the crankcase chamber 26 decreases with increase in throttle opening. Thus a rich charge is supplied to the crankcase chamber during idle and part throttle and a very lean charge during 30% and higher speed and load conditions. This helps to lower the emissions, particularly at wide open throttle condition and helps a stable idle running and fast throttle response.
The carburetor also includes a primer bulb 423 which has one way valves built into it. It is a manual pump used to prime the metering chamber to remove the air or fuel vapor trapped in the metering chamber. As the prime bulb is depressed manually, the fuel is pumped back into the fuel tank 421 through the return line 424. As the bulb is released the fuel (or air or vapor during initial period) is drawn into the bulb from the metering chamber. During this time, the diaphragm needle valve is lowered allowing the fuel to be drawn from the fuel tank through the flapper valves and pump chamber. The third flapper valve 428 at the entrance to the main jet 409 prevents the air from venturi passage to get into the metering chamber during priming.
The present invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. While there have been described herein, what are considered to be preferred and exemplary embodiments of the present invention, other modifications of the invention shall be apparent to those skilled in the art from the teachings herein and, it is, therefore, desired to be secured in the appended claims all such modifications as fall within the true spirit and scope of the invention.
Accordingly, what is desired to be secured by Letters Patent of the United States is the invention as defined and differentiated in the following claims:
This application claims the benefit of U.S. Provisional Application No. 60/400,916, filed on Aug. 3, 2002 and Provisional Application No. 60/400,968, filed on Aug. 3, 2002.
Number | Name | Date | Kind |
---|---|---|---|
666264 | Denison | Jan 1901 | A |
4253433 | Blair | Mar 1981 | A |
5379732 | Mavinahally et al. | Jan 1995 | A |
5425341 | Connolly et al. | Jun 1995 | A |
5425346 | Mavinahally | Jun 1995 | A |
6101991 | Glover | Aug 2000 | A |
6112708 | Sawada et al. | Sep 2000 | A |
6240886 | Noguchi | Jun 2001 | B1 |
6273037 | Cobb, Jr. | Aug 2001 | B1 |
6289856 | Noguchi | Sep 2001 | B1 |
6293235 | Cobb, Jr. | Sep 2001 | B1 |
6408805 | Uenoyama et al. | Jun 2002 | B2 |
6491004 | Rosskamp et al. | Dec 2002 | B2 |
6491006 | Jonsson et al. | Dec 2002 | B2 |
6513466 | Bignion et al. | Feb 2003 | B2 |
Number | Date | Country |
---|---|---|
WO 9212332 | Jul 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20040040522 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60400916 | Aug 2002 | US | |
60400968 | Aug 2002 | US |