The present disclosure is directed generally to two-stroke, fuel injected internal combustion engines for unmanned aircraft and associated systems and methods.
Unmanned aircraft or air vehicles (UAVs) provide enhanced and economical access to areas where manned flight operations are unacceptably costly and/or dangerous. For example, unmanned aircraft outfitted with remotely operated movable cameras can perform a wide variety of surveillance missions, including spotting schools of fish for the fisheries industry, monitoring weather conditions, providing border patrols for national governments, and providing military surveillance before, during, and/or after military operations.
Many unmanned aircraft are powered by two-stroke internal combustion engines. Such engines are also widely utilized in small handheld devices or tools (e.g., chain saws, leaf blowers, weed trimmers; etc.) and a variety of different types of vehicles (e.g., jet skis, snowmobiles, motorcycles, etc.). One feature of a typical two-stroke engine is that the engine fires once every revolution. This gives two-stroke engines a significant power boost as compared to four-stroke engines that fire once every other revolution, and gives two-stroke engines an improved power-to-weight ratio as compared to many four-stroke engines. Another feature of two-stroke engines is that the engines can work in any orientation. This feature can be important, for example, in unmanned aircraft that operate in a variety of different operating conditions and orientations. In contrast, a standard four-stroke engine may have problems with oil flow unless it is generally upright during operation. Moreover, solving this problem in four-stroke engines can add complexity and additional weight to the engines. Yet another feature of two-stroke engines is that such engines generally have a simplified construction with fewer components and, accordingly, less weight than many four-stroke engine configurations with similar power output.
Fuel injection systems are becoming widely utilized in two-stroke engines to increase fuel economy and engine performance. Fuel injection systems, for example, can provide an operator with precise control over the air and fuel mixture in two-stroke engines and significantly improve the performance of such engines, while allowing the engines to meet increasingly stringent emission standards. One drawback associated with fuel injection systems, however, is the added cost and complexity associated with implementation of such systems in two-stroke engines. Furthermore, fuel injections systems typically require a significant amount of electrical power for operation. Accordingly, while operating unmanned aircraft with fuel injected two-stroke engines provides a number of advantages associated with improved fuel economy, performance, and reduced emissions, there is a continual need to improve the effectiveness and efficiency of such engines.
The present disclosure describes two-stroke, fuel injected internal combustion engines for unmanned aircraft and associated systems and methods. Many specific details of certain embodiments of the disclosure are set forth in the following description and in
The aircraft 100 also includes a propeller 104 operably coupled to the engine 120. The propeller 104 is positioned at the aft end of the fuselage 101 to propel the aircraft 100 during flight. In other embodiments, the propeller 104 and/or the engine 120 may have a different arrangement on the aircraft 100 and/or relative to each other. The aircraft 100 may also include a number of other mechanisms, assemblies, or systems operably coupled to the engine 120.
As described in detail below, embodiments of the engine 120 can include, for example, (a) an electronic fuel injection system configured to provide a desired low fuel rate by injecting fuel every nth compression cycle rather than every cycle (so-called “skip-cycle” operation), (b) one or more pressure sensors configured to measure fluctuations in peak crankcase pressure and use such fluctuations to control fuel injection delivery, and (c) a multi-cylinder configuration having a common crankcase with a fuel injection arrangement configured to mitigate or eliminate problems with mixed redistribution. Compared with conventional two-stroke engines, embodiments of the engine 120 are expected to provide improved engine and aircraft performance, better fuel economy, lower manufacturing costs, and greater overall efficiency in operation. It will be appreciated that an engine configured in accordance with this disclosure may include only one of the foregoing features, or may include two or more of the features in combination. Further details regarding the engine 120 and associated systems and methods are described below with reference to
The engine 120 includes a cylinder block 122 having a cylinder bore 124 formed therein. The engine 120 also includes a piston 126 slidably housed in the cylinder bore 124 and connected to a crankshaft 128 via a connecting rod 130. The piston 126 is configured to reciprocably move relative to the cylinder bore 124 as the crankshaft 128 rotates within a crankcase 132. The piston 126 and the cylinder bore 124 together define a variable volume combustion chamber 134. A transfer or scavenge passage 142 extends through the cylinder block 122 between the crankcase 132 and the combustion chamber 134. More specifically, the transfer passage 142 has a first end 144 in communication with the crankcase 132 and a second end or transfer port 146 positioned to be opened and, closed relative to the combustion chamber 134 as the piston 126 slidably moves within the cylinder bore 124 between a top dead center position (see
The engine 120 also includes an air induction system comprising an air intake track or passage 136 having an inlet portion 138 in fluid communication with crankcase 132. One or more check valves 140 (e.g., reed type or rotary check valves) are positioned at the inlet portion 138 of the air intake passage 136 and configured to prevent undesirable reverse flow. An exhaust system comprising an exhaust passage 148 is in communication with the combustion chamber 124 and configured to exhaust gases to the atmosphere. The engine 120 also includes one or more ignition sources (e.g., spark plugs) 149 carried by a cylinder head and configured to fire a charge in the combustion chamber 134.
The engine 120 further includes a fuel injector 150 configured to supply fuel to the crankcase 132. In one embodiment, the fuel injector 150 can be configured for indirect injection of the fuel and a solenoid valve (not shown) can be used to help control the flow rate of fuel from the intake track into the crankcase 132. In other embodiments, however, the fuel injector 150 can be configured to directly inject fuel into the crankcase 132. In still other embodiments, the fuel injector 150 can have a different arrangement.
A fuel injection system controller 152 is operably coupled to the fuel injector 150 and configured to control operation of the fuel injector 150. The controller 152, for example, can be configured to receive information from the aircraft 100 (
Without being bound by theory, the present inventors have discovered that introducing fuel into the engine 120 every nth cycle results in significant fuel savings without any appreciable loss in the fuel to air equivalence ratio or engine power.
Referring back to
Still another feature of the engine 120 is that the skip-cycle techniques described herein are expected to significantly reduce electrical consumption for the aircraft 100 (
Referring first to
In the arrangement shown in
Data from the pressure sensor 280 is processed and sent to the fuel injection system controller 152. The controller 152 is configured to use the peak pressure data in conjunction with a fuel map, lookup table, or other suitable data analysis technique to control fuel delivery to the engine 220. More specifically, the controller 152 is configured to determine load based on data from the pressure sensor 280 and control one or more parameter of the injection event or pulse based on this data.
Many conventional four-stroke engines sense vacuum or “valley pressure” in the air intake track or passage of the engine to control and/or adjust the fuel injection system for the engine. One challenge in many conventional two-stroke engines, however, is that there is very little pressure fluctuation in the intake track (e.g., the air intake track 136). The present inventors have discovered, however, that by sensing the peak positive pressure in the crankcase 132 with the pressure sensor 280, the engine 220 can have the same type of control as many four-stroke engines because, as discussed above, the peak pressure in the engine 220 varies and changes slightly with differing loads at different RPMs.
One feature of the two-stroke engine 220 is that the engine 220 can utilize speed density control mode. As is known to those of ordinary skill in the art, speed density mode comprises monitoring a number of engine operating parameters (e.g., engine RPM, intake manifold pressure (or vacuum), intake charge air temperature, etc.). Based on these real-time inputs and predetermined operating parameter values, an electronic engine control (ECC) module (not shown) calculates the volume of air coming into the engine 220 at any given time. The ECC then calculates the appropriate amount of fuel needed to operate the engine 220 at the air/fuel ratio specified in a target air/fuel ratio table or map. Speed density mode is expected to provide the engine 220 with a high degree of tunability for different engine loads, weather conditions, altitudes, etc. because all of these calculations happen in real time during operation.
Another feature of the engine 220 is that using peak pressure to control fuel delivery via the fuel injection system provides a means of either primary control or secondary, backup control of the fuel injection system 150 in the event of one or more sensor failures. For example, the pressure sensor 280 configured to measure the peak pressure in the crankcase 132 can provide a backup for the current sensors (e.g., piston position sensors, throttle position sensors, Hall Effect sensors, etc.). Still another feature of the engine 220 is that measuring the peak positive pressure with the pressure sensor 280 can function as a built-in diagnostic and/or engine health monitoring system. Any significant fluctuations in the measured pressure that are outside of a predetermined limit may provide advanced warning of other problems with the engine 220. The engine 220 can be configured to provide a notice or indication to an operator when any measured pressures are outside of a predetermined operational envelope.
Yet another feature of the engine 220 is that the peak crankcase pressure may be used as a fall-back fuel metering scheme in the event the throttle position sensor fails. In one embodiment, for example, the throttle servo pulse width may be used to infer the throttle position in the event the throttle position sensor fails. More specifically, in an aircraft in which the engine 220 is installed (e.g., the aircraft 100 of
The first piston 326a and the first cylinder 324a together define a first variable volume combustion chamber 334a, and the second piston 326b and the second cylinder 324b together define a second variable volume combustion chamber 334b. A first transfer or scavenge passage 342a extends through the cylinder block 322 between the crankcase 332 and the first combustion chamber 334a, and a second transfer or scavenge passage 342b extends through the cylinder block 322 between the crankcase 332 and the second combustion chamber 334b. The first transfer passage 342a includes a first transfer or boost port 346a, and the second transfer passage 342b includes a second transfer or boost port 346b. The first and second transfer ports 346a and 346b are positioned to be opened and closed as the corresponding first and second pistons 326a and 326b reciprocably move within the engine 320. More specifically, the first and second transfer ports 346a and 346b each include a first end in communication with the crankcase 332 and a second end spaced apart from the first end and positioned to be opened and closed relative to the corresponding combustion chamber as the first and second pistons 326a and 326b slidably move within the respect cylinders.
The engine 320 includes an air induction system comprising an air intake track or passage 336 having an inlet portion 338 in fluid communication with crankcase 332. One or more reed type or rotary check valves 340 are positioned at the inlet portion 338 of the air intake passage 336. Exhaust passages 348 are in communication with the first and second combustion chambers 324a and 324b and configured to exhaust gases to the atmosphere. The engine 320 also includes one or more ignition sources (e.g., spark plugs) 349 configured to fire a charge in the first and second combustion chambers 334a and 334b.
In many conventional multi-cylinder engines that share a common crankcase, fuel is injected directly into the crankcase. One problem with this arrangement, however, is that the rotational movement of the crankshaft throws more fuel/air mixture toward one cylinder than the other. This unbalanced distribution causes the engine to operate inefficiently and can result in uneven or unbalanced power output from the engine. One feature of the engine 320, however, is that fuel is injected at or proximate to the transfer or boost ports 346a and 346b rather than into the crankcase 332. More specifically, the first and second pistons 326a and 326b each include one or more openings or apertures 360 extending through the skirt portions of each piston. The engine 320 includes fuel injectors 350 positioned at least proximate to the respective transfer ports 346a and 346b and configured to inject or supply fuel (as shown by arrows A) through the opening(s) 360 in the skirt portions of each piston 326a and 326b and into the respective combustion chambers 334a and 334b. In other embodiments, however, the skirt portions of each piston 326a and 326b may not have opening(s) 360. In these embodiments, the fuel injectors 350 may still be positioned to inject or supply fuel at or proximate to the transfer ports 346a and 346b of the engine 220 to the bottom of each piston 326a and 326b.
This arrangement is expected to significantly reduce or eliminate the problems associated with unbalanced distribution. For example, one advantage of this arrangement is that each combustion chamber 334a and 334b can receive the “ideal,” generally balanced fuel/air mixture during operation. Thus, the engine 320 can consistently provide the desired power output and operate more efficiently than conventional multi-cylinder engines. In other embodiments, the fuel injectors 350 can have a different arrangement and/or be positioned at a different point relative to the pistons 326a and 326b. In addition, although the engine 320 has two cylinders 324a and 324b, it will be appreciated that the engine 320 may have more than two cylinders.
One additional feature of the engine 320 is that the engine is expected to provide improved fuel evaporation performance as compared with conventional engines. For example, fuel (e.g., heavy fuel) injected into the engine 320 is injected or squirted onto the bottom of a hot piston, thus improving or enhancing evaporation of such fuel. Further, this arrangement is also expected to provide a cooling effect on the piston during operation.
In other embodiments, many of the arrangement/techniques described above could be used with a single cylinder engine. For example, the “under piston” injection described above with reference to
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications can be made without deviating from the spirit and scope of the disclosure. For example, the engines and associated components described above with reference to
Specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. For example, as noted previously, engines configured in accordance with this disclosure may include only one of the foregoing features described above with reference to
The present application is a continuation of International Patent Application No. PCT/US2011/023815, filed Feb. 4, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/302,034, filed Feb. 5, 2010, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61302034 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/023815 | Feb 2011 | US |
Child | 13565427 | US |