The present invention relates generally to indoor plumbing and gravity-operated flush toilets. More particularly, the present invention relates to flapper valves that are used in such toilets and to an improved flapper valve and assembly of the type that has a ballast built into it which is two-way adjustable relative to the flow of water into the ballast and to the flow of air from the ballast.
Conventional gravity-operated flush toilets have several basic components. The porcelain or china components include a bowl and a water tank mounted on top of a rear portion of the bowl. The bowl and tank can be separate pieces bolted together to form a two-piece toilet. Other gravity-operated flush toilets are made as a one-piece toilet in which the bowl and tank are made as one continuous integral piece of china.
More importantly, the plumbing components of a gravity-operated flush toilet include a fill valve in the tank which is connected to a water supply line, a flush valve surrounding a drain hole in the bottom of the tank that communicates with the bowl, and a flapper valve that normally closes and seals the flush valve or, more precisely, the main flush valve orifice.
Toilet flapper valves are typically formed as a single structure having a rim for sealing the main flush valve orifice with the flapper valve rim following flushing. The flapper valve is often formed of a soft elastomeric material and is hinged to allow the valve to be pivotally moved upwardly and away from the main flush valve orifice by means of a chain that is connected to the flush handle on the outside of the tank. Once the tank empties, the flapper valve then returns to a position where it seals the main flush valve orifice, the rim of soft elastomeric material forming a sealing area about that main flush valve orifice.
Such toilet flapper valves are also typically formed to include a ballast structure which is a dome-like or cone-shaped structure disposed within the rim of the flapper valve and which controls the buoyancy of the flapper valve. The buoyancy of a flapper valve is an important function because it determines how much or how little water is used to empty the water tank upon flushing, thus creating water conservancy issues. The buoyancy of the flapper valve is determined by how quickly air is allowed to escape from the ballast.
Therefore, one way that the buoyancy of the flapper valve ballast can be controlled is by controlling the rate at which air within the ballast can flow out of the ballast. This can be done by creating and/or adjusting the size of an aperture at a point within the flapper valve ballast. Another way that the buoyancy of the flapper valve ballast can be controlled is by controlling the rate at which water can flow back into the ballast.
In the experience of this inventor, flapper valves of current manufacture do not provide an easy-to-use and two-way adjustable flapper valve which combines both functionalities into a single structure.
Accordingly, a primary objective of the device of the present invention is to provide a new, useful and non-obvious improved toilet flapper valve that can be used to cover and seal the main flush valve orifice, which flapper valve comprises two-way adjustment capabilities. One adjustment allows the flapper valve to include a variably-adjustable air outlet capability. Another adjustment allows the flapper valve to include a variably-adjustable water inlet capability. Together, the two-way adjustment of the improved flapper valve improves performance of the toilet flush valve by allowing the user to use the two-way adjustment to separately control water flow into the ballast of the flapper valve and control air flow out of the ballast and to balance those two functionalities across a very wide range of 2 inch flushing toilets of current manufacture.
More specifically, it would be desirable to provide such an improved flapper valve that can be used and is adjustable for use with 2 inch flushing toilets ranging from 1.2 gallons per flush to 7.0 gallons per flush. It is another object to provide such a two-way adjustable flapper valve that is made of the same soft elastomeric material that is used in flapper valves of current manufacture. It is yet another object to provide such a flapper valve that utilizes an elastomeric portion comprised of real rubber material having chemical resistance capabilities whereby the flapper valve is still allowed to conform to the seating surface of the main flush valve orifice and separately-attachable elements for creating the two-way adjustment about the ballast structure.
In accordance with the aforementioned objectives of the present invention, there is provided an improved flapper valve having an elastomeric surrounding flapper valve top. A separate inverted dome-like structure, or cone, which is the ballast, is included for insertion into the flapper valve top. The improved flapper valve further includes a ring-like upper structure and a cap-like bottom structure. The ring-like upper “vent band” structure rotates about the cone relative to an air outlet aperture in the cone to control air flow from the cone. The bottom cap-like “adjuster” structure also rotates about the bottom of the cone to control water flow into the cone. Used together, the upper and bottom structures can minimize water consumption by the toilet. Further, the adjuster structure includes means for discretely changing settings with indicia to indicate to the user what the current setting is and means for maintaining that setting as may be desired or required. Additionally, the hinge portion of the flapper valve of the present invention allows stable pivoting while being easily removable and allowing easy attachment onto the flush valve peg hooks of conventional toilets.
The flapper valve of the present invention is believed, by this inventor, to have the widest range in “gallons per flush” (or “gpf”) capacity. More specifically, the flapper valve of the present invention is adjustable from 1.2 to 7.0 gpf which means that it would work on 1.28, 1.6, 3.0, 3.5, 5.0 and 7.0 gpf toilets.
The foregoing and other features of the two-way adjustable flapper valve of the present invention will be apparent from the detailed description that follows.
Referring now to the drawings in detail, wherein like-numbered elements refer to like elements throughout,
The flapper top 20 is typically made of an elastomeric material such as real or synthetic rubber having a suitable durometer or softness. In the preferred embodiment, the flapper top 20 is comprised of a real rubber material for suitable sealing and is resistant to chemicals by virtue of a CHLORAZONE® additive (CHLORAZONE is a registered trademark of Lavelle Industries, Inc.). The flapper top 20 has an upper inverted cup-shaped portion 22. See
The cone 30 is a stationary structure. That is, the cone 30 does not rotate relative to the flapper top 20. The cone 30 comprises a cup-like structure defining a hollow cone cavity 130. The cone 30 further comprises a substantially planar and horizontal upper cone edge 36. The upper cone edge 36 is captured within and held in place by the first groove 26 of the captive portion 27 of the flapper top 20. The cone 30 further comprises an upper cone wall 32 having an outer surface 31, a central cone wall 34 having an outer surface 33, a lower cone wall 38 having a recessed outer surface 37 and a slightly flanged lower cone wall finger 39 extending downwardly from the outer surface 37 of the recessed lower cone wall 38. The cone 30 further comprises a polarizing tab 136 defined within a rearward portion of the substantially planar and horizontal upper cone edge 36 to ensure proper positioning relative to the cone 30 and the flapper top 20. See
The rotating vent band 40 comprises a flat ring-like structure comprising a cylindrical band body 42 having an inner surface 41, an outer surface 43, an upper band body lip 48 and a plurality of support ribs 44. As shown in
The snap-fit bottom adjuster 50, which is also rotatably-movable relative to the cone 30, comprises a shallow cup-like structure having a circular body 52 with a bottom portion 54 and an upwardly-extending shallow side wall 56, the side wall 56 having an inner surface 53 and an outer surface 57. See
It should also be mentioned here that the bottom aperture 138 of the cone 30 is configured with an internal radii. This internal radii is provided to allow for improved water drainage out of the cone 30. Similarly, each of the variably-sized secondary apertures 58 of the adjuster 50 is configured with radii on both sides of the aperture 58. The radii of the secondary apertures 58 allow a true hole size such that no air eddies are present, such as would be the case when water passes over a sharp edge. The internal radii of the apertures 58 allow for proper drainage from the cone 30 with no water retention as would be the case if the apertures 58 were configured with a sharp edge.
This Application claims the benefit of U.S. Provisional Application No. 61/693,952, filed Aug. 28, 2012.
Number | Date | Country | |
---|---|---|---|
61693952 | Aug 2012 | US |