The present invention relates to two-way communication by an in-vivo sensing device, and more particularly, to the transmission and receipt of wireless signals by an in-vivo sensing device.
Autonomous in-vivo sensing devices are known. Certain autonomous in-vivo sensing devices include functions that may be activated or deactivated in response to various signals or stimuli such as for example the passage of time, a change in environmental conditions such as change of scenery, or other factors.
According to an embodiment of the invention a device, system and method are provided for an autonomous in-vivo sensing device that includes an in-vivo transceiver to both transmit wireless signals to, for example, an external receiver, and to receive wireless signals from, for example, an external transmitter. In some embodiments, the transceiver may be a half duplex transceiver that may alternate between transmission and reception. In other embodiments of the present invention, the transceiver may transmit at a higher rate than it may receive. In yet other embodiments of the present invention, reception may be by wide bandwidth communication, e.g. spread spectrum communication. Typically, the wireless signals transmitted by the in-vivo transceiver may be or may include sensed data such as, for example, image data that may be collected by the in-vivo sensing device. According to embodiments of the present invention, the wireless signals received by the transceiver may be command signals to alter one or more operation state of the in-vivo device.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the detailed description in the specification. The invention, however, may best be understood by reference to the following detailed description when read with the accompanied drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity, or several physical components may be included in one functional block or element. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well known features may be omitted or simplified in order not to obscure the present invention.
It is noted that some embodiments of the present invention may be directed to an autonomous, typically swallowable in-vivo device. Other embodiments need not be swallowable. Devices or systems according to embodiments of the present invention may be similar to embodiments described in International Application WO 01/65995 and/or in U.S. Pat. No. 5,604,531, each of which are assigned to the common assignee of the present invention and each of which are hereby fully incorporated by reference. Furthermore, a receiving and/or display system suitable for use with embodiments of the present invention may also be similar to embodiments described in WO 01/65995 and/or in U.S. Pat. No. 5,604,531. Devices and systems as described herein may have other configurations and other sets of components. For example, devices and systems described herein maybe used for controlled drug delivery, for example, to a target location, as may be described by in PCT publication WO 00/22975, published on Apr. 27, 2000 and which is assigned to the common assignee and which is hereby fully incorporated by reference. Alternate embodiments of a device, system and method according to various embodiments of the invention may be used with other devices, non-imaging and/or non-in-vivo devices.
Reference is made to
Device 40 typically may be or may include an autonomous swallowable capsule, but may have other shapes, and need not be swallowable or autonomous. For example, device 40 may be a capsule or other unit where all the components are substantially contained within a container, housing or shell, and where device 40 may not require a wired or cabled connection to, for example, receive power or transmit information. In one embodiment, device 40 may collect sensed data from the GI tract while it passes through the GI lumen. Other lumens may be imaged.
External to device 40 may be a receiver 12, transmitter 13, a controller 17, a storage unit 15 and a display unit 16. Receiver 12, which may be a receiver/recorder, and transmitter 13 (typically including or associated with an antenna or antenna array) may be housed or included in the same housing or unit, or may be housed in one or more separate units. For example, transmitter 13 and receiver 12 may be housed in a portable unit that may be carried or worn by a patient and/or may be integrated into a transceiver.
Receiver 12 may be connected to and/or in electrical communication with a processor 14 which may process, for example, data signals such as, for example, sensed data signals that are received from device 40 and/or control data received from device 40. In some embodiments, processor 14 may be operably connected to the display 16 and/or a storage system 15 that may display and/or store the image or other sensed data collected and transmitted by device 40. Processor 14 may analyze data received by receiver 12 and may be in communication with storage system 15, transferring image data (which may be stored and transferred as for example frame data) or other data to and from storage system 15. Processor 14 may also provide the analyzed data to display 16 where a user may view the images. Display 16 may present or display the data such as, for example, image frame data or video data of, for example, the gastro-intestinal (GI) tract or other body lumen. In one embodiment, processor 14 may be configured for real time processing and/or for post processing to be performed. Other monitoring and receiving systems may be used.
In some embodiments, transmitter 13 and controller 17 may be housed in a receiver that may, for example, be worn by a patient in which device 40 is placed. In some embodiments, transmitter 13 and controller 17 may be housed elsewhere and may be housed separately. For example, controller 17 may be operably connected to receiver 12 such that an external operator who may for example view sensed data on display 16 may activate transmitter 13 to deliver a wireless signal to transceiver 49.
Transmitter 13 may typically be connected to and/or in electrical communication with a processor 14. Processor 14 may function, at least partially as a controller and/or include, for example, a controller 17 to process, for example, control commands/instructions to device 40 via transmitter 13. In other embodiments of the present invention, signals other than control commands/instructions may be processed by processor 14 with, for example, controller 17 and transmitted via transmitter 13. In yet other embodiments, controller 17 and processor 14 may be separate units that may be in electrical communication with each other. In some embodiments of the present invention, control commands/instructions generated, for example, by controller 17 may be based on data received by receiver 12 and processed by processor 14. In some other embodiments of the invention, controller 17 may generate commands and/or instructions, based on signals representing measurements received at receiver 12. In other embodiments, control commands/instructions generated, by controller 17 may be based on, user input data, for example, a patient or external operator may for example, initiate the transmission of a wireless signal and/or command from, for example, transmitter 13 to transceiver 49. In yet other embodiments, control commands/instructions may be based on both user input data and data receiver and/or processed by processor 14.
In some embodiments, transceiver 49 may be a half duplex transceiver where the transceiver 49 alternates from transmitting to receiving, e.g. via time division multiple access (TDMA). Typically, the transmission rate to the external receiver 12 may be significantly higher than the transmission rate from external transmitter 13 to the transceiver 49. For example, device 40 may transmit, e.g. image frame data at a first rate to external receiver 12 at a rate of 1-10 Mbits/s, e.g. 2.7 Nvbits/s, while transmitter 13 may transmit control commands/instructions to the transceiver 49 that may be at rate of 10-30 Kbits/sec.
In operation, in some embodiments, device 40 may be placed, inserted or ingested into a body lumen such as for example the GI tract or other body lumen. In some embodiments, imager 46 may capture images of portions of the body lumen and such images or image data may be transmitted by transceiver 49 to for example receiver 12, where an external operator may view or some other function may analyze the transmitted data. At one or more times, such as for example in response to a reading, analysis or image that may be transmitted by device 40, an external operator may use an input device, e.g. keyboard, dial etc. or some other automated or manual function or process to send a command to controller 17 to transmit a wireless signal such as for example a control signal from transmitter 13 to transceiver 49. In response to such wireless signals, transceiver 49 and/or controller 47 may issue a command, control or other signal to for example sensor 43, imager 46 or to some other component of device 40. In some embodiments a signal to a particular component of device 40 may be issued by way of or through controller 47. In response to such signal, a component or sensor such as for example sensor 43 or imager 46 may be activated, de-activated or may otherwise alter its state of operation. Other actions, functions or processes of device 40 such as for example activation time, light intensity, release of an encapsulated liquid or powder, change in buoyancy, frame capture rate, image resolution, tissue sample collection, transmission power or other auxiliary functions may be activated, deactivated or otherwise altered in response to a signal received by transceiver 49.
In another embodiment of the invention, controller 17 may analyze parameters of the signal received at receiver 12. Such parameters may be, for example, received power, signal quality, frequency offset, modulation index or any other characteristic parameter of the signal. Based on the analysis controller 17 may transmit commands and/or instructions from transmitter 13 to transceiver 49. These commands and/or instructions may be used by controller 47 to improve characteristics of the signal transmitted from transceiver 49 to receiver 12. Improving signal characteristics may include for example, ensuring that signal power is sufficient to guarantee good signal quality at receiver 12, correct modulation index, correct carrier frequency and the like. The commands and/or instructions issued by processor 14 with using, for example, controller 17, may be generated both automatically and manually.
Power source 45 may include one or more batteries. For example, power source 45 may include silver oxide batteries, lithium batteries, other suitable electrochemical cells having a high energy density, or the like. Other power sources may be used. For example, instead of internal power source 45 or in addition to it, an external power source may be used to transmit power to device 40.
In some embodiments, sensor 43 may be or include, for example, pH, temperature, pressure or other physiological parameter sensors.
Size and power constraints of typical autonomous in-vivo devices may, for example, restrict the circuitry size and/or reception capability of an in-vivo receiver. According to some embodiments of the present invention, spread spectrum communication may be implemented for high power transmission of, for example, a constant envelope signal to an in-vivo device.
Reference is now made to
Typically, each symbol in the OK may assume one of the two values: a logical ‘mark’, (e.g. ‘1’) or a logical ‘space’, (e.g., ‘0’). Other encodings and meanings may be used. For mark 320, the transmitter 13 may transmit a carrier signal 350 with a constant frequency, Fc, during the entire mark symbol. For space 330, the transmitter may not transmit anything. The transceiver 49 may measure during each symbol the received energy and decide if a mark 320 or space 330 may have been transmitted. A schematic diagram of the OOK modulation signal in the frequency domain, according to one embodiment, is shown in
Typically for in-vivo devices, reception may be hampered, for example, due to attenuation known to occur through the body tissues, so that higher transmission power may be needed. However, regulations, e.g. Federal Communication Control (FCC) or other regulatory standards may limit the spectral density gain to, for example, 50.5 dBuV/m for FCC (or lower for similar regulations in other countries) so that the transmission power, for example, a transmission power of approximately −12 dBm that may be required, which may be difficult to achieve.
Reference is now made to
Reference is now made to
Reference is now made to
According to some embodiments of the invention, a transmitter such as transmitter 13 may transmit a variable frequency signal, which may be, for example, a chirp signal as depicted in
It may be noted that the modulation structure using a chirp signal may be similar to Manchester coding as known in the art. Therefore, the modulation structure may be invariant to frequency shifts, which may improve the performance of the communication. Other variable frequency methods may be used.
Reference is made to
In some embodiments of the present invention, the signal rate transmitted to the transceiver 49 may be in the order of approximately 10-30 Kbits/s and thus may typically require a BPF of the same order as the receiver. However, due to, for example, constraints in space, power, etc., that may exist in an autonomous, typically self contained in-vivo device it may not be possible to implement a narrow BPF. A much wider BPF, for example, a 3-10 MHz filter, that may be implemented may not be suitable for narrow band signal since it may receive along with the transmitted signal a lot of noise and interferences. In some embodiments of the present invention described herein, a transmission signal and transmitter may be provided that may be suitable for transmitting a low data rate, e.g. 10-30 Kbits/s of data, over a wide bandwidth, e.g. spread spectrum to an in-vivo device 40. However other ranges of BPFs may be used and in other embodiments of the present invention, narrow BPF may be incorporated in the transceiver 49.
In an alternate embodiment of the present invention, each symbol may be composed of a Barker or PN sequence of narrow OOK chips or pulses. Other sequences may be used such as for example the sequence shown in
Reference is now made to
Reference is now made to
In alternate embodiments of the present invention, the receiver part of transceiver 49 may be a demodulator receiver. In one embodiment of the present invention, a voltage controlled oscillator 105 (VCO) of the transmitter part of transceiver 49 may be used as a demodulator during reception. Under this embodiment, the transmitter's VCO may be activated in (constant wave) CW mode without modulation. Since the same antenna may be used for both transmission and receiving. The VCO 105 may, for example, serve as a front-end receiver for the received signal. The received signal frequency may be required to be outside the PLL bandwidth (<101 kHz) to avoid attenuation by the synthesizer loop. However, the receiver signal frequency may need to be maintained close to the synthesizer frequency so that the VCO 105 amplification capabilities may be implemented. As such, the VCO 105 may, for example, be used to amplify the received signal. In addition the non-linearity inherent to the VCO 105 may serve a mixer between the CW and the receiver signal.
Reference is now made to
Reference is now made to
The wideband signal may be created using several techniques. According to one embodiment of the present invention, a chirp signal may be used. The chirp signal may be defined, for example, as a constant envelope signal with a linear sweep of frequencies. The range of frequency sweep may be, for example, chosen according to the bandwidth of the system 301. The frequency sweep range may change, for example, according to the symbol transmitted. The demodulator may have to decide whether the frequency transmitted may be either above or below the carrier frequency or other specified frequency. The FSK receiver may be a FSK receiver that may be used for both regular and modified FSK modulation schemes. Other suitable FSK receivers may be used.
Reference is now made to
Size and power constraints of typical autonomous in-vivo devices may, for example, restrict the circuitry size and/or reception capability of an in-vivo receiver. According to some embodiments of the present invention, spread spectrum communication may be implemented for high power transmission of, for example, a constant envelope signal to an in-vivo device.
Reference is now made to
In some embodiments, transceiver 49 may be a single integrated circuit providing both reception and transmission of wireless signals. Use of a single integrated circuit for both reception and transmission of wireless signals by device 40 may in some embodiments reduce the space and power requirements that may otherwise be faced by autonomous in-vivo devices with two-way wireless capabilities.
Transceiver 49 may operate using radio waves, but in some embodiments, other wireless transmission media may be used. In some embodiments transceiver 49 may receive wireless signals on a particular frequency and may transmit wireless signals on such same frequency. In such or other cases, for example, the transmission of wireless signals by for example transmitter 13 may alternate in time with the transmission of wireless signals by transceiver 49 so that such two components may not transmit at the same time. For example, reception of wireless signals by transceiver 49 may be programmed to occur during any idle transmission time, for example, during the period when illumination source 42 may be illuminating an in-vivo area. In other embodiments other periods of idle transmission may be used for reception of wireless signals. In other embodiments of the present invention, the period of reception may be shorter or longer than the period of illumination or may occur at other suitable periods, other than the period of illumination. In a further embodiment, transceiver 49 may transmit a beacon or other transmission request signal at various intervals to indicate to, for example, receiver 12 that transceiver 49 is ready to receive a transmission.
According to some embodiments of the invention, transceiver 49 may receive wireless transmission on a different frequency than the frequency used for transceiver 49 transmission. In such a case both transmitter 13 and transceiver 47 may transmit at the same time using different frequencies and implementing, for example, a full-duplex communication.
According to some embodiments of the invention, a series of symbols may form a packet, which may be sent after each activation and/or trigger of the downlink channel. Implementing a parsing algorithm, may lead to a parsed structure of the packet. The length of the packets may vary and may be specified in a packet preamble.
In some embodiments of the present invention, a simple automatic repeat request (ARQ) scheme similar to, for example, TCP/IP protocol may be included to provide high reliability in the communication channel. For example, a cyclical redundancy code (CRC) may be provided by the transmitter 13 for confirmation. The transceiver 49 may acknowledge the transmitter 13 if a message was transmitted correctly. In case of failure the message may be retransmitted until successful or some arbitrary timeout expires. Other suitable methods of confirmation may be used. In other embodiments of the present invention, confirmation may not be implemented.
In some embodiments wireless signals transmitted from transmitter 13 to transceiver 49 may be modulated with amplitude modulation. Alternatively or in addition, frequency modulation may be used for transmitting such or other signals to or from device 49.
Reference is made to
In block 1420, another wireless signal may be transmitted by for example the transceiver in such in-vivo device. Such other wireless signal may be or include sensed data collected by such in-vivo sensing device, such as for example image data of the GI tract. The wireless data of block 1420 may also include a reply including for example an acknowledgment that the signal of block 1410 has been received. In some embodiments, a wireless signal that is received by the transceiver may have been transmitted on the same radio frequency as the wireless signal that is transmitted by the transceiver.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Alternate embodiments are contemplated which fall within the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2005/001289 | 12/1/2005 | WO | 00 | 11/15/2007 |
Number | Date | Country | |
---|---|---|---|
60631858 | Dec 2004 | US |