This application is a PCT International Application of U.S. Provisional Patent Application No. 61/695,468 filed on Aug. 31, 2012. The disclosure of the above application is incorporated herein by reference.
The present invention relates to solenoid valves, especially submersible solenoid valves which can be utilized with connecting an accumulator with a transmission hydraulic system.
Most automotive vehicles having an automotive transmission utilize a hydraulic system which is electronically controlled by the usage of a plurality of solenoid valves. The hydraulic system is typically powered by a hydraulic pump which is either directly powered by an engine connected with the transmission or via a pump which is powered by an electrical system which is powered by the vehicle engine. In some automatic transmissions, it is desirable to provide a source of pressurized fluid in the vehicle transmission system which is available before the engine associated with the vehicle is started. To provide this source of hydraulic energy, there are two main options. One option is to provide a pump which can be powered by the vehicle electrical system (by being powered from the vehicle battery). A second option is to provide a pressurized accumulator which can be charged while the engine is operating and then held in a stored condition to be discharged upon the restarting of the vehicle. It is desirable to provide a solenoid valve which can be utilized with accumulator systems which does not present a drain on the vehicle electrical system to keep the accumulated charged and which can be rapidly actuated to dump the charge of the accumulator during initial start up of the vehicle.
To meet the above noted desires and to provide other advantages, a revelation of the present invention is brought forth. The present invention brings forth a solenoid valve having a hydraulic body that provides one of the poles for the solenoid valve. The hydraulic body has a central bore providing a bearing surface for an armature having an integral poppet. The poppet seals with a valve seat integral to the hydraulic body.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
Slidably mounted within the central bore 24 of the body and having an outer diameter providing a surface coaxially aligned by the bearing surface 24 of the body is an armature 60. The armature is typically a ferromagnetic member and has an integrally formed poppet 62 with an inner diameter 64 and outer diameter 66. The poppet has a conical valve face 68 that is shallower (that is angled closer to the horizontal than that of valve seat 30 to ensure that the outer diameter edge of the valve face 68 initially seals first. It is desirable that the valve 68 make contact with the valve seat 30 at the same diameter as the diameter of the central bore 24. To factors prevent the achievement of the above noted desire. First, the poppet maximum outer diameter 66 must be smaller than the diameter of central bore 24 to allow placement of the armature 60 into the central bore 24. Secondly, valve face 68 due to machining tolerance, is not geometrically perfectly sharp and there is a controlled radius at top of the poppet. Therefore, the poppet contact diameter 67 is even smaller than the poppet outer diameter 66. The ratio of poppet contact diameter 67 to the diameter of the central bore 24 (poppet sealing ratio) should be greater than 0.95.
The armature 60 has a multiple diameter central passage 70 which intersects with an axial face 72 of the armature. The armature axial face 72 is exposed to the hydraulic pressure of the first port 26 due to the central passage 70. The armature 60 is biased towards the valve seat 30 of the body by a spring 74 which has an extreme end abutting a spring seat 76 provided in the armature. The armature has an annular groove 78 wherein there is a placement of a pressure compressible sealing ring 80 and a pressure block 82. The armature has a cross bore 81 axially between the axial face 72 and the second port 28 intersecting the central passage 70 and the outer diameter of the armature. The cross bore 81 aids the maintenance of a larger pressure differential across the sealing ring 80. The armature also has an annular groove with retaining clip 84 mounted therein. The retaining clip holds in a tortuous vent insert 86 which is typically fabricated from a polymeric material and has a spiral path or groove 88 formed on its outer periphery. The spiral path causes any fluid which ends up in a working area between the armature 60 and a plug pole piece 90 that have to follow a torturous path which inhibits the transmission of metal shavings and/or other metallic or other contaminants in the hydraulic fluid reaching the area between the armature 62 and the pole piece 90. The pole piece 90 is generally positioned adjacent the body extreme ends 32 and is also contacting with the flat 14 of the casing. The pole piece 90 is typically fabricated from a ferromagnetic material and is sealed within the body 22 an outer seal 92 placed within an annular groove of the pole piece.
Mounted within the first port 26 is a permanent magnet 94 which also inhibits metallic impurities within the transmission fluid from migrating between the armature and the pole piece 90.
By having the valve seat integral with the body 22 and by having the armature being aligned by the body central bore 24 and by having the poppet being integral with the armature, high levels of concentric accuracy can be maintained leading to less chances of leaks due to dimensional tolerances.
The second port 28 is typically connected with an accumulator. The third port 46 acts as a feed orifice which is additionally connected with the accumulator. During the charging operation into the accumulator, fluid flows through the first or system port 26 and then lifts up the check ball 50 and flows into the accumulator (not shown). Typically, the spring 74 and pressure acting on the differential area between the body central bore 24 and poppet 62 contact diameters will hold the armature 60 down in its sealed position. When the accumulator is fully charged, the spring force holds the armature radius against the body conical seat 30 to provide a low leakage interface. The spring 74 has sufficient load to hold against the accumulator pressure at the second port 28 which is acting against the differential area between the body central bore 24 and poppet 62 contact diameters. Check ball 50 prevents the passage of fluid back through the third port 46. Since fluid is allowed to flow through the central passage of the armature, the armature is balanced and there is a slight biasing force due to the pressure acting on the axial face 72 being of a larger area than the fluid pressure acting to lift the armature from the valve seat plus the biasing force of the spring. To discharge the accumulator, the coil 16 is activated causing the armature 60 to move towards the pole piece 90 and fluid then flows from the second port 28 to the first or system port 26. When the accumulating pressure is larger than the system pressure, the solid energizing ring squeezes 78 the elastomeric seal 80 and forces it into contact with the body central bore 24 and seals the armature 60 outer diameter. When the armature is pulled upward by a magnetically energizing solenoid coil 16, the seal 80 is released from the body central bore 24 and allows for drag free actuation. On discharged very high flow rate can flush the magnet 94 and return contaminants to the transmission to be filtered by a filter within the transmission.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/056351 | 8/23/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/035809 | 3/6/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4002318 | Von Koch | Jan 1977 | A |
5072752 | Kolchinsky | Dec 1991 | A |
5810330 | Eith et al. | Sep 1998 | A |
6158744 | Jones | Dec 2000 | A |
6254200 | Ganzel | Jul 2001 | B1 |
6328275 | Yang et al. | Dec 2001 | B1 |
7793944 | Otuka | Sep 2010 | B2 |
20050001190 | Shirase | Jan 2005 | A1 |
20060065870 | Mori | Mar 2006 | A1 |
20060249210 | Van Weelden | Nov 2006 | A1 |
20110089350 | Beneker | Apr 2011 | A1 |
20110198522 | Ambrosi | Aug 2011 | A1 |
20150041693 | Jones | Feb 2015 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2013/056351, dated Dec. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20150233488 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61695468 | Aug 2012 | US |