1. Field of the Invention
The present invention relates to a two-way soft closing device and a soft closing activation trigger assembly of the two-way soft closing device and, more particularly, to a two-way soft closing device for a sliding door that absorbs a collision incurred between a sliding door panel and a doorframe during a door-opening or a door-closing action. The two-way soft closing device eliminates noise coming from a door panel collision and prevents fingers of elders or children from being trapped or prevents accidents caused by a sliding door edge coming to a direct collision without any reduction of speed. The soft closing activation trigger assembly that is easily adjusted eliminates a door panel closing gap as well as allows users to adjust the closing distance according to their door opening and closing requirements. Furthermore, the present invention eliminates a malfunction that results from the soft closing activation trigger assembly becoming broken or loosened by colliding with the triggers at a high speed. Then, the present invention avoids the soft closing activation trigger assembly skidding with the sliding door, and prevents users from accidents caused by the door panel in a high speed sliding.
2. Description of the Related Art
A sliding door is usually mounted in an exit of a building or used for an internal building partitioning. The sliding door moves laterally along a sliding door track to open or to close an internal partitioning opening. The sliding door track has a soft closing device and a soft closing activation trigger. The length of the sliding door track is fitted in proportion to the width of the partitioning opening. The sliding door track is an elongated member and mounted in a top end of the opening. The soft closing device is mounted within the sliding door track. The sliding door is connected to the soft closing device. When a user pushes or pulls the sliding door to move towards a door-opening position or a door-closing position, the soft closing device moderates a moving speed of the sliding door with a soft closing cylinder which is activated by the soft closing activation trigger. Therefore, the soft closing device prevents the sliding door from moving too fast. The siding door in motion may cause the door panel to collide with a doorframe, which causes a collision noise, panels shattering and accidents. The sliding door at high speed may collide with elders or children.
However, a conventional soft closing device emphasizes a single-sided soft closing function to prevent one side of the door panel from colliding to the doorframe directly. Mounted in the interior ceiling or wall, the conventional soft closing device is affected by the perpendicular alignment of the interior ceiling. The non-perpendicular alignment of the ceiling or wall makes the sliding door track to be mounted improperly. The improper mounting of the sliding door track causes abrasions between the track and wheels, and makes a difficult maneuvering of the door panel. As mentioned above, the inconsistency in the construction site will increase the resilience of the soft-closing spring. The soft-closing spring maneuvers the door panel back to a pre-set closing position. The increasing resilience of the soft-closing spring causes a gap formed between the door panel and the wall. The soft closing device is usually disposed to the door-closing direction to cushion the door panel. The soft closing device maneuvers the door panel to move towards the closing position. Furthermore, since the conventional soft closing devices cannot adjust a latching range that is a distance between the locations of the trigger and the doorframe, the conventional soft closing device does not allow users or interior designers to adjust the soft closing distance as their requirements. The latching range affects whether the door panel closes in the doorframe. Besides, the interior designer adjusts the location of the sliding door panel, which makes the edge of the sliding door panel to outstand from a fixed doorframe. The user could easily grasp the sliding door panel to close. Furthermore, when the user pulls the door panel to open the sliding door, the soft closing activation trigger stretches a spring that is mounted in the soft closing device. Usually, the user has to exert a heavy effort to overcome a resilience of the spring to move the door panel. If the user exerts an excessive force, the door panel would directly hit the doorframe at a high speed, which results in a colliding noise and which damages the soft closing device, the door panel, and the doorframe. If the force exerted from the user is excessively small, the door panel would not be moved or would not trigger any soft closing action.
For solving the above-mentioned problems, a manufacturer could assemble two units of single-sided soft closing devices that have the same structures and in opposite mounting directions in the sliding door. One of the single-sided soft closing devices is mounted in the door-closing direction. The other single-sided soft closing device is mounted in a door-opening direction. However, assembling the two single-sided soft closing devices increases installing time and complexity of installation as well as production cost. Thus, selecting and using two single-sided soft closing devices creates a major hassle for end users.
When the conventional sliding door is closed, a gap is formed between the door plate and the doorframe. Since a conventional trigger has a pre-set fixed travelling distance and a triggering distance on the soft closing device, the gap cannot be eliminated. Therefore, even when the user considers a door panel is variable size and weight, and once the door panel is mounted in an installation site of a doorframe, the gap is formed due to the door panel structural tolerances, doorframe tolerances, construction site inconsistencies and imperfectness of site conditions. The gap causes trouble and malfunction on the use of the sliding door.
Another conventional trigger is mounted in a rib of the sliding door track with two mounting plates. The mounting plates abut a top surface and a bottom surface of the rib respectively. The mounting plates are connected with a bolt. When the user adjusts a location of the trigger relative to the sliding door track, the bolt is loosened to move the mounting plates. However, the loosening degree of the bolt is not easy to control. The bolt may be removed from one mounting plate that abuts the top surface of the rib, and, then, the other mounting plate that abuts the bottom surface of the rib would drop and hit the user.
When the soft closing device of the conventional sliding door needs to be repaired, the whole sliding door track must be removed along with the soft closing device to repair or to replace components. Nevertheless, the length of the sliding door track is over 2 meters, so detaching or mounting the sliding door track is not easy. The repair of the soft closing device increases a working time and repairing cost for the end user. Also, repairing of the soft closing device further damages the interior decoration of the building.
An objective of the present invention is to provide a two-way soft closing device and a soft closing activation trigger assembly of the two-way soft closing device and, more particularly, to provide a two-way soft closing device mounted in a sliding door that absorbs a collision which is incurred between a sliding door panel and a doorframe in a door-opening or door-closing scenario, that eliminates noise coming from the collision, and that prevents an elder or a little child from direct contact by the fast moving sliding door panel. A soft closing activation trigger is easily adjusted to eliminate a gap and prevents a user from injury from the soft closing activation trigger falling.
To achieve the foregoing objective, the two-way soft closing device in accordance with the present invention comprises a sliding door track, two soft closing activation triggers, two roller carriers and a soft closing assembly. The sliding door track is an elongated member and has a top plate, two side plates, a slot, two mounting parts and two supporting parts. The side plates protrude from two sides of a bottom surface of the top plate. The slot is formed longitudinally in a bottom surface of the sliding door track and is located between the side plates. The mounting parts are connected to each other. Each mounting part protrudes from a top end of a side surface of the side plate. The supporting parts are connected to each other. Each supporting part protrudes from a bottom end of the side surface of the side plate. The soft closing activation triggers are mounted movably between the mounting parts and are mounted in two ends of the sliding door track respectively, and each soft closing activation trigger has an abutting part that protrudes from the soft closing activation trigger. The roller carriers are mounted in the sliding door track, are spaced apart at an interval, are mounted through the slot and are mounted slidably in the supporting parts. The soft closing assembly is mounted in the sliding door track, is located between the roller carriers, is mounted firmly in one of the roller carriers and has a damper, two sliding bases, a spring, two tracking assemblies and two side frames. The sliding bases are mounted rotatably in the two ends of the damper, and each sliding base has an extending part, an embedding groove and multiple stubs. The extending part is formed in a top end of the sliding base. The embedding groove is defined in the extending part and is mounted detachably around the abutting part. The stubs protrude symmetrically from two side surfaces of the sliding base respectively. Two ends of the spring are mounted in the sliding bases respectively. The tracking assemblies are disposed above the two ends of the damper, and each tracking assembly has two tracking plates, two guiding grooves and two positioning parts. The tracking plates are disposed towards the damper and the sliding base respectively and are connected to each other. Each tracking plate has an inner surface and an outer surface, and the inner surfaces of the tracking plates are connected to each other. The guiding grooves are mounted around the stubs of the sliding bases and are connected to each other. Each guiding groove is defined longitudinally in the inner surface of the tracking plate. The positioning parts are connected to each other. Each positioning part is defined in one of two ends of the tracking plate, communicates with the guiding groove, is curved, and is located away from the damper. The side frames are mounted in the tracking assemblies and are mounted in one of the roller carriers. Each side frame is mounted in the outer surface of the tracking plate.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The soft closing activation trigger assembly has a sliding door track 10 and two soft closing activation triggers 20.
With reference to
The side plates 12 protrude from two sides of a bottom surface of the top plate 11.
The slot 13 is formed longitudinally in a bottom surface of the sliding door track 10 and is located between the side plates 12.
The mounting parts 14 are disposed corresponding in position to each other. Each mounting part 14 protrudes from a top end of a side surface of the side plate 12 and has a top limiting rib 141, an abutting rib 142, a bottom limiting rib 143, a top mounting groove 144 and a bottom mounting groove 145.
The top limiting rib 141 protrudes from the side plate 12.
The abutting rib 142 protrudes from the side plate 12 and is disposed corresponding in position to the top limiting rib 141 at a spaced interval.
The bottom limiting rib 143 protrudes from the side plate 12 and is disposed corresponding in position to the abutting rib 142 at a spaced interval.
The top mounting groove 144 is formed between the top limiting rib 141 and the abutting rib 142.
The bottom mounting groove 145 is formed between the abutting rib 142 and the bottom limiting rib 143.
The supporting parts 15 are disposed corresponding in position to each other. Each supporting part 15 protrudes from a bottom end of the side surface of the side plate 12.
With reference to
The main sub-track 101 has the top plate 11, the side plates 12, the slot 13, the mounting parts 14 and the supporting parts 15. The mounting parts 14 protrude from the side plates 12 respectively. The supporting parts 15 protrude from the side plates 12 respectively. Each mounting part 14 further has a top inserting groove 146 that is defined longitudinally in the mounting part 14. Each supporting part 15 has a bottom inserting groove 151 that is defined longitudinally in the supporting part 15.
The maintenance sub-track 102 has the top plate 11, the side plates 12, the slot 13, the mounting parts 14 and the supporting parts 15. The mounting parts 14 protrude from the side plates 12 respectively. The supporting parts 15 protrude from the side plates 12 respectively. Each mounting part 14 has the top inserting groove 146. Each supporting part 15 has the bottom inserting groove 151.
The track integration pins 16 connect the main sub-track 101 to the maintenance sub-track 102 and are disposed in parallel to each other. Each track integration pin 16 has a first end and a second end. The first ends of the track integration pins 16 are mounted respectively in the top inserting grooves 146 and the bottom inserting grooves 151 of the main sub-track 101. The second ends of the track integration pins 16 are mounted respectively in the top inserting grooves 146 and the bottom inserting grooves 151 of the maintenance sub-track 102.
With reference to
Two sides of the top mounting plate 21 are mounted respectively in the top mounting grooves 144 of the mounting parts 14. The top mounting plate 21 abuts the abutting ribs 142 and has a rough part 210, an abutting part 211 and at least one connecting hole 212.
The rough part 210 is formed in a bottom surface of the top mounting plate 21 and abuts top surfaces of the abutting ribs 142. Specifically, the rough part 210 has multiple projections that protrude from the top mounting plate 21 and abut the abutting ribs 142.
The abutting part 211 protrudes from the bottom surface of the top mounting plate 21 and is located between the abutting ribs 142 of the mounting parts 14.
The at least one connecting hole 212 is defined through the top mounting plate 21.
Two sides of the bottom mounting plate 22 are mounted respectively in the bottom mounting grooves 145 of the mounting parts 14. The bottom mounting plate 22 abuts the abutting ribs 142 and has at least one through hole 221. A bottom surface of the bottom mounting plate 22 is extended over by the abutting part 211.
The at least one through hole 221 is defined through the bottom mounting plate 22 and corresponds in position to the at least one connecting hole 212 of the top mounting plate 21.
The protruding parts 222 protrude respectively from four corners of a top surface of the bottom mounting plate 22 and abut bottom surfaces of the abutting ribs 142.
The at least one connecting member 23 is mounted through the at least one through hole 221 of the bottom mounting plate 22 and is mounted in the at least one connecting hole 212 of the top mounting plate 21.
With reference to
The hanger 33 extends out of the slot 13 of the sliding door track 10 and is mounted in a bottom of the base part 31.
With reference to
The damper 41 has a cylinder 411 and a rod 412.
The rod 412 is mounted movably through the cylinder 411 axially. One of two ends of the rod 412 is mounted in one of two ends of the cylinder 411, and the other end of the rod 412 extends out of the cylinder 411.
Specifically, the damper 41 further has two attaching members 413. One of the attaching members 413 is mounted in the other end of the cylinder 411. The other attaching member 413 is mounted in the other end of the rod 412. The attaching member 413 has a square hole defined through the attaching member 413. The rod 412 has an outer thread that is formed in an outer surface of the other end of the rod 412. The other end of the rod 412 is mounted through the square hole of the attaching member 413, and the outer thread of the rod 412 is engaged with a nut by threading.
The sliding bases 42 are mounted rotatably in the two ends of the damper 41. Each sliding base 42 has an extending part 420, an embedding groove 421, multiple stubs 422, two sliding members 423 and a positioning groove 424. Specifically, one of the sliding bases 42 is mounted pivotably in the attaching member 413 in the other end of the cylinder 411. The other sliding base 42 is mounted pivotably in the attaching member 413 in the other end of the rod 412.
The extending part 420 is formed in a top end of the sliding base 42.
The embedding groove 421 is defined in the extending part 420 and is disposed detachably around the abutting part 211.
The multiple stubs 422 protrude symmetrically from two side surfaces of the sliding base 42 respectively. Specifically, two stubs 422 protrude symmetrically from each side surface of the sliding base 42.
The sliding members 423 protrude from the two side surfaces of the sliding base 42 respectively and are located beneath the stubs 422.
The positioning groove 424 is defined in the sliding base 42 and is disposed around the attaching member 413. The positioning groove 424 prevents the attaching member 413 from being pulled and disconnected from the sliding base 42.
Two ends of the spring 43 are mounted in the sliding bases 42 respectively.
The tracking assemblies 44 are disposed above the two ends of the damper 41. Each tracking assembly 44 has two tracking plates 440, two guiding grooves 441, two positioning parts 442, two shock-absorbing members 443 and an embedding groove 444.
The tracking plates 440 are disposed towards the damper 41 and the sliding base 42 respectively and are connected to each other. Each tracking plate 440 has an inner surface and an outer surface, and the inner surfaces of the tracking plates 440 are connected to each other.
The guiding grooves 441 are disposed around the stubs 422 of the sliding bases 42 and are connected to each other. Each guiding groove 441 is defined longitudinally in the inner surface of the tracking plate 440.
The positioning parts 442 are connected to each other. Each positioning part 442 is curved, is defined in one of two ends of the tracking plate 440, communicates with the guiding groove 441 and is located away from the damper 41.
The shock-absorbing members 443 are mounted in the inner surfaces of the tracking plates 440 respectively. Each shock-absorbing member 443 is disposed corresponding in position to the positioning part 442. The shock-absorbing members 443 are made of engineering plastic with high wear resistance and shock-absorbing ability.
The embedding groove 444 is defined longitudinally in the outer surface of the tracking plate 440.
The side frames 45 are mounted in the tracking assemblies 44 and are mounted in one of the roller carriers 30. Each side frame 45 is mounted in the outer surfaces of the tracking plates 440 and has a top extending tab 451, a protruding rib 452 and a bottom extending tab 453.
The top extending tab 451 protrudes from a top end of the side frame 45 and abuts a top end of the tracking plate 440.
The protruding rib 452 protrudes longitudinally from the side frame 45 and is mounted in the embedding groove 444.
The bottom extending tab 453 is formed longitudinally in a side surface of the side frame 45 and is located beneath the tracking plate 440. The bottom extending tab 453 and a bottom end of the tracking plate 440 limit the sliding member 423.
The two-way soft closing device of the present invention is mounted in an exit of a building, and a fixed door plate 51 and a sliding door plate 52 are mounted in the exit, as shown in
The rollers 32 are mounted rotatably in the supporting part 15 as shown in
With reference to
With reference to
With reference to
With reference to
When the user pulls the sliding door plate 52 to move towards a door-opening position, the tracking plate 440 and the side frame 45 are driven by the roller carrier 30 to move along the sliding door track 10. Thus, the stub 422 of the sliding base 42 moves along the guiding groove 441 and is embedded in the positioning part 442. Meanwhile, the spring 43 is stretched to accumulate the resilience again.
The bottom extending tab 453 provides the side frame 45 with a strength and an endurance and works in coordination with the sliding member 423 that is disposed between the tracking plate 440 and the bottom extending tab 453, as shown in
The sliding member 423 is disposed between the bottom extending tab 453 of the side frame 45 and the tracking plate 440, so that an offsetting range of the sliding base 42 is limited, which prevents the soft closing assembly 40 from malfunction. When the user pulls the sliding door plate 52 with an excessive force that makes the sliding door plate 52 and the soft closing assembly 40 move at a high speed, the sliding base 42 collides with the abutting part 211. The sliding base 42 is pressed downwards and hits the tracking plate 440, and the soft closing assembly 40 is displaced and offset drastically, which makes the soft closing assembly 40 malfunction. Then, the sliding member 423 of one of the two side surfaces of the sliding base 42 abuts the bottom extending tab 453, and the sliding member 423 of the other side surface of the sliding base 42 abuts a bottom side of the tracking plate 440. Thus, the bottom extending tab 453 keeps a cushioning ability of the soft closing assembly 40 and prevents the soft closing assembly 40 from loosening.
The bottom surface of the top mounting plate 21 abuts the top surfaces of the abutting ribs 142 made of aluminum, and a top surface of the bottom mounting plate 22 abuts bottom surfaces of the abutting ribs 142. The top mounting plate 21 and the bottom mounting plate 22 enhance a clamping force for the abutting ribs 142. Thus, the top mounting plate 21 and the bottom mounting plate 22 prevent the soft closing activation trigger 20 from removal by the collision of the sliding door.
With reference to
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only. Changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
104127264 A | Aug 2015 | TW | national |
104127265 A | Aug 2015 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5302016 | Lautenschlager | Apr 1994 | A |
8235478 | Zimmer | Aug 2012 | B2 |
8272166 | Nezu | Sep 2012 | B2 |
8714671 | Huang | May 2014 | B2 |
8931138 | Shimizu | Jan 2015 | B2 |
20100026152 | Huang | Feb 2010 | A1 |
20110023370 | Zimmer | Feb 2011 | A1 |
20110067313 | Walhorn | Mar 2011 | A1 |
20110167588 | Chang | Jul 2011 | A1 |
20110271482 | Nezu | Nov 2011 | A1 |
20130019438 | Tanno | Jan 2013 | A1 |
20140026357 | Zimmer | Jan 2014 | A1 |
20140109343 | Chang | Apr 2014 | A1 |
20160040465 | Wang et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
M401685 | Apr 2011 | TW |
M410784 | Sep 2011 | TW |
M443756 | Dec 2012 | TW |
I432638 | Apr 2014 | TW |
M516087 | Jan 2016 | TW |
M516640 | Feb 2016 | TW |
Number | Date | Country | |
---|---|---|---|
20170051548 A1 | Feb 2017 | US |