Two-wire process control loop diagnostics

Information

  • Patent Grant
  • 7321846
  • Patent Number
    7,321,846
  • Date Filed
    Thursday, October 5, 2006
    17 years ago
  • Date Issued
    Tuesday, January 22, 2008
    16 years ago
Abstract
A diagnostic device for coupling to a process control loop includes digital communication circuitry configured to receive a digital communication signal from the process control loop. The digital communication signal is a digitally modulated analog signal on the process control loop which is modulated to a plurality of discrete analog signal levels representative of digital values. Diagnostic circuitry diagnoses operation of the process control loop which may include field devices of the process control loop based upon the digitally modulated analog signal.
Description
BACKGROUND OF THE INVENTION

The present invention relates to industrial process control and monitoring systems. More specifically, the present invention relates to diagnostics of industrial process control and monitoring systems which utilize two-wire process control loops to transmit information.


Industrial process control and monitoring systems are used in many applications to control and/or monitor operation of an industrial process. For example, an oil refinery, chemical processing plant, or paper manufacturing facility may have numerous processes which must be monitored and controlled.


In such industrial processes, process variables are measured at remote locations across the process. Example process variables include temperature, pressure, flow and the like. This information is transmitted over a two-wire process control loop to a central location, for example, a control room. Similarly, process variables can be controlled using controllers placed in the process. The controllers receive control information from the two-wire process control loop and responsively control a process variable, for example by opening or closing a valve, heating a process fluid, etc.


Various protocols have been used to communicate on two-wire process control loops. One protocol uses a 4-20 mA signal to carry information on the loop. The 4 mA signal can represent a zero or low value of a process variable while the 20 mA signal can represent a high or full scale value. The current can be controlled by a process variable transmitter to values between 4 and 20 mA to represent intermediate values of the process variable. A more complex communication technique is the HART® communication protocol in which digital information is superimposed onto a 4-20 mA signal. Typically, in such configurations a separate two-wire process control loop is required for each field device.


A more complex communication technique used on two-wire process control loops is generally referred to as fieldbus-based protocols, such as Foundation™ fieldbus. In a Fieldbus protocol, all information is transmitted digitally and the analog current level on the process control loop is not required to carry information. One advantage of such a configuration is that multiple process variable transmitters or controllers can be coupled in series on a single process control loop. Each device on the loop has an address such that it can identify messages which are addressed to it. Similarly, messages transmitted by a field device can include the address of the device so that the sender can be identified.


SUMMARY

A diagnostic device for coupling to a process control loop includes digital communication circuitry configured to receive a digital communication signal from the process control loop. The digital communication signal is a digitally modulated analog signal on the process control loop which is modulated to a plurality of discrete analog signal levels representative of digital values. Diagnostic circuitry diagnoses operation of the process control loop based upon the digitally modulated analog signal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified diagram of a process control or monitoring installation which includes a two-wire process control loop.



FIG. 2 is a simplified block diagram of a process control loop diagnostic device.



FIGS. 3A and 3B are graphs of loop current I versus time.



FIG. 4 is a more detailed diagram showing digital communication circuitry of FIG. 2.



FIG. 5 is a more detailed diagram of the process control loop diagnostic device.





DETAILED DESCRIPTION

The present invention is directed to diagnostics in a process control loop including diagnostics of the wiring used in a two-wire process control loop itself, as well as other devices connected to the process control loop. In particular, the present invention provides diagnostics including detection of a failed or potentially failing component in a two-wire process control loop operating in accordance with a fieldbus based protocol in which multiple devices can be connected to a single two-wire process control loop.



FIG. 1 is a simplified diagram showing a process control or monitoring system 10 including field devices 12 and 14 coupled to process piping 16. Devices 12 and 14 are coupled to a single two-wire process control loop 18 which in turn couples to a control room 20. FIG. 1 also illustrates a two-wire process control loop diagnostic device 22 coupled to loop 18. The loop 18 carries a current I which can be used to provide power to all of the field devices on loop 18 and can be generated at control room 20. Information is transmitted digitally on loop 18 by modulating a digital signal on top of the loop current I. For example, devices 12 and 14 can include unique addresses such that they are able to uniquely identify messages which they transmit, as well as identify which received messages are addressed to them. Devices 12 and 14 can comprise any type of field device including process variable transmitters and controllers. The process control loop 18 terminates at a segment terminator 24. The term “segment” refers to a portion of or all of two-wire process control loop 18.



FIG. 2 is a simplified block diagram of a two-wire process control loop diagnostic device 50 in accordance with the present invention, similar to device 22 shown in FIG. 1. Diagnostic device 50 couples to two-wire process control loop 18 and includes digital communication circuitry 52 and diagnostic circuitry 54. Two-wire process control loop diagnostic device 50 can, in some configurations, be implemented in field device 12, field device 14, stand-alone diagnostic device 22 and/or control room 20.


During operation, digital communication circuitry 52 receives a digital communication signal from the two-wire process control loop 18. This digital communication signal comprises an analog signal which has been digitally modulated. Such modulation is in accordance with known techniques. For example, the loop current I can be caused to vary periodically such that a variation above a certain threshold represents a binary 1 and a variation below a particular threshold represents a binary 0. Such a configuration is illustrated in FIG. 3A which is a graph of the loop current I versus time. In FIG. 3A, the time axis of the graph has been divided into five time periods: t0, t1, t2, t3 and t4. During period to, the current level I is undetermined and represents neither a 0 or a 1. During periods t1 and t4, the current level I represents a binary 0. Similarly, during periods t2 and t3, the loop current level I represents a binary 1. Another data encoding technique could break each bit period into two equal parts as shown in FIG. 3B. A binary 1 is represented by the current level being above threshold value during first half of the bit time and below a threshold during the second half. A binary 0 is represented by the first half being below the threshold and the second half being above.


The diagnostic circuitry 54 illustrated in FIG. 2 performs diagnostics based upon the digitally modulated analog signal I. More specifically, the diagnostic circuitry 54 performs diagnostics based upon analog properties of the digitally modulated analog signal including signal amplitude, wave shape, current, bit error rate (BERT), segment impedance, or other parameters obtained by monitoring current on loop 18. Further, by monitoring which device transmitted a particular signal, the diagnostic circuitry 54 can identify a particular device on the loop 18 which has failed or may fail in the future.



FIG. 4 is a more detailed diagram of diagnostic device 50 and illustrates one configuration of digital communication circuitry 52 in greater detail. Digital communication circuitry 52 includes a sense resistor 60 coupled in series with Input/Output (I/O) circuitry 62 and other devices on the two-wire process control loop 18. A signal sense circuit 64 is coupled across sense resistor 60 and provides an output to diagnostic circuitry 54. Diagnostic circuitry 54 optionally connects to I/O circuitry 62. I/O circuitry 62 is configured to digitally communicate over process control loop 18 and, in some configurations, is configured to provide power to diagnostic device circuitry which is generated from the loop current I through loop 18. Signal sense circuitry 64 receives a voltage signal generated across sense resistor 60 which is related to the loop current I. Signal sense circuitry can optionally amplify this signal, digitize this signal, and optionally perform additional preprocessing before providing a digital presentation of the voltage signal to diagnostic circuitry 54. Signal sense circuitry 64 can comprise, for example, a digital signal processing (dsp) integrated circuit and associated hardware.



FIG. 5 is a simplified diagram of a diagnostic device configured as a process variable transmitter or process controller. In FIG. 5, diagnostic circuitry 54 is shown as implemented in a digital controller 70 and memory 72. Controller 70 can comprise, for example, a microprocessor or the like which operates in accordance with programming instructions in memory 72. A process interface 76 can comprise a process variable sensor for sensing a process variable, or can comprise a control element for controlling a process, for example by positioning a valve. When configured as a process variable sensor, element 74 comprises an analog to digital converter and related circuitry which provides a digital signal representation to controller 70. Controller 70 is configured to transmit information related to the sensed process variable over loop 18. Similarly, if process interface 76 is configured as a control element, element 74 comprises a digital to analog converter and related circuitry which converts a digital signal from controller 70 to an analog value for controlling the process.


The diagnostic device can be implemented in any of the example devices illustrated in FIG. 1 including a process variable transmitter or controller, a stand-alone diagnostic device 22, or in control room circuitry 20. In one configuration, an optional display 78 is provided which can be used to display diagnostic information to an operator. The display can provide diagnostic help status, and a local display is an indication of all devices on a loop segment. In an intrinsically safe configuration, the diagnostics can be located on the intrinsically safe side of the intrinsic safety barrier thereby providing more detailed and accurate diagnostics, including diagnostics of the intrinsically safe barrier itself.


The diagnostics performed by diagnostic circuitry 54 can be tailored to each individual two-wire process control loop segment by having the ability to characterize the segment. When the diagnostic device is initially installed on a new or existing segment, the device can analyze the communications from each field device, as each field device performs normal process communications. This information can be saved, for example in memory 72, for future reference conditions for each device individually. This saved data can be used to identify normal operation and provide a baseline for use in subsequent diagnostics. Characterization of each device in this manner allows for more precise diagnostics. Additionally, each device can be compared to standards in accordance with specific communication protocols, such as Fieldbus protocols, to ensure that the device is conforming to appropriate standards.


One example measurement performed by a diagnostic circuitry 54 is based on the amplitude of the digitally modulated analog signal from individual field devices. In such a configuration, the amplitude can be compared with stored threshold values (or amplitude signatures) and if the amplitude is outside of those thresholds a failure indication can be provided. If a single device is failing the test, this can be an indication of a possible failure of the device that transmitted the signal. On the other hand, if multiple devices are failing such a test, this can indicate a problem with something other than a particular device. For example, wiring within a specific segment of loop 18 or a failure of a power supply located in the control room 20, etc. The advantage of such diagnostics includes the detection of an impending failure in a particular two-wire loop segment prior to its actual failure. This allows the two-wire loop segment to be repaired with minimal down time. Additional diagnostics can include the detection of a clipped wave form which may indicate a possible increase in quiescent current of a field device thereby causing unbalanced modulation. Another potential cause of a clipped signal is inadequate terminal voltage at the field device. This may be due to a power supply voltage or, in an intrinsically safe configuration, a faulty intrinsic safety barrier.


In another example configuration, the signal sense circuitry 64 digitizes the digitally modulated analog signal such that the complete signal wave shape is available to diagnostic circuitry 54. In such a configuration, diagnostic circuitry 54 can perform diagnostics on the complete wave shape such that, for example, the rise and fall times of transitions in the signal can be measured. Further, the communication signal can be characterized over time at a particular installation and used as a reference to continually compare a live signal and detect changes in amplitude over time. By comparing the signals from each device to an initial reference, an indication of component failure or damage to the field device can be detected. A change in rise and fall times can also indicate a change in two-wire process control loop 18. Using a combination of amplitude and rise/fall times of the individual field devices, in comparison of the changes to all field devices on the segment, allows for a detailed device and bus analysis. On a normally operating segment, if a single device provides a change in amplitude, that device could be flagged as potentially having an impending failure. If a comparison is done to the other devices on the segment, and those other devices all indicate similar changes in amplitude, then a mechanical/wiring fault, power supply or intrinsic safety barrier fault may be indicated.


In another example configuration, the diagnostic circuitry 54 monitors the current I created in loop 18 using, for example, the sense resistor 60 and an analog to digital converter which measures the voltage drop across the sense resistor 60. By monitoring the DC value of the current I, the diagnostic circuitry 54 can detect improper variations in the DC current. For example, a variation in the DC current can indicate that a device connected to the loop has an increase in its shunt set current which could indicate a pending fault in the media access unit (MAU) circuitry for that particular field device. It may also indicate an electrical short in the two-wire loop wiring. Similarly, a reduction in the segment current can also indicate an impending fault.


The signal sense circuitry 64 and diagnostic circuitry 54 can be implemented in a single component or across a number of components and may share individual components. Preferably, the circuitry should have adequate processing bandwidth to perform the diagnostics in substantially real time. This can be accomplished with a single microprocessor or through the use of a digital signal processor (DSP) or other type of secondary microprocessor. One example of a diagnostic that requires substantial processing bandwidth is monitoring the signal noise on the loop 18 from, for example, the two terminals which are used to connect to loop 18, or between one of the connections to loop 18 and the housing or other electrical ground. With sufficient processing speed, analysis calculations such as a standard deviation, a Root Mean Square (RMS), or a Fast Fourier Transform (FFT) can be performed and used to detect differences in noise characteristics. An increase in noise, for example at 60 Hz from one of the terminals to ground can indicate a possible fault in the electrical grounding.


Another example diagnostic can be through the monitoring of the bit error rate (BERT) of each device connected to the two-wire loop 18. If a single device on the loop 18 shows a trend towards a higher bit error rate than a baseline for a particular installation, this can be an indication that the device is failing and may require service. Depending upon the rate at which the bit error rate increases, an indication can be provided to an operator as either a warning of degradation or an indication of imminent failure. Prediction of this impending failure allows the device to be repaired at the next scheduled maintenance interval.


In another example configuration, I/O circuitry 62 is configured to apply a high frequency pulse to loop 18. This high frequency pulse can be measured by the signal sense circuitry 64 in another device and used to determine electrical impedance on loop 18 between the two devices. The high frequency pulse can be placed during normal bus communications so as to not disrupt communications over the loop 18. By measuring the rise and fall times in amplitude of the received pulse, an impedance measurement can be performed. A comparison of this measurement to a baseline measurement for the installation can be used to provide diagnostics. In one configuration, the high frequency pulse is generated by a simple device, for example, a device which is included in the terminator 24 for the end of the segment of the loop 18 as shown in FIG. 1.


As the total number of devices which can be placed on a segment 18 is limited by the current consumption of all of the devices coupled to the segment, preferably the circuitry of the present invention operates using techniques to reduce power consumption. For example, the diagnostics can be performed during periods when other circuitry in a particular field device does not require additional power.


Although aspects of the diagnostics of the present invention are illustrated as discrete components, various functions can be implemented by a single component or shared between components. Aspects of the present invention can be implemented in software programming (stored in, for example, memory 72), can be implemented in hardware, or can be shared between hardware and software including a Link Active Scheduler (LAS). A Link Active Scheduler (LAS) is a deterministic, centralized bus scheduler that maintains a list of transmission times for all data buffers in all devices that need to be cyclically transmitted. Only one Link Master (LM) device on an H1 fieldbus Link can be functioning as that link's LAS.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As used herein, a two-wire process control loop includes field devices coupled to the loop in addition to loop wiring.

Claims
  • 1. A diagnostic device for coupling to a two-wire process control loop of an industrial process control or monitoring system, comprises: digital communication circuitry configured to receive a digital communication signal from the two-wire process control loop, the digital communication signal comprising a digitally modulated analog signal on the two-wire process control loop which is modulated to a plurality of discrete analog signal levels representative of digital values; anddiagnostic circuitry configured to diagnose operation of the two-wire process control loop based upon the digitally modulated analog signal.
  • 2. The apparatus of claim 1 wherein the digital communication circuitry includes a sense resistor.
  • 3. The apparatus of claim 1 including an analog to digital convertor configured to digitize the digitally modulated analog signal.
  • 4. The apparatus of claim 1 wherein the diagnostic circuitry monitors amplitude of the digitally modulated analog signal.
  • 5. The apparatus of claim 1 wherein the diagnostic circuitry monitors wave shape of the digitally modulated analog signal.
  • 6. The apparatus of claim 1 wherein the diagnostic circuitry monitors a bit error rate (BERT) of digital transmissions on the two-wire process control loop.
  • 7. The apparatus of claim 1 wherein the diagnostic circuitry monitors impedance of the two-wire process control loop.
  • 8. The apparatus of claim 7 wherein the impedance is monitored by receipt of a high frequency signal on the two-wire process control loop.
  • 9. The apparatus of claim 1 wherein the diagnostic circuitry compares a parameter of the digitally modulated analog signal to a stored value and responsively provides a diagnostic output.
  • 10. The apparatus of claim 1 wherein the diagnostic circuitry correlates diagnostic information based upon the digitally modulated analog signal and a particular device on the two-wire process control loop which transmitted the digitally modulated analog signal.
  • 11. The apparatus of claim 1 wherein the diagnostic circuitry performs diagnostics on a device coupled to the two-wire process control loop.
  • 12. The apparatus of claim 1 wherein the diagnostic circuitry performs diagnostics on wiring of the two-wire process control loop.
  • 13. The apparatus of claim 1 including a display configured to display diagnostic information.
  • 14. The apparatus of claim 1 including a process interface for sensing or controlling a process variable of the process.
  • 15. The apparatus of claim 1 wherein the diagnostic device is configured to mount in the field of the industry process control or monitoring system.
  • 16. The apparatus of claim 1 wherein the digital communication circuitry and the diagnostic circuitry are powered with power received from the two-wire process control loop.
  • 17. The apparatus of claim 1 wherein the diagnostic circuitry diagnoses operation of a process device of the two-wire process control loop.
  • 18. A method for diagnosing a two-wire process control loop of the type used in an industrial process control or monitoring system, comprising: receiving digital communication signals from a plurality of devices coupled to the two-wire process control loop, the digital communication signals comprising a digitally modulated analog signal which is modulated to a plurality of discreet analog signal levels representative of digital values;measuring a property of the digitally modulated analog signal;diagnosing operation of the two-wire process control loop based upon the measured property of the digitally modulated analog signal; andproviding an output based upon the diagnosing.
  • 19. The method of claim 18 wherein measuring a property comprises monitoring amplitude of the digitally modulated analog signal.
  • 20. The method of claim 18 wherein measuring a property comprises monitoring wave shape of the digitally modulated analog signal.
  • 21. The method of claim 18 wherein measuring a property comprises monitoring a bit error rate (BERT) of digital transmissions on the two-wire process control loop.
  • 22. The method of claim 18 wherein measuring a property comprises monitoring impedance of the two-wire process control loop.
  • 23. The method of claim 22 wherein measuring a property comprises monitoring by receiving a high frequency signal on the two-wire process control loop.
  • 24. The method of claim 18 including comparing a parameter of the digitally modulated analog signal to a stored value and responsively providing a diagnostic output.
  • 25. The method of claim 18 includes correlating diagnostic information based upon the digitally modulated analog signal and a particular device on the two-wire process control loop which transmitted the signal.
US Referenced Citations (307)
Number Name Date Kind
3096434 King Jul 1963 A
3404264 Kugler Oct 1968 A
3468164 Sutherland Sep 1969 A
3590370 Fleischer Jun 1971 A
3618592 Stewart Nov 1971 A
3688190 Blum Aug 1972 A
3691842 Akeley Sep 1972 A
3701280 Stroman Oct 1972 A
3849637 Caruso et al. Nov 1974 A
3855858 Cushing Dec 1974 A
3948098 Richardson et al. Apr 1976 A
3952759 Ottenstein Apr 1976 A
3973184 Raber Aug 1976 A
RE29383 Gallatin et al. Sep 1977 E
4058975 Gilbert et al. Nov 1977 A
4099413 Ohte et al. Jul 1978 A
4102199 Talpouras Jul 1978 A
4122719 Carlson et al. Oct 1978 A
4249164 Tivy Feb 1981 A
4250490 Dahlke Feb 1981 A
4279013 Dahlke Jul 1981 A
4337516 Murphy et al. Jun 1982 A
4399824 Davidson Aug 1983 A
4417312 Cronin et al. Nov 1983 A
4459858 Marsh Jul 1984 A
4463612 Thompson Aug 1984 A
4517468 Kemper et al. May 1985 A
4528869 Kubo et al. Jul 1985 A
4530234 Cullick et al. Jul 1985 A
4536753 Parker Aug 1985 A
4540468 Genco et al. Sep 1985 A
4571689 Hildebrand et al. Feb 1986 A
4630265 Sexton Dec 1986 A
4635214 Kasai et al. Jan 1987 A
4642782 Kemper et al. Feb 1987 A
4644479 Kemper et al. Feb 1987 A
4649515 Thompson et al. Mar 1987 A
4668473 Agarwal May 1987 A
4686638 Furuse Aug 1987 A
4707796 Calabro et al. Nov 1987 A
4720806 Schippers et al. Jan 1988 A
4736367 Wroblewski et al. Apr 1988 A
4736763 Britton et al. Apr 1988 A
4758308 Carr Jul 1988 A
4777585 Kokawa et al. Oct 1988 A
4807151 Citron Feb 1989 A
4818994 Orth et al. Apr 1989 A
4831564 Suga May 1989 A
4841286 Kummer Jun 1989 A
4853693 Eaton-Williams Aug 1989 A
4873655 Kondraske Oct 1989 A
4907167 Skeirik Mar 1990 A
4924418 Bachman et al. May 1990 A
4926364 Brotherton May 1990 A
4934196 Romano Jun 1990 A
4939753 Olson Jul 1990 A
4964125 Kim Oct 1990 A
4988990 Warrior Jan 1991 A
4992965 Holter et al. Feb 1991 A
5005142 Lipchak et al. Apr 1991 A
5019760 Chu et al. May 1991 A
5025344 Maly et al. Jun 1991 A
5043862 Takahashi et al. Aug 1991 A
5053815 Wendell Oct 1991 A
5057774 Verhelst et al. Oct 1991 A
5067099 McCown et al. Nov 1991 A
5081598 Bellows et al. Jan 1992 A
5089979 McEachern et al. Feb 1992 A
5089984 Struger et al. Feb 1992 A
5098197 Shepard et al. Mar 1992 A
5099436 McCown et al. Mar 1992 A
5103409 Shimizu et al. Apr 1992 A
5111531 Grayson et al. May 1992 A
5121467 Skeirik Jun 1992 A
5122794 Warrior Jun 1992 A
5122976 Bellows et al. Jun 1992 A
5130936 Sheppard et al. Jul 1992 A
5134574 Beaverstock et al. Jul 1992 A
5137370 McCulloch et al. Aug 1992 A
5142612 Skeirik Aug 1992 A
5143452 Maxedon et al. Sep 1992 A
5148378 Shibayama et al. Sep 1992 A
5150289 Badavas Sep 1992 A
5167009 Skeirik Nov 1992 A
5175678 Frerichs et al. Dec 1992 A
5193143 Kaemmerer et al. Mar 1993 A
5197114 Skeirik Mar 1993 A
5197328 Fitzgerald Mar 1993 A
5212765 Skeirik May 1993 A
5214582 Gray May 1993 A
5216226 Miyoshi Jun 1993 A
5224203 Skeirik Jun 1993 A
5228780 Shepard et al. Jul 1993 A
5235527 Ogawa et al. Aug 1993 A
5265031 Malczewski Nov 1993 A
5265222 Nishiya et al. Nov 1993 A
5269311 Kirchner et al. Dec 1993 A
5274572 O'Neill et al. Dec 1993 A
5282131 Rudd et al. Jan 1994 A
5282261 Skeirik Jan 1994 A
5293585 Morita Mar 1994 A
5303181 Stockton Apr 1994 A
5305230 Matsumoto et al. Apr 1994 A
5311421 Nomura et al. May 1994 A
5317520 Castle May 1994 A
5327357 Feinstein et al. Jul 1994 A
5333240 Matsumoto et al. Jul 1994 A
5340271 Freeman et al. Aug 1994 A
5347843 Orr et al. Sep 1994 A
5349541 Alexandro, Jr. et al. Sep 1994 A
5357449 Oh Oct 1994 A
5361628 Marko et al. Nov 1994 A
5365423 Chand Nov 1994 A
5365787 Hernandez et al. Nov 1994 A
5367612 Bozich et al. Nov 1994 A
5384699 Levy et al. Jan 1995 A
5386373 Keeler et al. Jan 1995 A
5388465 Okaniwa et al. Feb 1995 A
5392293 Hsue Feb 1995 A
5394341 Kepner Feb 1995 A
5394543 Hill et al. Feb 1995 A
5404064 Mermelstein et al. Apr 1995 A
5408406 Mathur et al. Apr 1995 A
5408586 Skeirik Apr 1995 A
5410495 Ramamurthi Apr 1995 A
5414645 Hirano May 1995 A
5419197 Ogi et al. May 1995 A
5430642 Nakajima et al. Jul 1995 A
5434774 Seberger Jul 1995 A
5436705 Raj Jul 1995 A
5440478 Fisher et al. Aug 1995 A
5442639 Crowder et al. Aug 1995 A
5467355 Umeda et al. Nov 1995 A
5469070 Koluvek Nov 1995 A
5469156 Kogura Nov 1995 A
5469735 Watanabe Nov 1995 A
5469749 Shimada et al. Nov 1995 A
5481199 Anderson et al. Jan 1996 A
5481200 Voegele et al. Jan 1996 A
5483387 Bauhahn et al. Jan 1996 A
5485753 Burns et al. Jan 1996 A
5486996 Samad et al. Jan 1996 A
5488697 Kaemmerer et al. Jan 1996 A
5489831 Harris Feb 1996 A
5495769 Broden et al. Mar 1996 A
5510799 Maltby et al. Apr 1996 A
5511004 Dubost et al. Apr 1996 A
5526293 Mozumder et al. Jun 1996 A
5539638 Keeler et al. Jul 1996 A
5548528 Keeler et al. Aug 1996 A
5555190 Derby et al. Sep 1996 A
5560246 Bottinger et al. Oct 1996 A
5561599 Lu Oct 1996 A
5570034 Needham et al. Oct 1996 A
5570300 Henry et al. Oct 1996 A
5572420 Lu Nov 1996 A
5573032 Lenz et al. Nov 1996 A
5578763 Spencer et al. Nov 1996 A
5591922 Segeral et al. Jan 1997 A
5598521 Kilgore et al. Jan 1997 A
5600148 Cole et al. Feb 1997 A
5608650 McClendon et al. Mar 1997 A
5623605 Keshav et al. Apr 1997 A
5629870 Farag et al. May 1997 A
5633809 Wissenbach et al. May 1997 A
5637802 Frick et al. Jun 1997 A
5640491 Bhat et al. Jun 1997 A
5644240 Brugger Jul 1997 A
5654869 Ohi et al. Aug 1997 A
5661668 Yemini et al. Aug 1997 A
5665899 Willcox Sep 1997 A
5669713 Schwartz et al. Sep 1997 A
5671335 Davis et al. Sep 1997 A
5672247 Pangalos et al. Sep 1997 A
5675504 Serodes et al. Oct 1997 A
5675724 Beal et al. Oct 1997 A
5680109 Lowe et al. Oct 1997 A
5682317 Keeler et al. Oct 1997 A
5700090 Eryurek Dec 1997 A
5703575 Kirkpatrick Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5705754 Keita et al. Jan 1998 A
5705978 Frick et al. Jan 1998 A
5708211 Jepson et al. Jan 1998 A
5708585 Kushion Jan 1998 A
5710370 Shanahan et al. Jan 1998 A
5710708 Wiegand Jan 1998 A
5713668 Lunghofer et al. Feb 1998 A
5719378 Jackson, Jr. et al. Feb 1998 A
5736649 Kawasaki et al. Apr 1998 A
5741074 Wang et al. Apr 1998 A
5742845 Wagner Apr 1998 A
5746511 Eryurek et al. May 1998 A
5747701 Marsh et al. May 1998 A
5752008 Bowling May 1998 A
5764539 Rani Jun 1998 A
5764891 Warrior Jun 1998 A
5781024 Blomberg et al. Jul 1998 A
5781878 Mizoguchi et al. Jul 1998 A
5790413 Bartusiak et al. Aug 1998 A
5801689 Huntsman Sep 1998 A
5805442 Crater et al. Sep 1998 A
5817950 Wiklund et al. Oct 1998 A
5825664 Warrior et al. Oct 1998 A
5828567 Eryurek et al. Oct 1998 A
5829876 Schwartz et al. Nov 1998 A
5838187 Embree Nov 1998 A
5848383 Yunus Dec 1998 A
5854993 Crichnik Dec 1998 A
5859964 Wang et al. Jan 1999 A
5869772 Storer Feb 1999 A
5876122 Eryurek Mar 1999 A
5880376 Sai et al. Mar 1999 A
5887978 Lunghofer et al. Mar 1999 A
5908990 Cummings Jun 1999 A
5923557 Eidson Jul 1999 A
5924086 Mathur et al. Jul 1999 A
5926778 Pöppel Jul 1999 A
5934371 Bussear et al. Aug 1999 A
5936514 Anderson et al. Aug 1999 A
5940290 Dixon Aug 1999 A
5956663 Eryurek et al. Sep 1999 A
5970430 Burns et al. Oct 1999 A
6002952 Diab et al. Dec 1999 A
6014612 Larson et al. Jan 2000 A
6014902 Lewis et al. Jan 2000 A
6016523 Zimmerman et al. Jan 2000 A
6016706 Yamamoto et al. Jan 2000 A
6017143 Eryurek et al. Jan 2000 A
6023399 Kogure Feb 2000 A
6026352 Burns et al. Feb 2000 A
6038579 Sekine Mar 2000 A
6045260 Schwartz et al. Apr 2000 A
6046642 Brayton et al. Apr 2000 A
6047220 Eryurek Apr 2000 A
6047222 Burns et al. Apr 2000 A
6052655 Kobayashi et al. Apr 2000 A
6061603 Papadopoulos et al. May 2000 A
6072150 Sheffer Jun 2000 A
6094600 Sharpe, Jr. et al. Jul 2000 A
6112131 Ghorashi et al. Aug 2000 A
6119047 Eryurek et al. Sep 2000 A
6119529 Di Marco et al. Sep 2000 A
6139180 Usher et al. Oct 2000 A
6151560 Jones Nov 2000 A
6179964 Begemann et al. Jan 2001 B1
6195591 Nixon et al. Jan 2001 B1
6182501 Furuse et al. Feb 2001 B1
6192281 Brown et al. Feb 2001 B1
6199018 Quist et al. Mar 2001 B1
6209048 Wolff Mar 2001 B1
6236948 Eck et al. May 2001 B1
6237424 Salmasi et al. May 2001 B1
6263487 Stripf et al. Jul 2001 B1
6272438 Cunningham et al. Aug 2001 B1
6289735 Dister et al. Sep 2001 B1
6298377 Hartikainen et al. Oct 2001 B1
6307483 Westfield et al. Oct 2001 B1
6311136 Henry et al. Oct 2001 B1
6317701 Pyostsia et al. Nov 2001 B1
6327914 Dutton Dec 2001 B1
6347252 Behr et al. Feb 2002 B1
6356191 Kirkpatrick et al. Mar 2002 B1
6360277 Ruckley et al. Mar 2002 B1
6370448 Eryurek et al. Apr 2002 B1
6377859 Brown et al. Apr 2002 B1
6396426 Balard et al. May 2002 B1
6397114 Eryurek et al. May 2002 B1
6405099 Nagai et al. Jun 2002 B1
6425038 Sprecher Jul 2002 B1
6434504 Eryurek et al. Aug 2002 B1
6449574 Eryurek et al. Sep 2002 B1
6473656 Langels et al. Oct 2002 B1
6473710 Eryurek Oct 2002 B1
6480793 Martin Nov 2002 B1
6492921 Kunitani et al. Dec 2002 B1
6493689 Kotoulas et al. Dec 2002 B2
6505517 Eryurek et al. Jan 2003 B1
6519546 Eryurek et al. Feb 2003 B1
6532392 Eryurek et al. Mar 2003 B1
6539267 Eryurek et al. Mar 2003 B1
6546814 Choe et al. Apr 2003 B1
6556145 Kirkpatrick et al. Apr 2003 B1
6594603 Eryurek et al. Jul 2003 B1
6601005 Eryurek et al. Jul 2003 B1
6611775 Coursolle et al. Aug 2003 B1
6615149 Wehrs Sep 2003 B1
6654697 Eryurek et al. Nov 2003 B1
6701274 Eryurek et al. Mar 2004 B1
6754601 Eryurek et al. Jun 2004 B1
6758168 Koskinen et al. Jul 2004 B2
6859755 Eryurek et al. Feb 2005 B2
6907383 Eryurek et al. Jun 2005 B2
6970003 Rome et al. Nov 2005 B2
7018800 Huisenga et al. Mar 2006 B2
7085610 Eryurek et al. Aug 2006 B2
7098798 Huisenga et al. Aug 2006 B2
20020013629 Nixon et al. Jan 2002 A1
20020032544 Reid et al. Mar 2002 A1
20020077711 Nixon Jun 2002 A1
20020121910 Rome et al. Sep 2002 A1
20020145568 Winter Oct 2002 A1
20020148644 Schultz et al. Oct 2002 A1
20030033040 Billings Feb 2003 A1
20030045962 Eryurek et al. Mar 2003 A1
20040128034 Lenker et al. Jul 2004 A1
20040249583 Eryurek et al. Dec 2004 A1
Foreign Referenced Citations (94)
Number Date Country
999950 Nov 1976 CA
32 13 866 Oct 1983 DE
35 40 204 Sep 1986 DE
40 08 560 Sep 1990 DE
43 43 747 Jun 1994 DE
44 33 593 Jun 1995 DE
195 02 499 Aug 1996 DE
296 00 609 Mar 1997 DE
197 04 694 Aug 1997 DE
19930660 Jul 1999 DE
199 05 071 Aug 2000 DE
19905071 Aug 2000 DE
299 17 651 Dec 2000 DE
100 36 971 Feb 2002 DE
102 23 725 Apr 2003 DE
0 122 622 Oct 1984 EP
0 413 814 Feb 1991 EP
0 487 419 May 1992 EP
0 512 794 Nov 1992 EP
0 594 227 Apr 1994 EP
0 624 847 Nov 1994 EP
0 644 470 Mar 1995 EP
0 825 506 Jul 1997 EP
0 827 096 Sep 1997 EP
0 838 768 Sep 1997 EP
0 807 804 Nov 1997 EP
1 058 093 May 1999 EP
1 022 626 Jul 2000 EP
2 302 514 Sep 1976 FR
2 334 827 Jul 1977 FR
928704 Jun 1963 GB
1 534 280 Nov 1978 GB
1 534 288 Nov 1978 GB
2 310 346 Aug 1997 GB
2 317 969 Apr 1998 GB
2 342 453 Apr 2000 GB
2 347 232 Aug 2000 GB
57196619 Feb 1982 JP
58-129316 Aug 1983 JP
59-116811 Jul 1984 JP
59-163520 Sep 1984 JP
59-211196 Nov 1984 JP
59-211896 Nov 1984 JP
60-000507 Jan 1985 JP
60-76619 May 1985 JP
60-131495 Jul 1985 JP
60-174915 Sep 1985 JP
62-30915 Feb 1987 JP
62-50901 Sep 1987 JP
64-01914 Jan 1989 JP
64-72699 Mar 1989 JP
2-05105 Jan 1990 JP
3-229124 Oct 1991 JP
4-70906 Mar 1992 JP
5-122768 May 1993 JP
6-95882 Apr 1994 JP
06242192 Sep 1994 JP
06-248224 Oct 1994 JP
7-063586 Mar 1995 JP
07234988 Sep 1995 JP
8-054923 Feb 1996 JP
8-102241 Apr 1996 JP
08-114638 May 1996 JP
8-136386 May 1996 JP
8-166309 Jun 1996 JP
8-247076 Sep 1996 JP
8-313466 Nov 1996 JP
2712625 Oct 1997 JP
2712701 Oct 1997 JP
2753592 Mar 1998 JP
07225530 May 1998 JP
10-232170 Sep 1998 JP
11-083575 Mar 1999 JP
2190267 Sep 2002 RU
WO 9425933 Nov 1994 WO
WO 9523361 Aug 1995 WO
WO 9611389 Apr 1996 WO
WO 9612993 May 1996 WO
WO 9639617 Dec 1996 WO
WO 9721157 Jun 1997 WO
WO 9725603 Jul 1997 WO
WO 9806024 Feb 1998 WO
WO 9813677 Apr 1998 WO
WO 9814855 Apr 1998 WO
WO 9820469 May 1998 WO
WO 9839718 Sep 1998 WO
WO 9919782 Apr 1999 WO
WO 0041050 Jul 2000 WO
WO 0055700 Sep 2000 WO
WO 0070531 Nov 2000 WO
WO 0101213 Jan 2001 WO
WO 0177766 Oct 2001 WO
WO 0190704 Nov 2001 WO
WO 0227418 Apr 2002 WO