Tympanostomy tube delivery device with cutter force clutch

Information

  • Patent Grant
  • 10736785
  • Patent Number
    10,736,785
  • Date Filed
    Monday, December 4, 2017
    6 years ago
  • Date Issued
    Tuesday, August 11, 2020
    3 years ago
Abstract
A tympanostomy tube delivery device comprises a drive assembly and a force limiting shaft assembly. The shaft assembly comprises a cannula and a piercer operable to translate relative to the cannula so as to pierce the tympanic membrane of a patient. The piercer is mechanically coupled with the drive assembly such that actuation of the drive assembly causes translation of the piercer relative to the cannula. The piercer is mechanically coupled with the drive assembly by a clutch. The clutch is resiliently biased to couple the piercer with the drive assembly. The clutch is configured to uncouple the piercer from the drive assembly in response to a threshold force being imposed upon the piercer so as to inhibit translation of piercer relative to the cannula.
Description
BACKGROUND

Some children may exhibit recurrent episodes of otitis media and/or otitis media with effusion. Treatment of severe cases may involve the placement of a pressure equalization tube or tympanostomy tube through the tympanic membrane to provide adequate drainage of the middle ear by providing fluid communication between the middle and outer ear. In particular, such a tube may provide a vent path that promotes drainage of fluid from the middle ear via the Eustachian tube and may thus reduce stress imposed on the tympanic membrane from pressure within the middle ear. This may further reduce the likelihood of future infections and pressure induced ruptures of the tympanic membrane. Pressure equalization tubes may fall out spontaneously within about a year of placement. Exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,052,693, entitled “System and Method for the Simultaneous Automated Bilateral Delivery of Pressure Equalization Tubes,” issued Nov. 8, 2011, the disclosure of which is incorporated by reference herein. Additional exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,249,700, entitled “System and Method for the Simultaneous Bilateral Integrated Tympanic Drug Delivery and Guided Treatment of Target Tissues within the Ears,” issued Aug. 21, 2012; and U.S. Pub. No. 2011/0015645, entitled “Tympanic Membrane Pressure Equalization Tube Delivery System,” published Jan. 20, 2011, the disclosure of which is incorporated by reference herein. Still additional exemplary pressure equalization tube delivery systems are disclosed in U.S. patent application Ser. No. 13/804,553, entitled “Features to Improve and Sense Tympanic Membrane Apposition by Tympanostomy Tube Delivery Instrument,” filed Mar. 14, 2013, the disclosure of which is incorporated by reference herein.


Insertion of a pressure equalization tube may be performed using general anesthesia in some cases, which may require additional resources such as an operating room, the presence of an anesthesiologist, and time in a recovery room. Furthermore, the use of general anesthesia may include certain risks that a patient may or may not be comfortable with undertaking. Some pressure equalization tube delivery systems and methods provide a local anesthetic through iontophoresis. Examples of such systems and methods are disclosed in U.S. Pub. No. 2010/0198135, entitled “Systems and Methods for Anesthetizing Ear Tissue,” published Aug. 5, 2010, the disclosure of which is incorporated by reference herein. Additional examples of such systems and methods are disclosed in U.S. Pat. No. 8,192,420, entitled “Iontophoresis Methods,” issued Jun. 5, 2012, the disclosure of which is incorporated by reference herein.


While a variety of pressure equalization tube delivery systems and methods have been made and used, it is believed that no one prior to the inventor(s) has made or used an invention as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

It is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:



FIG. 1 depicts a perspective view of an exemplary pressure equalization tube delivery device (PETDD);



FIG. 2 depicts a perspective view of the PETDD of FIG. 1, with a housing half omitted;



FIG. 3 depicts an exploded elevational view of actuation features of the PETDD of FIG. 1;



FIG. 4 depicts a perspective view of the distal end of a dilator of the actuation features of FIG. 3;



FIG. 5 depicts a perspective view of the distal end of a shield tube of the actuation features of FIG. 3;



FIG. 6 depicts a perspective view of the distal end of a pusher of the actuation features of FIG. 3;



FIG. 7 depicts a perspective view of the distal end of a piercer of the actuation features of FIG. 3;



FIG. 8 depicts a cross-sectional side view of the actuation features of FIG. 3 with an exemplary pressure equalization (PE) tube;



FIG. 9 depicts a displacement and operational diagram associated with the actuation features of FIG. 3;



FIG. 10 depicts a perspective view of the proximal side of an exemplary PE tube suitable for delivery by the PETDD of FIG. 1;



FIG. 11 depicts a perspective view of the distal side of the PE tube of FIG. 10;



FIG. 12 depicts a distal elevational view of the PE tube of FIG. 10;



FIG. 13 depicts a side elevational view of the PE tube of FIG. 10, positioned within a tympanic membrane;



FIG. 14 depicts a perspective view of an exemplary alternative PETDD;



FIG. 15 depicts a perspective view of the PETDD of FIG. 14, with a housing half omitted;



FIG. 16 depicts a perspective view of a shaft assembly of the PETDD of FIG. 14;



FIG. 17 depicts a side elevational view of a proximal portion of the shaft assembly of FIG. 16;



FIG. 18 depicts a perspective view of a follower of the shaft assembly of FIG. 16;



FIG. 19 depicts a perspective view of a piercer and clutch of the shaft assembly of FIG. 16;



FIG. 20 depicts a side elevational view of a proximal portion of the piercer and clutch of FIG. 19;



FIG. 21 depicts a cross-sectional side elevational view of the proximal portion of the piercer and clutch of FIG. 19;



FIG. 22 depicts an exploded perspective view of the proximal portion of the piercer and clutch of FIG. 19;



FIG. 23 depicts a front elevational view of the clutch of FIG. 19;



FIG. 24A depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with a follower, the piercer of FIG. 19, and the clutch of FIG. 19 in a first longitudinal position;



FIG. 24B depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 24A, the piercer of FIG. 19, and the clutch of FIG. 19 moved distally to a second longitudinal position so as to pierce a tympanic membrane;



FIG. 24C depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 24A, the piercer of FIG. 19, and the clutch of FIG. 19 retracted proximally to the first longitudinal position with a PE tube disposed within a tympanic membrane;



FIG. 25A depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with a follower, the piercer of FIG. 19, and the clutch of FIG. 19 in a first longitudinal position;



FIG. 25B depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 25A and the clutch of FIG. 19 moved distally to a second longitudinal position, and with the piercer of FIG. 19 remaining in the first longitudinal position;



FIG. 25C depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 25A and the clutch of FIG. 19 retracted proximally to the first longitudinal position, and with the piercer of FIG. 19 remaining in the first longitudinal position;



FIG. 26A depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with a follower, the piercer of FIG. 19, and the clutch of FIG. 19 in a first longitudinal position;



FIG. 26B depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 26A, the piercer of FIG. 19, and the clutch of FIG. 19 moved distally to a second longitudinal position so as to pierce a tympanic membrane;



FIG. 26C depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 26A and the clutch of FIG. 19 moved distally to a third longitudinal position, and with the piercer of FIG. 19 remaining in the second longitudinal position;



FIG. 26D depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 26 and the clutch of FIG. 19 retracted proximally to the second longitudinal position, and with the piercer of FIG. 19 remaining in the second longitudinal position; and



FIG. 26E depicts a cross-sectional side elevational view of the shaft assembly of FIG. 16, with the follower of FIG. 26A, the piercer of FIG. 19, and the clutch of FIG. 19 retracted proximally to the first longitudinal position.





The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.


DETAILED DESCRIPTION

The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


I. Exemplary Pressure Equalization Tube Delivery Instrument


As noted above, a pressure equalization (PE) tube may be delivered to the tympanic membrane (TM) of a patient as a way of treating, for example, otitis media. In some instances, a delivery instrument may be used to insert PE tubes in the tympanic membrane (TM) without the use of general anesthesia. FIG. 1 shows an exemplary equalization tube delivery device (PETDD) (100) that may be used in such procedures. It should be understood that PETDD (100) may be used with an endoscope to provide visualization of the tympanic membrane (TM) during use of PETDD (100). It should also be understood that a patient may receive local anesthesia at the tympanic membrane (TM) through a process of iontophoresis before PETDD (100) is actuated to deploy a PE tube. By way of example only, such iontophoresis may be provided in accordance with at least some of the teachings of U.S. Pub. No. 2010/0198135, the disclosure of which is incorporated by reference herein; and/or in accordance with at least some of the teachings of U.S. Pat. No. 8,192,420, the disclosure of which is incorporated by reference herein. Other suitable ways in which PETDD (100) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.


As shown in FIG. 1, PETDD (100) of this example comprises a handpiece (102) and a cannula (120) extending distally from handpiece (102). Handpiece (102) is formed by two housing (104) halves that are joined together and that include internal features configured to support various components of PETDD (100) as will be described below. Handpiece (102) is configured to be handheld, such that an operator may fully operate PETDD (100) using a single hand. A pushbutton (106) is slidably disposed in housing (104) and includes exposed portions extending laterally from each side of handpiece. Pushbutton (106) is operable to be pushed along a path that is transverse to handpiece (102) in order to actuate PETDD (100) as will be described in greater detail below. A pull-pin (108) extends distally from handpiece (102) and is configured to prevent pushbutton (106) from being actuated, thereby preventing PETDD (100) from being actuated, so long as pull-pin (108) is disposed in handpiece (102). Pull-pin (108) is nevertheless removable from handpiece (102) to effectively unlock pushbutton (106) and thereby enable actuation of PETDD (100). Cannula (120) of the present example comprises an elongate tube having a clear tip member (122) at the distal end of cannula (120). Clear tip member (122) is configured to contact a patient's tympanic membrane (TM) while enabling visualization of the distal end of cannula (120). In some versions, tip member (122) is formed of a soft or elastomeric material such as rubber, soft plastic, etc. This may dampen vibrations that might otherwise be transmitted from cannula (120) to the patient's tympanic membrane (TM) during firing of PETDD (100). In addition or in the alternative, tip member (122) may include some other kind of dampening feature as will be apparent to those of ordinary skill in the art in view of the teachings herein.


As can be seen in FIG. 2, housing (104) supports a camshaft (130) and various other components. Camshaft (130) includes a dilator track (132), a shield tube track (134), a stopper track (137), a pusher track (136), and a piercer track (138). Tracks (132, 134, 136, 137, 138) are formed as recesses in camshaft (130) and each track (132, 134, 136, 137, 138) has a unique configuration in order to provide a particular sequence of operation of translating components as will be described in greater detail below. A torsion spring (140) is coupled to the proximal end of camshaft (130). Torsion spring (140) is also grounded against housing (104). Torsion spring (140) resiliently provides a rotational bias to camshaft (130). In particular, torsion spring (140) urges camshaft (130) to rotate in the clockwise direction (viewed from the distal end of PETDD (100) toward the proximal end of PETDD (100)) about the longitudinal axis of camshaft (130). As will be described in greater detail below (200), a trigger mechanism selectively resists such rotation. While torsion spring (140) is used to bias camshaft (130) in the present example, it should be understood that any other suitable types of components may be used to bias camshaft (130).


As shown in FIG. 3, various components are engaged with camshaft (130) and are thereby actuated by rotation of camshaft (130). In particular, a dilator tube (150), a shield tube (160), a pusher tube (170), and a piercer (180) are all engaged with camshaft (130). Tubes (150, 160, 170) and piercer (180) are all coaxially disposed within cannula (120). Piercer (180) is coaxially and slidably disposed within pusher tube (170), which is coaxially and slidably disposed within shield tube (160), which is coaxially and slidably disposed within dilator tube (150), which is coaxially and slidably disposed within cannula (120). Tubes (150, 160, 170) and piercer (180) all translate relative to cannula (120) in a particular sequence in order to deploy a PE tube as will be described in greater detail below. This sequence is driven by rotation of camshaft (130).


A cam follower (152) is fixedly secured to the proximal end of dilator tube (150). Cam follower (152) includes a laterally projecting pin (154) that is disposed in dilator track (132), such that rotation of camshaft (130) causes cam follower (152) and dilator tube (150) to translate. Similarly, a cam follower (162) is fixedly secured to the proximal end of shield tube (160). Cam follower (162) includes a laterally projecting pin (164) that is disposed in shield tube track (134), such that rotation of camshaft (130) causes cam follower (162) and shield tube (160) to translate. A cam follower (172) is fixedly secured to the proximal end of pusher tube (170). Cam follower (172) includes a laterally projecting pin (174) that is disposed in pusher tube track (136), such that rotation of camshaft (130) causes cam follower (172) and pusher tube (170) to translate. Finally, a cam follower (182) is fixedly secured to the proximal end of piercer (180). Cam follower (182) includes a laterally projecting pin (184) that is disposed in piercer track (138), such that rotation of camshaft (130) causes cam follower (182) and piercer (180) to translate. Stopper track (137) is simply annular in this example and includes a fixed elastomeric plug (135). An inwardly protruding boss (not shown) of housing (104) is disposed in stopper track (137). This boss remains disposed in stopper track (137) during rotation of camshaft (130).


As shown in FIG. 4, the distal end of dilator tube (150) includes a plurality of generally flexible leaves (156) that are separated by longitudinally extending gaps (158). Leaves (156) are resiliently biased to assume the inwardly deflected positioning shown in FIG. 4; but are operable to flex outwardly from this positioning as will be described in greater detail below. As shown in FIG. 5, the distal end of shield tube (160) simply includes a circular edge (166). As shown in FIG. 6, the distal end of pusher tube (170) includes a distal face (176). In the present example, the difference between the inner diameter of pusher tube (170) and the outer diameter of pusher tube (170) is greater than the difference between the inner diameter of shield tube (160) and the outer diameter of shield tube (160). Thus, distal face (176) presents a more prominent contact surface than circular edge (166). As shown in FIG. 7, the distal end of piercer (180) includes a sharp, multi-faceted piercer tip (186) that is configured to pierce through a patient's tympanic membrane (TM). In the present example, piercer (180) also includes a neck-down region (188) having a reduced diameter.



FIG. 8 shows the positioning of tubes (150, 160, 170), piercer (180), and PE tube (200) within cannula (120) before camshaft (130) starts rotating from a home position. As shown, piercer tip (186) of piercer (180) is positioned distal to leaves (156) of dilator tube (150), such that leaves (156) are positioned about neck-down region (188) of piercer (180). PE tube (200) is positioned within the distal end of shield tube (160), whose distal edge (166) is just proximal to leaves (156). Pusher tube (170) is proximal to PE tube (200), with distal face (176) of pusher tube (170) abutting the proximal end of PE tube (200). In the present example, PE tube (200) is resiliently biased to assume a rivet-like shape presenting transverse petals (208) and a flange (206) (see FIG. 9). However, PE tube (200) is compressed against this bias, thereby assuming a generally cylindraceous configuration, when PE tube (200) is disposed within shield tube (160) as shown in FIG. 8.



FIG. 9 depicts a sequence of operation that occurs upon rotation of camshaft (130) from a home position to an actuated position, where tracks (132, 134, 136, 138) are shown developed into a flat pattern for purpose of illustration. The sequence starts at the top region of FIG. 9, which shows the distal end of clear tip member (122) contacting the patient's tympanic membrane (TM). At this stage, tubes (150, 160, 170), piercer (180), and PE tube (200) are at the positions shown in FIG. 8. Once camshaft (130) starts rotating at the urging of torsion spring (140), pins (154, 164, 174, 184) begin to ride along their respective tracks (132, 134, 136, 138), such that piercer tip (186) and leaves (156) are driven distally through the patient's tympanic membrane (TM). While not directly shown in FIG. 8, it should be understood that tubes (160, 170, 190) are also driven distally during this transition, though tubes (160, 170, 190) remain proximal to clear tip member (122) at this stage. As camshaft (130) continues to rotate, piercer (180) begins retracting proximally while tubes (160, 170, 190) continue to advance distally. As shown, shield tube (160) spreads leaves (156) outwardly from their default positions. This further dilates the puncture site in the tympanic membrane (TM). Shield tube (160) continues to contain PE tube (200) at this stage. As camshaft (130) continues to rotate, piercer (180) and dilator (150) retract proximally behind clear tip member (122). Shield tube (160) also begins to retract proximally, while pusher tube (170) remains longitudinally stationary. This relative movement uncovers the distal end of PE tube (200), such that the resilient bias of petals (208) causes petals (208) to flex to transverse positions, thereby effectively forming a flange on the far side of the tympanic membrane (TM). Piercer (180) eventually returns to the fully proximal position, dilator (170) eventually returns to the fully proximal position, and pusher tube (170) eventually reaches a fully distal position. As camshaft (130) continues to rotate, shield tube (160) continues to retract proximally while pusher tube (170) remains longitudinally stationary. This relative movement uncovers the proximal end of PE tube (200), such that the resilient bias of PE tube (200) is allowed to form flange (206) on the near side of the tympanic membrane (TM).


Camshaft (130) stops rotating when the inwardly protruding boss of housing (104) engages plug (135) in stopper track (137). The elastomeric nature of plug (135) provides a relatively soft stop, such that plug (135) acts as a damper. This may reduce jolting of PETDD (100) when camshaft (130) comes to a stop and/or may prevent camshaft (130) from making a popping or snapping sound when camshaft (130) comes to a stop. Upon completion of the above described sequence shown in FIG. 9, cannula (120) is withdrawn from the patient's ear, leaving the actuated PE tube (200) in place in the patient's tympanic membrane (TM). Petals (208) and flange (206) cooperate to maintain the position of PE tube (200) in TM, while the passageway (204) formed by the interior of PE tube (200) (see FIGS. 8 and 10-13) provides a path for fluid communication (e.g., venting) between the patient's middle ear and outer ear. This fluid path further provides pressure equalization between the patient's middle ear and outer ear and/or promotes drainage of fluid from the middle ear via the Eustachian tube.


It should be understood that the foregoing components, features, and operabilities of PETDD (100) are merely illustrative examples. A PETDD (100) may include various other features in addition to or in lieu of those described above. By way of example only, any of the devices herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. Some additional merely illustrative variations of PETDD (100) will be described in greater detail below, while other variations of PETDD (100) will be apparent to those of ordinary skill in the art in view of the teachings herein.


II. Exemplary Pressure Equalization Tube



FIGS. 10-13 show PE tube (200) in greater detail. PE tube (200) of this example includes a cylindraceous body (202) that defines a passageway (204). A flange (206) is located at the proximal end of body (202) while a set of petals (208) are located at the distal end of body (202). Flange (206) includes a plurality of inwardly directed recesses (207). Recesses (207) are configured to facilitate flexing of flange (206) from an outwardly extended position to a generally cylindraceous position where the material forming flange (206) extends longitudinally. While three recesses (207) are shown, it should be understood that any other suitable number of recesses (207) may be provided. Similarly, while three petals (208) are shown, it should be understood that any other suitable number of petals (208) may be provided.


PE tube (200) is formed of a resilient material that is biased to assume the rivet like configuration shown in FIGS. 10-13. However, flange (206) and petals (208) may be flexed inwardly toward the longitudinal axis of body (202) to provide PE tube (200) with a cylindraceous configuration. In particular, flange (206) and petals (208) may be flexed such that their outer surfaces are at the same radial distance from the longitudinal axis as the outer perimeter of body (202). This radial distance may be slightly less than the radial distance associated with the inner diameter of shield tube (160), such that PE tube (200) may collapse to fit within shield tube (160). When PE tube (200) is disposed in a tympanic membrane (TM), petals (208) are located medially (i.e., on the middle ear side) while flange (206) is located laterally (i.e., on the outer ear side). By way of example only, PE tube (200) may also be configured in accordance with at least some of the teachings of U.S. patent application Ser. No. 13/800,113, entitled “Tympanic Membrane Pressure Equalization Tube,” filed on Mar. 13, 2013, the disclosure of which is incorporated by reference herein. Other suitable forms that PE tube (200) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.


III. Exemplary Pressure Equalization Tube Delivery with Force Limiting Piercer


It will be appreciated that a piercer (180) of a PETDD (100) may mistakenly or inadvertently come into contact with a surface not intended to be pierced. Such mistaken or inadvertent contact may occur during use of the PETDD (100), particularly during actuation of the piercer (180), or may occur during handling or transportation of the PETDD (100). Thus, it may be desirable to provide a PETDD (100) with features configured limit the force applied to or by the piercer (180). Such force limiting features may limit potential injury and/or damage that may be caused by mistaken or inadvertent contact with the piercer (180). For instance, such features may allow for a piercer (180) to penetrate a tympanic membrane but would not allow the piercer to penetrate human skin or bone. As will be discussed in more detail below, FIGS. 14-26E show such an exemplary alternative PETDD (400) having features configured to limit the force applied to or by the piercer. Various examples of such features will be described in greater detail below; while other examples will be apparent to those of ordinary skill in the art according to the teachings herein. It should be understood that PETDD (400) described below is configured to function substantially similar to PETDD (100) described above except for the differences described below. In particular, PETDD (400) described below may be used to insert PE tube (200) within the tympanic membrane (TM) of a patient.


As shown in FIG. 14, PETDD (400) of this example comprises a handpiece (402) and a cannula (420) extending distally from handpiece (402). Hanpdiece (402) is formed by two housing halves (404) that are joined together and that include internal features configured to support various components of PETDD (400). Handpiece (402) is configured to be handheld, such that an operator may fully operate PETDD (400) using a single hand. Cannula (420) of the present example comprises an elongate tube having a clear tip member (422) at the distal end of cannula (420). Tip member (422) is configured to contact a patient's tympanic membrane (TM) while enabling visualization of the distal end of cannula (420). In some versions, tip member (422) is formed of a soft or elastomeric material such as rubber, soft plastic, etc. This may dampen vibrations that might otherwise be transmitted from cannula (420) to the patient's tympanic membrane (TM) during firing of PETDD (400). In addition or in the alternative, tip member (422) may include some other kind of dampening feature as will be apparent to those of ordinary skill in the art in view of the teachings herein.


As can be seen in FIG. 15, housing (404) supports a camshaft (430) and various other components. Camshaft (430) is configured to operate substantially similar to camshaft (130). For instance, camshaft (430) is configured to rotate to thereby provide a particular sequence of operation of translating components as described above with reference to PETDD (100). Camshaft (430) includes a dilator track (432), a shield tube track (434), a stopper track (437), a pusher track (436), and a piercer track (438). Tracks (432, 434, 436, 437, 438) are configured to operate substantially similar to tracks (132, 134, 136, 137, 138) discussed above. In particular, tracks (432, 434, 436, 437, 438) are formed as recesses in camshaft (430) and each track (432, 434, 436, 437, 438) has a unique configuration in order to provide a particular sequence of operation of translating components. A torsion spring (440) is coupled to the proximal end of camshaft (430). Torsion spring (440) is also grounded against housing (404). Torsion spring (440) resiliently provides a rotational bias to camshaft (430). In particular, torsion spring (440) urges camshaft (430) to rotate in the clockwise direction (viewed from the distal end of PETDD (400) toward the proximal end of PETDD (400)) about the longitudinal axis of camshaft (430). A trigger mechanism (406) selectively resists such rotation. By way of example only, trigger mechanism (406) may be configured to operate in accordance with at least some of the teachings of U.S. patent application Ser. No. 13/804,553, entitled “Features to Improve and Sense Tympanic Membrane Apposition by Tympanostomy Tube Delivery Instrument,” filed Mar. 14, 2013; and/or U.S. patent application Ser. No. 14/457,412 (Now U.S. Pat. No. 9,539,146), entitled “Trigger Assembly for Tympanostomy Tube Delivery Device,”, the disclosures of which are incorporated by reference herein. While torsion spring (440) is used to bias camshaft (430) in the present example, it should be understood that any other suitable types of components may be used to bias camshaft (430).


As shown in FIG. 15, various components are engaged with camshaft (430) and are thereby actuated by rotation of camshaft (430). In particular, a dilator tube (450), a shield tube (460), a pusher tube (470), and a piercer (480) are all engaged with camshaft (430). Tubes (450, 460, 470) and piercer (480) are configured to operate substantially similar to tubes (150, 160, 170) and piercer (180) discussed above except for the differences discussed below. Tubes (450, 460, 470) and piercer (480) are all coaxially disposed within cannula (420). Piercer (480) is coaxially and slidably disposed within pusher tube (470), which is coaxially and slidably disposed within shield tube (460), which is coaxially and slidably disposed within dilator tube (450), which is coaxially and slidably disposed within cannula (420). Tubes (450, 460, 470) and piercer (480) all translate relative to cannula (420) in a particular sequence in order to deploy PE tube (200). This sequence is driven by rotation of camshaft (430) as described above with reference to camshaft (130) and PETDD (100)


A cam follower (452) is fixedly secured to the proximal end of dilator tube (450). Cam follower (452) includes a laterally projecting pin (454) that is disposed in dilator track (432), such that rotation of camshaft (430) causes cam follower (452) and dilator tube (450) to translate. Similarly, a cam follower (462) is fixedly secured to the proximal end of shield tube (460). Cam follower (462) includes a laterally projecting pin (464) that is disposed in shield tube track (434), such that rotation of camshaft (430) causes cam follower (462) and shield tube (460) to translate. A cam follower (472) is fixedly secured to the proximal end of pusher tube (470). Cam follower (472) includes a laterally projecting pin (474) that is disposed in pusher tube track (436), such that rotation of camshaft (430) causes cam follower (472) and pusher tube (470) to translate. Finally, a cam follower (482) is selectively slidably coupled to the proximal end of piercer (480) via a clutch (500). In particular, clutch (500) is fixedly secured to cam follower (482), and piercer (480) is indirectly coupled with piercer (480) via clutch (500). As will be discussed in more detail below, clutch (500) is configured to limit the amount of force that may be applied to and/or by piercer (480). Cam follower (482) includes a laterally projecting pin (484) that is disposed in piercer track (438), such that rotation of camshaft (430) causes cam follower (482) and piercer (480) to translate.


As best seen in FIGS. 21 and 22, a proximal portion of piercer (480) comprises a first cylindrical portion (490), a second cylindrical portion (492), and a third cylindrical portion (494) each having a larger diameter than the former. In particular, third cylindrical portion (494) of the present example has a larger diameter than second cylindrical portion (492), and second cylindrical portion (492) has a larger diameter than first cylindrical portion (490). Second cylindrical portion (492) is located distally of first cylindrical portion (490), and third cylindrical portion (494) is located distally of second cylindrical portion (492). A first chamfered or conical portion (491) provides for transition between a distal end of first cylindrical portion (490) and a proximal end of second cylindrical portion (492). A second chamfered or conical portion (493) provides for transition between a distal end of second cylindrical portion (492) and a proximal end of third cylindrical portion (494). The proximal portion of piercer (480) further comprises a proximal stop (496) located at a proximal end of first cylindrical portion (490). As best seen in FIG. 21, a stepped transition presents a distal face (497) between the proximal end of first cylindrical portion (490) and proximal stop (496). In the present example of piercer (480), an outer diameter of proximal stop (496) is approximately equal to the diameter of third cylindrical portion (494).


As best seen in FIGS. 19-23, clutch (500) of the present example comprises a hollow cylindrical body (502) having a first plurality of generally flexible leaves (504) extending distally from a distal end of cylindrical body (502) and a second plurality of generally flexible leaves (506) extending proximally from a proximal end of cylindrical body (502). Flexible leaves (504, 506) are separated by longitudinally extending gaps (508, 510). Flexible leaves (504, 506) are resiliently biased to assume the inwardly deflected positioning as best seen in FIGS. 20 and 21; but are operable to flex outwardly from this positioning as will be described in greater detail below.


As shown in FIGS. 19-21, in a “home” position, clutch (500) is positioned about first cylindrical portion (490). Clutch (500) is configured such that clutch (500) extends the length of first cylindrical portion (490) (i.e. substantially the length from proximal stop (496) to first conical portion (491)). Thus, as best seen in FIGS. 20 and 21, in the “home” position, the proximal tips of flexible leaves (506) engage distal face (497) of proximal stop (496). It should therefore be understood that in the “home” position, proximal stop (496) will prevent proximal translation of clutch (500) relative to piercer (480) and distal translation of piercer (480) relative to clutch (500). Also in the “home” position, distal tips of flexible leaves (504) engage the exterior surface of first cylindrical portion (490) at a proximal base of first conical portion (491). It should therefore be understood that in the “home” position, conical portion (491) will inhibit distal translation of clutch (500) relative to piercer (480) and proximal translation of piercer (480) relative to clutch (500) unless a force is applied to clutch (500) and/or piercer (480) sufficient to overcome the resilient bias of flexible leaves (504) such that flexible leaves (504) spread to accommodate the diameter of first conical portion (491) and/or second cylindrical portion (492). Thus, it should be understood that upon such a sufficient force being applied to clutch (500) and/or piercer (480), flexible leaves (504) spread to accommodate the diameter of first conical portion (491) and/or second cylindrical portion (492) such that clutch (500) is able to move distally relative to piercer (480) and such that piercer (480) is able to move proximally relative to clutch (500).



FIGS. 24A-24C depict a sequence of normal operation that occurs upon rotation of camshaft (430) from a home position to an actuated position. FIG. 24A shows the positioning of tubes (450, 460, 470), piercer (480), and PE tube (200) within cannula (420) before camshaft (430) starts rotating from a home position. As shown, followers (472, 482) are spaced apart from one another. Pusher tube (470) is fixedly secured within a through-bore (476) of cam follower (472) such that translation of cam follower (472) causes concurrent translation of pusher tube (470). Piercer (480) is slidably disposed within pusher tube (470) such that piercer (480) is operable to translate within and relative to pusher tube (470). Piercer (480) is selectively slidably coupled within a through-bore (488) of cam follower (482) via clutch (500) such that translation of cam follower (482) causes concurrent translation of clutch (500) and piercer (480). (As discussed above, and as will be discussed in more detail below, however, if a force is applied to clutch (500) and/or piercer (480) sufficient to overcome the resilient bias of flexible leaves (504), follower (482) is configured to translate independently of piercer (480).) As shown in FIG. 24B, as follower (482) and clutch (500) translate distally, piercer (480) translates distally as well and contacts the tympanic membrane (TM) so as to pierce the tympanic membrane (TM). The tympanic membrane (TM) resists piercer (480) with a force insufficient to overcome the resilient bias of flexible leaves (504) such that as follower (482) and clutch (500) are further translated distally, piercer (480) continues to translate distally thereby piercing tympanic membrane (TM). After having deployed PE tube (200) within the tympanic membrane (TM) as discussed above with reference to PETDD (100), follower (482) is translated proximally so as to cause concurrent proximal translation of piercer (480) via engagement between flexible leaves (506) of clutch (500) and proximal stop (496) of piercer (480) as shown in FIG. 24C.



FIGS. 25A-25C depict a sequence of operation that occurs upon rotation of camshaft (130) from a home position to an actuated position in which piercer (480) comes into contact with a surface not intended to be pierced (S). Surface (S) may include skin, bone, and/or any other kind of structure or material that has sufficiently greater strength or thickness than tympanic membrane (TM). Such surface (S) may be located within a patient's ear, for example a structure in the middle ear, medial to the tympanic membrane; or may be located outside a patient's ear. FIG. 25A shows the positioning of tubes (450, 460, 470), piercer (480), and PE tube (200) within cannula (420) before camshaft (430) starts rotating from a home position. As shown, followers (472, 482) are spaced apart from one another. Pusher tube (470) is fixedly secured within of cam follower (472) as discussed above. Piercer (480) is selectively slidably secured within cam follower (482) as discussed above. As shown in FIG. 25B, as follower (482) and clutch (500) translate distally, piercer (480) translates distally as well and contacts surface (S). Surface (S) resists piercer (480) with a force sufficient to overcome the resilient bias of flexible leaves (504) such that as follower (482) and clutch (500) are further translated distally, flexible leaves (504) flex outwardly to accommodate first conical portion (491) and second cylindrical portion (492) such that clutch (500) and follower (482) may translate distally relative to piercer (480). Thus, as shown in FIG. 25B, distal translation of follower (482) is not communicated to piercer (480) such that piercer (480) does not translate further distally and pierce surface (S). The drive assembly continues its normal operational sequence of distal advancement of tubes (450, 460, 470) while piercer (480) remains stationary. In some instances, tubes (450, 460, 470) may tend to push PETDD (400) proximally when tubes (450, 460, 470) drive distally into surface (S) while piercer (480) remains stationary. As drive assembly begins the sequence of driving components proximally, follower (482) and clutch (500) are translated proximally independent of piercer (480) until flexible leaves (506) of clutch (500) engage proximal stop (496) of piercer (480) at which point proximal translation of follower (482) will be communicated to piercer (480) as shown in FIG. 25C. As follower (482) and clutch (500) translate proximally, flexible leaves (504) contract along first conical portion (491) to the diameter of first cylindrical portion (490) due to the resilient bias of flexible leaves (504). In some versions, PETDD (400) is ready to fire again at this stage, as the movable components are reset to the initial state shown in FIG. 25A.



FIGS. 26A-26E depict a sequence of operation that occurs upon rotation of camshaft (130) from a home position to an actuated position in which piercer (480) comes into contact with a surface not intended to be pierced (S) after piercing the tympanic membrane (TM). FIG. 26A shows the positioning of tubes (450, 460, 470), piercer (480), and PE tube (200) within cannula (420) before camshaft (430) starts rotating from a home position. As shown, followers (472, 482) are spaced apart from one another. Pusher tube (470) is fixedly secured within of cam follower (472) as discussed above. Piercer (480) is selectively slidably secured within cam follower (482) as discussed above. As shown in FIG. 26B, as follower (482) and clutch (500) translate distally, piercer (480) translates distally as well and contacts the tympanic membrane (TM) so as to pierce the tympanic membrane (TM). The tympanic membrane (TM) resists piercer (480) with a force insufficient to overcome the resilient bias of flexible leaves (504) such that as follower (482) is further translated distally, piercer (480) continues to translate distally thereby piercing the tympanic membrane (TM). As shown in FIG. 25C, as follower (482) and clutch (500) translate further distally, piercer (480) translates distally as well and contacts surface (S). Surface (S) resists piercer (480) with a force sufficient to overcome the resilient bias of flexible leaves (504) such that as follower (482) and clutch (500) are further translated distally, flexible leaves (504) flex outwardly to accommodate first conical portion (491) and second cylindrical portion (492) such that clutch (500) and follower (482) may translate distally relative to piercer (480). Thus, as shown in FIG. 25C, distal translation of follower (482) is not communicated to piercer (480) such that piercer (480) does not pierce surface (S). As drive assembly begins the sequence of driving components proximally, follower (482) and clutch (500) are translated proximally independent of piercer (480) until flexible leaves (506) of clutch (500) engage proximal stop (496) of piercer (480) (FIG. 26D) at which point proximal translation of follower (482) will be communicated to piercer (480) as shown in FIG. 26E. As follower (482) and clutch (500) translate proximally, flexible leaves (504) contract along first conical portion (491) to the diameter of first cylindrical portion (490) due to the resilient bias of flexible leaves (504). In some versions, PETDD (400) is ready to fire again at this stage, as the movable components are reset to the initial state shown in FIG. 25A.


The force required to overcome the resilient bias of flexible leaves (504), to thereby force the flexible leaves (504) spread apart to accommodate the diameter of first conical portion (491) and/or second cylindrical portion (492), may be manipulated or fine tuned by changing various parameters, including but not limited to the following: the material of clutch (500); the surface finish of first conical portion (491), second cylindrical portion (492), and/or flexible leaves (504); the angle of first conical portion (491) relative to first cylindrical portion (490); and/or other characteristics of piercer (480) and/or clutch (500) as will be understood by one of ordinary skill in the art. It should also be appreciated that, although clutch (500) of the present example provides selective communication of movement to piercer (480) via flexible leaves (504, 506), clutch (500) may additionally or alternatively comprise magnets, buckling elements, breakaway components, and/or other kinds of features to provide for selective communication of movement from cam follower (482) to piercer (480).


The foregoing components, features, and operabilities of PETDD (400) are merely illustrative examples. A PETDD (400) may include various other features in addition to or in lieu of those described above. By way of example only, any of the devices herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. Some additional merely illustrative variations of PETDD (400) will be described in greater detail below, while other variations of PETDD (400) will be apparent to those of ordinary skill in the art in view of the teachings herein.


IV. Miscellaneous


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


By way of example only, versions described herein may be sterilized before and/or after a procedure. In some instances, the device is sterilized using conventional ethylene oxide sterilization techniques and systems. In some other instances, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag; and the container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, steam, etc.


Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.

Claims
  • 1. An apparatus, comprising: a handpiece having a cannula extending from the handpiece;a piercer disposed at least partially within the cannula, the piercer comprising a first cylindrical portion, a second cylindrical portion having a diameter larger than the first cylindrical portion, and a conical portion between the first cylindrical portion and the second cylindrical portion;a clutch having a flexible leaf, the clutch has a first orientation in which the flexible leaf directly abuts the conical portion;a driver releasably coupled to the piercer via the clutch and configured to drive the piercer; anda drive assembly coupled to the driver and configured to move the driver to translate the piercer relative to the handpiece;the clutch has a second orientation, responsive to a force greater than a threshold force applied to the piercer, in which the flexible leaf directly abuts the second cylindrical portion, such that the driver can move in a distal direction relative to the piercer.
  • 2. The apparatus of claim 1, wherein the flexible leaf further comprises a flexible portion bendable between the first orientation in which the flexible leaf directly abuts the conical portion, and the second orientation in which the flexible portion directly abuts the second cylindrical portion.
  • 3. The apparatus of claim 2, wherein the flexible leaf is biased to the first orientation.
  • 4. The apparatus of claim 2, wherein the clutch further comprises a second flexible leaf configured to abut the conical portion in the first orientation, and configured to abut the second cylindrical portion in the second orientation.
  • 5. The apparatus of claim 1, wherein the driver is a cam follower, the cam follower releasably coupled to the piercer via the clutch,the drive assembly including a cam engaged with the cam follower and configured to rotate to move the cam follower.
  • 6. The apparatus of claim 5, wherein the clutch is fixed to the cam follower and releasably engaged with the piercer.
  • 7. The apparatus of claim 5, wherein the clutch is disposed within a bore defined by the cam follower.
  • 8. An apparatus, comprising: a means for piercing tissue;a cam follower engageable with a cam, the cam configured to move the cam follower to drive the piercing element;a means for selectively coupling the cam follower to the means for piercing tissue, the means for selectively piercing configured to decouple the cam follower from the means for piercing tissue in response to a force greater than a threshold force acting on the means for piercing tissue.
  • 9. The apparatus of claim 8, wherein the cam follower defines a bore and the means for selectively coupling is disposed within the bore.
  • 10. The apparatus of claim 8, wherein the means for selectively is fixed to the cam follower and releasably engaged with the means for piercing tissue.
  • 11. The apparatus of claim 8, wherein the means for selectively coupling includes a flexible portion bendable between a first configuration in which the flexible portion is engaged with a portion of the means for piercing tissue and the cam follower is coupled to the means for piercing tissue and a second configuration in which the flexible portion is disengaged from the portion of the piercing element and the cam follower is decoupled from the means for piercing tissue.
  • 12. The apparatus of claim 8, wherein the means for piercing tissue includes: a first cylindrical portion having a first diameter;a second cylindrical portion having a second diameter larger than the first diameter; anda transition portion connecting the first cylindrical portion to the second cylindrical portion,the means for selectively coupling configured to engage at least one of the first cylindrical portion and the transition portion when the cam follower is coupled to the piercing element.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/457,266, filed Aug. 12, 2014, titled “Tympanostomy Tube Delivery Device with Cutter Force Clutch,” the contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (247)
Number Name Date Kind
858673 Roswell Jul 1907 A
1920006 Dozier et al. Jul 1933 A
2162681 Ryan Jun 1939 A
3473170 Haase et al. Oct 1969 A
3638643 Hotchkiss Feb 1972 A
3741197 Sanz et al. Jun 1973 A
3807404 Weissman et al. Apr 1974 A
3888258 Akiyama Jun 1975 A
3897786 Garnett et al. Aug 1975 A
3913584 Walchle et al. Oct 1975 A
3948271 Akiyama Apr 1976 A
3991755 Vernon et al. Nov 1976 A
4168697 Cantekin Sep 1979 A
4335713 Komiya Jun 1982 A
4335715 Kirkley Jun 1982 A
4380998 Kieffer, III et al. Apr 1983 A
4406282 Parker et al. Sep 1983 A
4468218 Armstrong Aug 1984 A
4473073 Darnell Sep 1984 A
4552137 Strauss Nov 1985 A
4564009 Brinkhoff Jan 1986 A
4712537 Pender Dec 1987 A
4750491 Kaufman et al. Jun 1988 A
4796624 Trott et al. Jan 1989 A
4800876 Fox et al. Jan 1989 A
4913132 Gabriel Apr 1990 A
4946440 Hall Aug 1990 A
4964850 Bouton et al. Oct 1990 A
4968296 Ritch et al. Nov 1990 A
4971076 Densert et al. Nov 1990 A
5026378 Goldsmith, III Jun 1991 A
5044373 Northeved et al. Sep 1991 A
5047007 McNichols et al. Sep 1991 A
5053040 Goldsmith, III Oct 1991 A
5092837 Ritch et al. Mar 1992 A
5107861 Narboni Apr 1992 A
5135478 Sibalis Aug 1992 A
5158540 Wijay Oct 1992 A
5178623 Cinberg et al. Jan 1993 A
5254120 Cinberg et al. Oct 1993 A
5261903 Dhaliwal et al. Nov 1993 A
D352780 Glaeser et al. Nov 1994 S
5370656 Shevel Dec 1994 A
5421818 Arenberg Jun 1995 A
5466239 Cinberg et al. Nov 1995 A
5489286 Cinberg et al. Feb 1996 A
5496329 Reisinger Mar 1996 A
D378611 Croley Mar 1997 S
5610988 Miyahara Mar 1997 A
5643280 Del Rio et al. Jul 1997 A
5645584 Suyama Jul 1997 A
5658235 Priest et al. Aug 1997 A
5674196 Donaldson et al. Oct 1997 A
5676635 Levin Oct 1997 A
5681323 Arick Oct 1997 A
D387863 Herman et al. Dec 1997 S
5707383 Bays et al. Jan 1998 A
5775336 Morris Jul 1998 A
5782744 Money Jul 1998 A
5792100 Shantha Aug 1998 A
5810848 Hayhurst Sep 1998 A
5827295 Del Rio et al. Oct 1998 A
5893828 Uram Apr 1999 A
5893837 Eagles et al. Apr 1999 A
5984930 Maciunas et al. Nov 1999 A
D418223 Phipps et al. Dec 1999 S
D420741 Croley Feb 2000 S
6022342 Mukherjee Feb 2000 A
6024726 Hill Feb 2000 A
6039748 Savage et al. Mar 2000 A
6045528 Arenberg et al. Apr 2000 A
D424197 Sydlowski et al. May 2000 S
6059803 Spilman May 2000 A
D426135 Lee Jun 2000 S
6077179 Liechty, II Jun 2000 A
6110196 Edwards Aug 2000 A
6137889 Shennib et al. Oct 2000 A
6171236 Bonutti Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6200280 Brenneman et al. Mar 2001 B1
6206888 Bicek et al. Mar 2001 B1
6245077 East et al. Jun 2001 B1
6248112 Gambale et al. Jun 2001 B1
6251121 Saadat Jun 2001 B1
6258067 Hill Jul 2001 B1
D450843 McGuckin, Jr. et al. Nov 2001 S
6319199 Sheehan et al. Nov 2001 B1
6358231 Schindler et al. Mar 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6416512 Ellman et al. Jul 2002 B1
6440102 Arenberg et al. Aug 2002 B1
6447522 Gambale et al. Sep 2002 B2
6475138 Schechter et al. Nov 2002 B1
6512950 Li et al. Jan 2003 B2
6514261 Randall et al. Feb 2003 B1
6520939 Lafontaine Feb 2003 B2
6522827 Loeb et al. Feb 2003 B1
6553253 Chang Apr 2003 B1
6645173 Liebowitz Nov 2003 B1
6648873 Arenberg et al. Nov 2003 B2
6663575 Leysieffer Dec 2003 B2
6682558 Tu et al. Jan 2004 B2
6770080 Kaplan et al. Aug 2004 B2
6916159 Rush et al. Jul 2005 B2
6962595 Chamness et al. Nov 2005 B1
7127285 Henley et al. Oct 2006 B2
7137975 Miller et al. Nov 2006 B2
D535027 James et al. Jan 2007 S
7160274 Ciok et al. Jan 2007 B2
7344507 Briggs et al. Mar 2008 B2
7351246 Epley Apr 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
D595410 Luzon Jun 2009 S
7563232 Freeman et al. Jul 2009 B2
D598543 Vogel et al. Aug 2009 S
7654997 Makower et al. Feb 2010 B2
7677734 Wallace Mar 2010 B2
7704259 Kaplan et al. Apr 2010 B2
7749254 Sobelman et al. Jul 2010 B2
D622842 Benoist Aug 2010 S
7909220 Viola Mar 2011 B2
D640374 Liu et al. Jun 2011 S
8052693 Shahoian Nov 2011 B2
8192420 Morriss et al. Jun 2012 B2
8249700 Clifford et al. Aug 2012 B2
8282648 Tekulve Oct 2012 B2
8409175 Lee et al. Apr 2013 B2
8425488 Clifford et al. Apr 2013 B2
8498425 Graylin Jul 2013 B2
8518098 Roeder et al. Aug 2013 B2
8702722 Shahoian Apr 2014 B2
8840602 Morriss et al. Sep 2014 B2
8849394 Clifford et al. Sep 2014 B2
8864774 Liu et al. Oct 2014 B2
8998927 Kaplan et al. Apr 2015 B2
9011363 Clopp et al. Apr 2015 B2
9023059 Loushin et al. May 2015 B2
9216112 Clifford et al. Dec 2015 B2
9320652 Andreas et al. Apr 2016 B2
9387124 Clifford Jul 2016 B2
9539146 Girotra et al. Jan 2017 B2
9681891 Andreas et al. Jun 2017 B2
9707131 Shahoian Jul 2017 B2
9770366 Liu et al. Sep 2017 B2
9833359 Clopp Dec 2017 B2
9833360 Andreas et al. Dec 2017 B2
9833601 Clifford Dec 2017 B2
10130515 Kaplan et al. Nov 2018 B2
10195086 Van et al. Feb 2019 B2
10219950 Andreas et al. Mar 2019 B2
10258776 Clifford et al. Apr 2019 B2
20010020173 Klumb et al. Sep 2001 A1
20020026125 Leysieffer Feb 2002 A1
20020069883 Hirchenbain Jun 2002 A1
20020111585 Lafontaine Aug 2002 A1
20020138091 Pflueger Sep 2002 A1
20020161379 Kaplan et al. Oct 2002 A1
20020169456 Tu et al. Nov 2002 A1
20030018291 Hill et al. Jan 2003 A1
20030040717 Saulenas et al. Feb 2003 A1
20030060799 Arenberg et al. Mar 2003 A1
20030097178 Roberson et al. May 2003 A1
20030120292 Park et al. Jun 2003 A1
20030187456 Perry Oct 2003 A1
20030199791 Boecker et al. Oct 2003 A1
20040054339 Ciok et al. Mar 2004 A1
20040064024 Sommer Apr 2004 A1
20050033343 Chermoni Feb 2005 A1
20050070765 Abdelgany et al. Mar 2005 A1
20050165368 Py et al. Jul 2005 A1
20050182385 Epley Aug 2005 A1
20050187546 Bek et al. Aug 2005 A1
20050203552 Laufer et al. Sep 2005 A1
20050235422 Wallace Oct 2005 A1
20050240147 Makower et al. Oct 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060095050 Hartley et al. May 2006 A1
20060142700 Sobelman et al. Jun 2006 A1
20060155304 Kaplan et al. Jul 2006 A1
20060161218 Danilov Jul 2006 A1
20060163313 Larson Jul 2006 A1
20060282062 Ishikawa et al. Dec 2006 A1
20070088247 Bliweis et al. Apr 2007 A1
20070233222 Roeder et al. Oct 2007 A1
20070276466 Lavelle et al. Nov 2007 A1
20080027423 Choi et al. Jan 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080212416 Polonio et al. Sep 2008 A1
20080262468 Clifford et al. Oct 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080262510 Clifford Oct 2008 A1
20090163828 Turner et al. Jun 2009 A1
20090171242 Hibner Jul 2009 A1
20090171271 Webster et al. Jul 2009 A1
20090209972 Loushin et al. Aug 2009 A1
20090299344 Lee et al. Dec 2009 A1
20090299379 Katz et al. Dec 2009 A1
20090299433 Dingman et al. Dec 2009 A1
20100041447 Graylin Feb 2010 A1
20100048978 Sing et al. Feb 2010 A1
20100061581 Soetejo et al. Mar 2010 A1
20100160819 Parihar et al. Jun 2010 A1
20100198135 Morriss et al. Aug 2010 A1
20100217296 Morriss et al. Aug 2010 A1
20100274188 Chang et al. Oct 2010 A1
20100324488 Smith Dec 2010 A1
20110015645 Liu et al. Jan 2011 A1
20110022069 Mitusina Jan 2011 A1
20110077579 Harrison et al. Mar 2011 A1
20110288559 Shahoian Nov 2011 A1
20120074200 Schmid et al. Mar 2012 A1
20120130252 Pohjanen et al. May 2012 A1
20120179187 Loushin et al. Jul 2012 A1
20120265097 Melchiorri et al. Oct 2012 A1
20120283563 Moore et al. Nov 2012 A1
20120310145 Clifford et al. Dec 2012 A1
20130030456 Assell et al. Jan 2013 A1
20130090544 Clifford et al. Apr 2013 A1
20130338678 Loushin et al. Dec 2013 A1
20140094733 Clopp et al. Apr 2014 A1
20140100584 Konstorum et al. Apr 2014 A1
20140194891 Shahoian Jul 2014 A1
20140276906 Andreas et al. Sep 2014 A1
20140277050 Andreas et al. Sep 2014 A1
20150142029 Fahn et al. May 2015 A1
20150164695 Liu et al. Jun 2015 A1
20150209509 O'Cearbhaill et al. Jul 2015 A1
20150305944 Kaplan et al. Oct 2015 A1
20150320550 Downing et al. Nov 2015 A1
20160038341 Clopp et al. Feb 2016 A1
20160038342 Van et al. Feb 2016 A1
20160045369 Clopp Feb 2016 A1
20160045370 Andreas et al. Feb 2016 A1
20160045371 Girotra et al. Feb 2016 A1
20160213519 Andreas et al. Jul 2016 A1
20170209310 Girotra et al. Jul 2017 A1
20170281230 Andreas et al. Oct 2017 A1
20180055693 Liu et al. Mar 2018 A1
20180085258 Andreas et al. Mar 2018 A1
20180085563 Clifford et al. Mar 2018 A1
20180303673 Clopp et al. Oct 2018 A1
20180304059 Clifford et al. Oct 2018 A1
20190083318 Kaplan et al. Mar 2019 A1
20190201242 Andreas et al. Jul 2019 A1
20190314205 Van et al. Oct 2019 A1
Foreign Referenced Citations (38)
Number Date Country
86105171 Mar 1987 CN
2635015 Aug 2004 CN
1933761 Mar 2007 CN
102122067 Jul 2011 CN
12510746 Jun 2012 CN
102920491 Feb 2013 CN
103327881 Sep 2013 CN
107072690 Aug 2017 CN
19618585 Nov 1997 DE
19918288 Oct 2000 DE
0214527 Mar 1987 EP
2526656 Nov 1983 FR
H 07-116190 May 1995 JP
2012-533359 Dec 2012 JP
2013-543396 Dec 2013 JP
201200098 Jan 2012 TW
WO 1999011175 Mar 1999 WO
WO 1999017825 Apr 1999 WO
WO 2001028407 Apr 2001 WO
WO 2002056756 Jul 2002 WO
WO 2006119512 Nov 2006 WO
WO 2008030485 Mar 2008 WO
WO 2008036368 Mar 2008 WO
WO 2008131195 Oct 2008 WO
WO 2009010788 Jan 2009 WO
WO 2009105619 Aug 2009 WO
WO 2011008948 Jan 2011 WO
WO 2012040430 Mar 2012 WO
WO 2012040600 Mar 2012 WO
WO 2012054934 Apr 2012 WO
WO 2014075949 May 2014 WO
WO 2014143543 Sep 2014 WO
WO 2014158571 Oct 2014 WO
WO 2016022899 Feb 2016 WO
WO 2016025308 Feb 2016 WO
WO 2016025309 Feb 2016 WO
WO 2016025310 Feb 2016 WO
WO 2016025453 Feb 2016 WO
Non-Patent Literature Citations (65)
Entry
Patent Examination Report No. 1 for Australian Patent Application No. 2013209354, dated Oct. 13, 2014, 5 pages.
First Office Action for Chinese Patent Application No. 200880020861.9, dated Jul. 12, 2011, 10 pages.
Second Office Action for Chinese Patent Application No. 200880020861.9, dated Dec. 31, 2011, 3 pages.
Search Report for Chinese Patent Application No. 201310047126.X, dated Mar. 6, 2015, 2 pages.
Second Office Action for Chinese Patent Application No. 201310047126.X, dated Mar. 16, 2015, 10 pages.
Office Action for European Application No. 08746237.0, dated Mar. 24, 2016, 3 pages.
Office Action for European Application No. 08746237.0, dated Aug. 4, 2015, 7 pages.
Supplementary Partial Search Report for European Application No. 08746237.0, dated Jun. 30, 2014, 9 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 20, 2012, 4 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 12, 2013, 4 pages.
International Search Report for International Application No. PCT/US2008/060779, dated Sep. 3, 2008.
Written Opinion for International Application No. PCT/US2008/060779, dated Sep. 3, 2008.
International Preliminary Report on Patentability for International Application No. PCT/US2008/060779, dated Nov. 17, 2009.
Office Action for U.S. Appl. No. 11/749,729, dated May 26, 2011, 11 pages.
Office Action for U.S. Appl. No. 11/749,729, dated Jun. 17, 2010, 8 pages.
Office Action for U.S. Appl. No. 11/749,733, dated Jun. 10, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/749,733, dated Dec. 2, 2008, 9 pages.
U.S. Appl. No. 61/085,360, filed Jul. 31, 2008.
International Search Report for International Application No. PCT/US2009/052395, dated Nov. 6, 2009.
Written Opinion for International Application No. PCT/US2009/052395, dated Nov. 6, 2009.
International Search Report and Written Opinion t for International Application No. PCT/US2010/058718, dated Feb. 17, 2011.
Written Opinion for International Application No. PCT/US2010/058718, dated Feb. 17, 2011.
U.S. Appl. No. 61/225,893, filed Jul. 15, 2009.
Patent Examination Report No. 1 for Australian Application No. 2010273372, dated Nov. 12, 2014, 2 pages.
Office Action for Canadian Application No. 2,768,009, dated Aug. 4, 2016, 4 pages.
First Office Action for Chinese Application No. 201080041755.6, dated Jul. 3, 2013.
Notification of Reasons for Refusal for Japanese Application No. 2012-520778, dated Feb. 18, 2014.
Communication of the Substantive Examination Report for Mexican Application No. MX/a/2012/000691, dated Apr. 24, 2014.
International Search Report for International Application No. PCT/US2010/042128, dated Aug. 27, 2010.
Written Opinion International Application No. PCT/US2010/042128, dated Aug. 27, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2010/042128, dated Jan. 17, 2012.
European Search Report for European Application No. 13173409.7, dated Sep. 16, 2013.
International Search Report and Written Opinion for International Patent Application No. PCT/US2015/044179, dated Dec. 18, 2015, 15 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/018320, dated Jun. 2, 2014, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/018347, dated Apr. 17, 2014, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044173, dated Oct. 12, 2015, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044177, dated Oct. 30, 2015, 10 pages.
Office Action for U.S. Appl. No. 14/457,266, dated May 18, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/457,266, dated Dec. 22, 2016, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044183, dated Nov. 4, 2015, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044610, dated Nov. 5, 2015, 12 pages.
International Search Report for International Application No. PCT/US2009/069388, dated Jun. 30, 2010.
Written Opinion for International Application No. PCT/US2009/069388, dated Jun. 30, 2010.
Comeau, M. et al., “Local Anesthesia of the Ear by lontophoresis,” vol. 98, Arch. Otolaryngol., pp. 114-120 (Aug. 1973).
Comeau, M. et al., “Anesthesia of the Human Tympanic Membrane by Iontophoresis of a Local Anesthetic,” The Larynogoscope, vol. 88, pp. 277-285 (1978).
Echols, D. F. et al., “Anesthesia of the Ear by Iontophoresis of Lidocaine,” Arch. Otolaryngol., vol. 101, pp. 418-421 (Jul. 1975).
Epley, J. M., “Modified Technique of Iontophoretic Anesthesia for Myringotomy in Children,” Arch. Otolaryngol., vol. 103, pp. 358-360 (Jun. 1977).
Hasegawa, M. et al., “lontophorectic anaesthesia of the tympanic membrane,” Clinical Otolaryngoloy, vol. 3, pp. 63-66 (1978).
Ramsden, R. T. et al., “Anaesthesia of the tympanic membrane using iontophoresis,” The Journal of Laryngology and Otology, 56(9):779-785 (Sep. 1977).
“Definition of Plenum,” Compact Oxford English Dictionary [online], Retrieved from the Internet: <http://oxforddictionaries.com/definition/english/plenum>, Retrieved on Aug. 6, 2012, 2 pages.
“Definition of Plenum,” Merriam-Webster's Online Dictionary, 11th Edition [online], Retrieved from the Internet: <http://www.merriam-webster.com/dictionary/plenum>, Retrieved on Aug. 14, 2012, 1 page.
Medtronic XOMED, “Activent® Antimicrobial Ventilation Tubes,” Rev. 1.1, pp. 1-4, 2002, Jacksonville, FL.
Micromedics Innovative Surgical Products, “Micromedics Tympanostomy Tubes,” [online], Retrieved on Jul. 15, 2010, Retrieved from the Internet <URL: http://www.micromedics-usa.com/products/otolocy/micromedicstubes.htm>, 7 pages.
Armstrong, “A New Treatment for Chronic Secretory Otitis Media” A.M.A. Archives of Otolaryngology, pp. 653-654 (1954).
Feuerstein, “A Split-Tube Prosthesis in Serous Otitis Media” Sixty-ninth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 18-23, 1964, Chicago, IL, pp. 343-344.
Jurgens. et al., “Three New Middle Ear Ventilation Tubes” Seventy-sixth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Sep. 20-24, 1971, Las Vegas, NV, pp. 1017-1019 (1971).
Lindeman et al., “The Arrow Tube” Residents in Otolaryngology, Massachusetts Eye and Ear Infirmary, 1 page (1964).
Pappas, “Middle Ear Ventilation Tubes” Meeting of the Southern Section of the American Laryngological, Rhinological and Otological Society, Inc., Williamsburg, VA, Jan. 12, 1974, pp. 1098-1117.
Per-Lee, “A Wide Flanged Middle Ear Ventilation Tube” Seventy-first Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 16-21, 1966, Chicago, IL, pp. 358-359.
Reuter, “The Stainless Bobbin Middle Ear Ventilation Tube” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, pp. 121-122.
Ringenberg, “A New Middle Ear Ventilation Device” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, 1 page.
Schmidt et al. “Transtympanic Aeration of the Middle Ear With Blocked Eustachian Tube” Acta Otolaryng., pp. 277-282 (1965).
Sheehy, “Collar Button Tube for Chronic Serous Otitis” Sixty-eighth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 20-25, 1963, New York, NY, pp. 888-889.
Santa Barbara Medco, Inc. “Otological Ventilation Tubes” Product Brochure from http://www.sbmedco.com/ptfe_shepard.asp, 8 pages (Feb. 11, 2001).
Rhinology Products, Boston Medical Products, www.bosmed.com, pp. 1-16.
Related Publications (1)
Number Date Country
20180116876 A1 May 2018 US
Continuations (1)
Number Date Country
Parent 14457266 Aug 2014 US
Child 15830448 US