Tympanostomy tube delivery device with rotatable

Information

  • Patent Grant
  • 10195086
  • Patent Number
    10,195,086
  • Date Filed
    Monday, August 11, 2014
    9 years ago
  • Date Issued
    Tuesday, February 5, 2019
    5 years ago
  • CPC
  • Field of Search
    • CPC
    • A61F11/002
    • A61F11/004
    • A61F11/006
    • A61F11/00
    • A61B17/3415
    • A61B17/3417
    • A61B17/8819
    • A61B17/32002
    • A61B17/320016
    • A61B17/34
    • A61B17/3421
    • A61B2017/3447
    • A61B2017/3443
    • A61B2017/3445
    • A61B2017/3449
    • A61B2017/00477
    • A61B2017/00787
    • A61B2017/00367
    • A61B2017/00389
    • A61B2017/00305
    • A61B2017/00309
    • A61B2017/00331
    • A61B2017/00353
    • A61B2017/320032
    • A61B2017/3433
    • A61B2010/0208
    • A61B5/150511
    • A61M25/0138
  • International Classifications
    • A61F11/00
    • A61B90/00
Abstract
An instrument comprises a shaft assembly, a handpiece body, and a drive assembly. The shaft assembly comprises a plurality of coaxially arranged shafts and a tympanostomy tube. The shaft assembly further includes a flexible section. The shaft assembly extends distally from the handpiece body. The drive assembly is operable to drive the shafts of the shaft assembly in a predetermined sequence to deploy the tympanostomy tube. One or more of the shafts are configured to translate along the flexible section of the shaft assembly as a part of the predetermined sequence to deploy the tympanostomy tube.
Description
BACKGROUND

Some children may exhibit recurrent episodes of otitis media and/or otitis media with effusion. Treatment of severe cases may involve the placement of a pressure equalization tube or tympanostomy tube through the tympanic membrane to provide adequate drainage of the middle ear by providing fluid communication between the middle and outer ear. In particular, such a tube may provide a vent path that promotes drainage of fluid from the middle ear via the Eustachian tube and may thus reduce stress imposed on the tympanic membrane from pressure within the middle ear. This may further reduce the likelihood of future infections and pressure induced ruptures of the tympanic membrane. Pressure equalization tubes may fall out spontaneously within about a year of placement. Exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,052,693, entitled “System and Method for the Simultaneous Automated Bilateral Delivery of Pressure Equalization Tubes,” issued Nov. 8, 2011, the disclosure of which is incorporated by reference herein. Additional exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,249,700, entitled “System and Method for the Simultaneous Bilateral Integrated Tympanic Drug Delivery and Guided Treatment of Target Tissues within the Ears,” issued Aug. 21, 2012, the disclosure of which is incorporated by reference herein. Still additional exemplary pressure equalization tube delivery systems are disclosed in U.S. Pub. No. 2011/0015645, entitled “Tympanic Membrane Pressure Equalization Tube Delivery System,” published Jan. 20, 2011, the disclosure of which is incorporated by reference herein.


Insertion of a pressure equalization tube may be performed using general anesthesia in some cases, which may require additional resources such as an operating room, the presence of an anesthesiologist, and time in a recovery room. Furthermore, the use of general anesthesia may include certain risks that a patient may or may not be comfortable with undertaking. Some pressure equalization tube delivery systems and methods provide a local anesthetic through iontophoresis. Examples of such systems and methods are disclosed in U.S. Pub. No. 2010/0198135, entitled “Systems and Methods for Anesthetizing Ear Tissue,” published Aug. 5, 2010, the disclosure of which is incorporated by reference herein. Additional examples of such systems and methods are disclosed in U.S. Pat. No. 8,192,420, entitled “Iontophoresis Methods,” issued Jun. 5, 2012, the disclosure of which is incorporated by reference herein.


While a variety of pressure equalization tube delivery systems and methods have been made and used, it is believed that no one prior to the inventor(s) has made or used an invention as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

It is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:



FIG. 1 depicts a perspective view of an exemplary pressure equalization tube delivery device (PETDD);



FIG. 2 depicts a perspective view of the PETDD of FIG. 1, with a housing half omitted;



FIG. 3 depicts an exploded elevational view of actuation features of the PETDD of FIG. 1;



FIG. 4 depicts a perspective view of the distal end of a dilator of the actuation features of FIG. 3;



FIG. 5 depicts a perspective view of the distal end of a shield tube of the actuation features of FIG. 3;



FIG. 6 depicts a perspective view of the distal end of a pusher of the actuation features of FIG. 3;



FIG. 7 depicts a perspective view of the distal end of a piercer of the actuation features of FIG. 3;



FIG. 8 depicts a cross-sectional side view of the actuation features of FIG. 3 with an exemplary pressure equalization (PE) tube;



FIG. 9 depicts a displacement and operational diagram associated with the actuation features of FIG. 3;



FIG. 10 depicts an exploded perspective view of a trigger mechanism of the actuation features of FIG. 3;



FIG. 11 depicts a perspective view of the proximal side of a pawl of the trigger mechanism of FIG. 10;



FIG. 12 depicts a perspective view of the distal side of the pawl of FIG. 11;



FIG. 13 depicts a perspective view of the proximal underside of a button actuator of the trigger mechanism of FIG. 10;



FIG. 14 depicts a bottom plan view of the trigger mechanism of FIG. 10, showing the pawl engaged with the camshaft;



FIG. 15A depicts a cross-sectional view of the trigger mechanism of FIG. 10, taken along line 15-15 of FIG. 14, showing the pawl engaged with the camshaft;



FIG. 15B depicts a cross-sectional view of the trigger mechanism of FIG. 10, taken along line 15-15 of FIG. 14, showing the pawl disengaged from the camshaft, with the button actuator omitted;



FIG. 16A depicts a cross-sectional view of the pawl and button actuator of FIGS. 11 and 13, taken along line 16-16 of FIG. 15A, showing the button actuator arresting the pawl;



FIG. 16B depicts a cross-sectional view of the pawl and button actuator of FIGS. 11 and 13, taken along line 16-16 of FIG. 15A, showing the button actuator translated laterally to enable movement of the pawl;



FIG. 17 depicts a perspective view of the proximal side of an exemplary PE tube suitable for delivery by the PETDD of FIG. 1;



FIG. 18 depicts a perspective view of the distal side of the PE tube of FIG. 17;



FIG. 19 depicts a distal elevational view of the PE tube of FIG. 17;



FIG. 20 depicts a side elevational view of the PE tube of FIG. 17, positioned within a tympanic membrane;



FIG. 21 depicts a perspective view of an exemplary alternative PETDD having a bendable and rotatable shaft assembly;



FIG. 22 depicts a side elevational view of the PETDD of FIG. 21 with an alternative position of the shaft assembly shown in phantom;



FIG. 23 depicts a perspective view of the PETDD of FIG. 21, with a housing half omitted;



FIG. 24 depicts an enlarged perspective view of the shaft assembly of the PETDD of FIG. 21;



FIG. 25 depicts a cross-sectional front view of the shaft assembly of FIG. 24, with the cross-section taken along line 25-25 of FIG. 24;



FIG. 26 depicts a cross-sectional front view of the shaft assembly of FIG. 24, with the cross-section taken along line 26-26 of FIG. 24;



FIG. 27 depicts a cross-sectional side view of the shaft assembly of FIG. 24, with the cross-section taken along line 27-27 of FIG. 24; and



FIG. 28 depicts a side elevational view of the shaft assembly of FIG. 23 in contact with a tympanic membrane.





The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.


DETAILED DESCRIPTION

The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


I. Exemplary Pressure Equalization Tube Delivery Instrument


As noted above, a pressure equalization (PE) tube may be delivered to the tympanic membrane (TM) of a patient as a way of treating, for example, otitis media. In some instances, a delivery instrument may be used to insert PE tubes in the tympanic membrane (TM) without the use of general anesthesia. FIG. 1 shows an exemplary pressure equalization tube delivery device (PETDD) (100) that may be used in such procedures. It should be understood that PETDD (100) may be used with an endoscope to provide visualization of the tympanic membrane (TM) during use of PETDD (100). It should also be understood that a patient may receive local anesthesia at the tympanic membrane (TM) through a process of iontophoresis before PETDD (100) is actuated to deploy a PE tube. By way of example only, such iontophoresis may be provided in accordance with at least some of the teachings of U.S. Pub. No. 2010/0198135, the disclosure of which is incorporated by reference herein; and/or in accordance with at least some of the teachings of U.S. Pat. No. 8,192,420, the disclosure of which is incorporated by reference herein. Other suitable ways in which PETDD (100) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.


As shown in FIG. 1, PETDD (100) of this example comprises a handpiece (102) and a shaft assembly (115) extending distally from handpiece (102). Hanpdiece (102) is formed by two housing (104) halves that are joined together and that include internal features configured to support various components of PETDD (100) as will be described below. Handpiece (102) is configured to be handheld, such that an operator may fully operate PETDD (100) using a single hand. A pushbutton (106) is slidably disposed in housing (104) and includes exposed portions extending laterally from each side of handpiece (102). Pushbutton (106) is operable to be pushed along a path that is transverse to handpiece (102) in order to actuate PETDD (100) as will be described in greater detail below. A pull-pin (108) extends distally from handpiece (102) and is configured to prevent pushbutton (106) from being actuated, thereby preventing PETDD (100) from being actuated, so long as pull-pin (108) is disposed in handpiece (102). Pull-pin (108) is nevertheless removable from handpiece (102) to effectively unlock pushbutton (106) and thereby enable actuation of PETDD (100). Shaft assembly (115) of the present example includes a cannula (120) comprising an elongate tube having a clear tip member (122) at the distal end of cannula (120). Clear tip member (122) is configured to contact a patient's tympanic membrane (TM) while enabling visualization of the distal end of cannula (120). In some versions, tip member (122) is formed of a soft or elastomeric material such as rubber, soft plastic, etc. This may dampen vibrations that might otherwise be transmitted from cannula (120) to the patient's tympanic membrane (TM) during firing of PETDD (100). In addition or in the alternative, tip member (122) may include some other kind of dampening feature as will be apparent to those of ordinary skill in the art in view of the teachings herein.


As can be seen in FIG. 2, housing (104) supports a camshaft (130) and various other components. Camshaft (130) includes a dilator track (132), a shield tube track (134), a stopper track (137), a pusher track (136), and a piercer track (138). Tracks (132, 134, 136, 137, 138) are formed as recesses in camshaft (130) and each track (132, 134, 136, 137, 138) has a unique configuration in order to provide a particular sequence of operation of translating components as will be described in greater detail below. A torsion spring (140) is coupled to the proximal end of camshaft (130). Torsion spring (140) is also grounded against housing (104). Torsion spring (140) resiliently provides a rotational bias to camshaft (130). In particular, torsion spring (140) urges camshaft (130) to rotate in the clockwise direction (viewed from the distal end of PETDD (100) toward the proximal end of PETDD (100)) about the longitudinal axis of camshaft (130). As will be described in greater detail below (200), a trigger mechanism selectively resists such rotation. While torsion spring (140) is used to bias camshaft (130) in the present example, it should be understood that any other suitable types of components may be used to bias camshaft (130).


As shown in FIG. 3, various components are engaged with camshaft (130) and are thereby actuated by rotation of camshaft (130). In particular, a dilator tube (150), a shield tube (160), a pusher tube (170), and a piercer (180) are all engaged with camshaft (130). Tubes (150, 160, 170) and piercer (180) are all coaxially disposed within cannula (120) of shaft assembly (115). Piercer (180) is coaxially and slidably disposed within pusher tube (170), which is coaxially and slidably disposed within shield tube (160), which is coaxially and slidably disposed within dilator tube (150), which is coaxially and slidably disposed within cannula (120). Tubes (150, 160, 170) and piercer (180) all translate relative to cannula (120) in a particular sequence in order to deploy a PE tube as will be described in greater detail below. This sequence is driven by rotation of camshaft (130).


A cam follower (152) is fixedly secured to the proximal end of dilator tube (150). Cam follower (152) includes a laterally projecting pin (154) that is disposed in dilator track (132), such that rotation of camshaft (130) causes cam follower (152) and dilator tube (150) to translate. Similarly, a cam follower (162) is fixedly secured to the proximal end of shield tube (160). Cam follower (162) includes a laterally projecting pin (164) that is disposed in shield tube track (134), such that rotation of camshaft (130) causes cam follower (162) and shield tube (160) to translate. A cam follower (172) is fixedly secured to the proximal end of pusher tube (170). Cam follower (172) includes a laterally projecting pin (174) that is disposed in pusher tube track (136), such that rotation of camshaft (130) causes cam follower (172) and pusher tube (170) to translate. Finally, a cam follower (182) is fixedly secured to the proximal end of piercer (180). Cam follower (182) includes a laterally projecting pin (184) that is disposed in piercer track (138), such that rotation of camshaft (130) causes cam follower (182) and piercer (180) to translate. Stopper track (137) is simply annular in this example and includes a fixed elastomeric plug (135). An inwardly protruding boss (not shown) of housing (104) is disposed in stopper track (137). This boss remains disposed in stopper track (137) during rotation of camshaft (130).


As shown in FIG. 4, the distal end of dilator tube (150) includes a plurality of generally flexible leaves (156) that are separated by longitudinally extending gaps (158). Leaves (156) are resiliently biased to assume the inwardly deflected positioning shown in FIG. 4; but are operable to flex outwardly from this positioning as will be described in greater detail below. As shown in FIG. 5, the distal end of shield tube (160) simply includes a circular edge (166). As shown in FIG. 6, the distal end of pusher tube (170) includes a distal face (176). In the present example, the difference between the inner diameter of pusher tube (170) and the outer diameter of pusher tube (170) is greater than the difference between the inner diameter of shield tube (160) and the outer diameter of shield tube (160). Thus, distal face (176) presents a more prominent contact surface than circular edge (166). As shown in FIG. 7, the distal end of piercer (180) includes a sharp, multi-faceted piercer tip (186) that is configured to pierce through a patient's tympanic membrane (TM). In the present example, piercer (180) also includes a neck-down region (188) having a reduced diameter.



FIG. 8 shows the positioning of tubes (150, 160, 170), piercer (180), and PE tube (200) within cannula (120) before camshaft (130) starts rotating from a home position. As shown, piercer tip (186) of piercer (180) is positioned distal to leaves (156) of dilator tube (150), such that leaves (156) are positioned about neck-down region (188) of piercer (180). PE tube (200) is positioned within the distal end of shield tube (160), whose distal edge (166) is just proximal to leaves (156). Pusher tube (170) is proximal to PE tube (200), with distal face (176) of pusher tube (170) abutting the proximal end of PE tube (200). In the present example, PE tube (200) is resiliently biased to assume a rivet-like shape presenting transverse petals (208) and a flange (206) (see FIG. 17-20). However, PE tube (200) is compressed against this bias, thereby assuming a generally cylindraceous configuration, when PE tube (200) is disposed within shield tube (160) as shown in FIG. 8.



FIG. 9 depicts a sequence of operation that occurs upon rotation of camshaft (130) from a home position to an actuated position, where tracks (132, 134, 136, 138) are shown developed into a flat pattern for purpose of illustration. The sequence starts at the top region of FIG. 9, which shows the distal end of clear tip member (122) contacting the patient's tympanic membrane (TM). At this stage, tubes (150, 160, 170), piercer (180), and PE tube (200) are at the positions shown in FIG. 8. Once camshaft (130) starts rotating at the urging of torsion spring (140), pins (154, 164, 174, 184) begin to ride along their respective tracks (132, 134, 136, 138), such that piercer tip (186) and leaves (156) are driven distally through the patient's tympanic membrane (TM). While not directly shown in FIG. 8, it should be understood that tubes (160, 170) are also driven distally during this transition, though tubes (160, 170) remain proximal to clear tip member (122) at this stage. As camshaft (130) continues to rotate, piercer (180) begins retracting proximally while tubes (160, 170) continue to advance distally. As shown, shield tube (160) spreads leaves (156) outwardly from their default positions. This further dilates the puncture site in the tympanic membrane (TM). Shield tube (160) continues to contain PE tube (200) at this stage. As camshaft (130) continues to rotate, piercer (180) and dilator (150) retract proximally behind clear tip member (122). Shield tube (160) also begins to retract proximally, while pusher tube (170) remains longitudinally stationary. This relative movement uncovers the distal end of PE tube (200), such that the resilient bias of petals (208) causes petals (208) to flex to transverse positions, thereby effectively forming a flange on the far side of the tympanic membrane (TM). Piercer (180) eventually returns to the fully proximal position, dilator (170) eventually returns to the fully proximal position, and pusher tube (170) eventually reaches a fully distal position. As camshaft (130) continues to rotate, shield tube (160) continues to retract proximally while pusher tube (170) remains longitudinally stationary. This relative movement uncovers the proximal end of PE tube (200), such that the resilient bias of PE tube (200) is allowed to form flange (206) on the near side of the tympanic membrane (TM).


Camshaft (130) stops rotating when the inwardly protruding boss of housing (104) engages plug (135) in stopper track (137). The elastomeric nature of plug (135) provides a relatively soft stop, such that plug (135) acts as a damper. This may reduce jolting of PETDD (100) when camshaft (130) comes to a stop and/or may prevent camshaft (130) from making a popping or snapping sound when camshaft (130) comes to a stop. Upon completion of the above described sequence shown in FIG. 9, cannula (120) is withdrawn from the patient's ear, leaving the actuated PE tube (200) in place in the patient's tympanic membrane (TM). Petals (208) and flange (206) cooperate to maintain the position of PE tube (200) in TM, while the passageway (204) formed by the interior of PE tube (200) (see FIGS. 8 and 17-20) provides a path for fluid communication (e.g., venting) between the patient's middle ear and outer ear. This fluid path further provides pressure equalization between the patient's middle ear and outer ear and/or promotes drainage of fluid from the middle ear via the Eustachian tube.


As noted above, PETDD (100) of the present example includes a trigger mechanism that is configured to selectively resist rotation of camshaft (130) by torsion spring (140). As best seen in FIGS. 10-16B, the trigger mechanism of this example comprises a pawl member (190) that selectively engages pushbutton (106) and camshaft (130). Pawl member (190) includes laterally extending pins (192) that couple pawl member (190) with housing (104). While housing (104) prevents pawl member (190) from moving laterally within housing (104), housing (104) permits pawl member (190) to pivot freely about pins (192) within housing (104). Pawl member (190) includes a distally facing boss rib (194) that extends vertically. Pawl member (190) also includes a pull-pin opening (196) and a proximally facing pawl ridge (198). Boss rib (194) is configured to selectively engage a proximally facing boss rib (107) of pushbutton (106) as will be described in greater detail below. Pull-pin opening (196) is configured to receive pull-pin (108), which assists to prevent pawl member (190) from pivoting about pins (192) when pull-pin (108) is disposed in pull-pin opening (196). Pawl ridge (198) includes chamfered lateral faces (199) and is configured to selectively engage a retention feature (131) of camshaft (130). In particular, when pawl member (190) is in a first position as shown in FIGS. 14, 15A, and 16A, pawl ridge (198) is engaged with retention feature (131) and prevents camshaft (130) from rotating despite the rotational bias provided by torsion spring (140). When pawl member (190) is pivoted to a second position as shown in FIGS. 15B and 16B, pawl ridge (198) disengages retention feature (131), enabling camshaft (130) to rotate under the influence of torsion spring (140) to provide the sequence of operation described above.


As best seen in FIGS. 10 and 13, pushbutton (106) includes a pull-pin opening (109) that is configured to receive pull-pin (108). Pushbutton (106) is prevented from translating laterally relative to housing (104) when pull-pin (108) is disposed within pull-pin opening (109). Pull-pin (108) thus provides a lockout for pushbutton (106). To unlock pushbutton (106), pull-pin (108) may be pulled distally out of housing (104). As noted above, pushbutton (106) also includes a proximally facing boss rib (107) that extends vertically. When pushbutton (106) is laterally centered within housing (104), boss rib (107) engages boss rib (194), as shown in FIGS. 15A and 16A. This engagement prevents pawl member (190) from pivoting distally about pins (192). Pushbutton (106) and pawl member (190) together thus effectively lock camshaft (130) when pushbutton (106) is laterally centered within housing (104).


When pushbutton (106) is laterally displaced relative to housing (104) (i.e., when a user depresses an exposed portion of pushbutton (106) laterally relative to housing (104)), bosses (107, 194) disengage such that pushbutton (106) no longer blocks pivoting of pawl member (190). Due to the torsional bias of camshaft (130), the ramped configuration of retention feature (131), and the chamfered lateral faces (199) of pawl ridge (198), camshaft (130) forces pawl member (190) to pivot out of the way to the position shown in FIGS. 15B and 16B when pushbutton (106) is no longer blocking pawl member (190). This enables camshaft (130) to complete the operational drive sequence described above. While pushsbutton (106) is depicted as being pushed in one lateral direction, it should be understood that the same triggering operation may be provided when pushbutton (106) is pushed in the opposite lateral direction from the center position. With portions of pushbutton (106) being exposed through housing (104) on each side of handpiece (102), this allows the operator to select which side of pushbutton (106) to press.


It should be understood that the foregoing components, features, and operabilities of PETDD (100) are merely illustrative examples. A PETDD (100) may include various other features in addition to or in lieu of those described above. By way of example only, any of the devices herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. Some additional merely illustrative variations of PETDD (100) will be described in greater detail below, while other variations of PETDD (100) will be apparent to those of ordinary skill in the art in view of the teachings herein.


II. Exemplary Pressure Equalization Tube



FIGS. 17-20 show PE tube (200) in greater detail. PE tube (200) of this example includes a cylindraceous body (202) that defines a passageway (204). A flange (206) is located at the proximal end of body (202) while a set of petals (208) are located at the distal end of body (202). Flange (206) includes a plurality of inwardly directed recesses (207). Recesses (207) are configured to facilitate flexing of flange (206) from an outwardly extended position to a generally cylindraceous position where the material forming flange (206) extends longitudinally. While three recesses (207) are shown, it should be understood that any other suitable number of recesses (207) may be provided. Similarly, while three petals (208) are shown, it should be understood that any other suitable number of petals (208) may be provided.


PE tube (200) is formed of a resilient material that is biased to assume the rivet like configuration shown in FIGS. 17-20. However, flange (206) and petals (208) may be flexed inwardly toward the longitudinal axis of body (202) to provide PE tube (200) with a cylindraceous configuration. In particular, flange (206) and petals (208) may be flexed such that their outer surfaces are at the same radial distance from the longitudinal axis as the outer perimeter of body (202). This radial distance may be slightly less than the radial distance associated with the inner diameter of shield tube (160), such that PE tube (200) may collapse to fit within shield tube (160). When PE tube (200) is disposed in a tympanic membrane (TM), petals (208) are located medially (i.e., on the middle ear side) while flange (206) is located laterally (i.e., on the outer ear side). By way of example only, PE tube (200) may also be configured in accordance with at least some of the teachings of U.S. patent application Ser. No. 13/800,113, entitled “Tympanic Membrane Pressure Equalization Tube,” filed on Mar. 13, 2013, published as U.S. Pub. No. 2014/0094733 on Apr. 3, 2014, the disclosure of which is incorporated by reference herein. Other suitable forms that PE tube (200) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.


III. Exemplary Pressure Equalization Tube Delivery Instrument with Bendable and Rotatable Shaft Assembly


Those of ordinary skill in the art will appreciate that the tympanic membrane (TM) may extend along a plane that is oblique to the direction of insertion of PETDD (100). In other words, the plane of the tympanic membrane (TM) may be obliquely angled relative to the longitudinal axis of shaft assembly (115). By way of example only, the tympanic membrane (TM) may define an angle between approximately 79 degrees and approximately 54 degrees with the longitudinal axis of shaft assembly (115). This oblique orientation of the tympanic membrane (TM) may pose difficulties with respect to some versions of a PETDD (100) that has a flat tip and/or a straight shaft assembly (115). For instance, inadequate apposition between the distal edge of tip member (122) and the tympanic membrane (TM) may lead to unsuccessful deployment of PE tube (200). This may prompt some operators of PETDD (100) to apply significant pressure against the tympanic membrane (TM), to deform the tympanic membrane (TM) into a position of substantial apposition with the flat-faced tip member (122) of PETDD (100). It may be desirable to maximize the apposition between the distal edge of tip member (122) and the tympanic membrane (TM), such as by enabling the distal edge of tip member (122) to complement the orientation of the tympanic membrane (TM) as much as possible, without requiring an operator to apply significant pressure against the tympanic membrane (TM) in order to achieve adequate apposition.


A rigid shaft assembly (115) may also adversely impact the ergonomics of PETDD (100) by forcing an operator to hold PETDD (100) at an uncomfortable angle to achieve a desired angle between shaft assembly (115) and the tympanic membrane (TM). Incorporating flexible and/or rotatable features into shaft assembly (115) may thus enhance the ergonomics of PETDD (100). In particular, a flexible and/or rotatable shaft assembly (115) may enable an operator to hold PETDD (100) at a more comfortable angle while still maintaining proper orientation of shaft assembly (115) relative to the patient's tympanic membrane (TM). Additionally, such features may facilitate positioning of an endoscope and/or other instrument with shaft assembly (115) in the patient's ear canal, thus promoting visualization of the tympanic membrane (TM). The following examples include merely illustrative variations of PETDD (100) that may provide flexibility and/or rotatability in shaft assembly (115).



FIG. 21 depicts an exemplary alternative PETDD (300) having a bendable shaft assembly (315). All of the other components in this variation may be the same as those described above for PETDD (100), unless otherwise noted herein. As can be seen, PETDD (300) of this example comprises a handpiece (302) and a shaft assembly (315) extending distally from handpiece (302). Hanpdiece (302) is formed by two housing (304) halves that are joined together and that include internal features configured to support various components of PETDD (300) similarly as described above with respect to handpiece (102) of PETDD (100). Handpiece (302) is configured to be handheld, such that an operator may fully operate PETDD (300) using a single hand. A pushbutton (306) is slidably disposed in housing (304) and includes exposed portions extending laterally from each side of handpiece (302). Pushbutton (306) is operable to be pushed along a path that is transverse to handpiece (302) in order to actuate PETDD (300) similarly as described above with respect to pushbutton (106) of PETDD (100). A pull-pin (308) extends distally from handpiece (302) and is configured to prevent pushbutton (306) from being actuated, thereby preventing PETDD (300) from being actuated, so long as pull-pin (308) is disposed in handpiece (302). Pull-pin (308) is nevertheless removable from handpiece (302) to effectively unlock pushbutton (306) and thereby enable actuation of PETDD (300).


As can be seen in FIGS. 21 and 22, shaft assembly (315) of the present example includes a cannula (320) comprising an elongate tube having a bendable section (324), a thumbwheel (310), and a tip member (322) at the distal end of cannula (320). Thumbwheel (310) is fixedly secured to cannula (320) where cannula (320) and handpiece (302) meet. As will be described in greater detail below, thumbwheel (310) is operable to rotate cannula (320) about the longitudinal axis of cannula (320) relative to handpiece (302) when acted upon by a user. In the present example, handpiece (302) includes a bushing (312) which both supports cannula (320) in handpiece (302) and permits cannula (320) to rotate. In some versions, thumbwheel (310) may be fixedly secured to cannula (320) by adhesive bonding, over-molding, or any other means. Additionally, a proximal end of cannula (320) may include a flared end or other geometric features to aid with attachment. Yet in other examples, thumbwheel (310) may be integral to cannula (320) such that the two parts form a unitary part. Of course, thumbwheel (310) is entirely optional and may be eliminated in other versions.


As best seen in FIGS. 24-26, bendable section (324) comprises a plurality of cut outs (326), which define a plurality of ribs (328) on either side of cannula (320). Cut outs (326) only extend through a portion of cannula (320) such that a solid longitudinally extending member (329) of cannula (320) remains. Longitudinally extending member (329) maintains lateral stability of cannula (320), yet cut outs (326) and ribs (328) operate cooperatively to permit cannula (320) to bend along a plane as will be described in greater detail below. It should be understood that bendable section (324) as depicted shows merely one exemplary geometry suitable to permit cannula (320) to bend. In other examples, bendable section (324) could have any other suitable design such as a fluid linkage and/or other bendable structure as will be apparent to those of ordinary skill in the art in view of the teachings herein.


Tip member (322) is configured to contact a patient's tympanic membrane (TM). In some versions, tip member (322) may be integral to cannula (320) such that cannula (320) and tip member (322) are of a unitary part. In other versions tip, member (322) may be a separate component fixedly secured to the distal end of cannula (320). In either case, tip member (322) may be configured to be clear or opaque. Where clear, tip member (322) may enable enhanced visualization of a patient's tympanic membrane (TM). Although the distal end of tip member (322) is shown as being orthogonal relative to the longitudinal axis of cannula (320), it should be understood that other distal end geometries may be used. For instance, the distal end of tip member (322) may be obliquely angled relative to the longitudinal axis of cannula (320) to accommodate patients with obliquely angled TM's. Examples of such obliquely angled distal ends of tip member may be configured in accordance with at least some of the teachings of U.S. patent application Ser. No. 13/804,553, entitled “Features to Improve and Sense Tympanic Membrane Apposition by Tympanostomy Tube Delivery Instument,” filed on Mar. 14, 2013, the disclosure of which is incorporated by reference herein. Of course, any other suitable configuration of tip member (322) may be used as will be apparent to those of ordinary skill in the art in view of the teachings herein.


Cannula (320) and/or tip member (322) may be formed of the same materials or different materials. For instance, in some versions cannula (320) and/or tip member (322) may be formed of a soft or elastomeric material such as rubber, soft plastic, nylon, polyether ether ketone (PEEK), etc. Yet in other versions cannula (320) and/or tip member (322) may be formed of a hard, more resilient material such as stainless steel, aluminum, or the like. In still other examples, cannula (320) could comprise a rigid material proximal to bendable section (324), a flexible material at bendable section (324), and a rigid material distal to bendable section (324). Alternatively, bendable section (324) could be formed of a malleable material. As yet another merely illustrative example, bendable section (324) may be formed of a plurality of short, rigid segments that are pivotally coupled together. When cannula (320) and/or tip member (322) is comprised of a soft or elastomeric material, such a material may dampen vibrations that might otherwise be transmitted from cannula (120) to the patient's tympanic membrane (TM) during firing of PETDD (300). In addition or in the alternative, tip member (322) may include some other kind of dampening feature as will be apparent to those of ordinary skill in the art in view of the teachings herein.


As can be seen in FIG. 23, housing (304) supports a camshaft (330) and various other components. Camshaft (330) includes a dilator track (332), a shield tube track (334), a stopper track (337), a pusher track (336), and a piercer track (338). Tracks (332, 334, 336, 337, 338) are formed as recesses in camshaft (330) and each track (332, 334, 336, 337, 338) has a unique configuration in order to provide the same particular sequence of operation as similarly described above with respect to camshaft (130) of PETDD (100). A torsion spring (340) is coupled to the proximal end of camshaft (330). Torsion spring (340) is also grounded against housing (304). Torsion spring (340) resiliently provides a rotational bias to camshaft (330). In particular, torsion spring (340) urges camshaft (330) to rotate in the clockwise direction (viewed from the distal end of PETDD (300) toward the proximal end of PETDD (300)) about the longitudinal axis of camshaft (330). As was similarly described above with respect to PETDD (100), a trigger mechanism selectively resists such rotation. While torsion spring (340) is used to bias camshaft (330) in the present example, it should be understood that any other suitable types of components may be used to bias camshaft (330).


As similarly described above with respect to camshaft (130) of PETDD (100), various components are engaged with camshaft (330) and are thereby actuated by rotation of camshaft (330). In particular, a dilator tube (350), a shield tube (360), a pusher tube (370), and a piercer (380) are all engaged with camshaft (330). Tubes (350, 360, 370) and piercer (380) are all coaxially disposed within cannula (320) such that tubes (350, 360, 370) and piercer (380) together form shaft assembly (315). Piercer (380) is coaxially and slidably disposed within pusher tube (370), which is coaxially and slidably disposed within shield tube (360), which is coaxially and slidably disposed within dilator tube (350), which is coaxially and slidably disposed within cannula (320). Tubes (350, 360, 370) and piercer (380) all translate relative to cannula (320) in a particular sequence in order to deploy a PE tube as was similarly described above. This sequence is driven by rotation of camshaft (330).


A cam follower (352) is fixedly secured to the proximal end of dilator tube (350). Cam follower (352) includes a laterally projecting pin (not shown) that is disposed in dilator track (332), such that rotation of camshaft (330) causes cam follower (352) and dilator tube (350) to translate. Similarly, a cam follower (362) is fixedly secured to the proximal end of shield tube (360). Cam follower (362) includes a laterally projecting pin (not shown) that is disposed in shield tube track (334), such that rotation of camshaft (330) causes cam follower (362) and shield tube (360) to translate. A cam follower (372) is fixedly secured to the proximal end of pusher tube (370). Cam follower (372) includes a laterally projecting pin (not shown) that is disposed in pusher tube track (336), such that rotation of camshaft (330) causes cam follower (372) and pusher tube (370) to translate. Finally, a cam follower (382) is fixedly secured to the proximal end of piercer (380). Cam follower (382) includes a laterally projecting pin (not shown) that is disposed in piercer track (338), such that rotation of camshaft (330) causes cam follower (382) and piercer (380) to translate. Stopper track (337) is simply annular in this example and includes a fixed elastomeric plug (335). An inwardly protruding boss (not shown) of housing (304) is disposed in stopper track (337). This boss remains disposed in stopper track (337) during rotation of camshaft (330).


Although not shown, tubes (350, 360, 370) and piercer (380) have distal ends configured similarly to the distal ends of tubes (150, 160, 170) and piercer described above. For instance, dilator tube (350) includes a plurality of flexible leaves (not shown) that are resiliently biased inwardly. Likewise, the distal end of shield tube (360) and pusher tube (370) include a circular edge (not shown) and a distal face (not shown), respectively. Similar to distal face (176) discussed above, distal face of pusher tube comprises a more prominent contact surface relative to circular edge of shield tube (160). Additionally, piercer (180) includes a sharp multi-faceted piercer tip (not shown) that is configured to pierce through a patient's tympanic membrane (TM). Although tubes (350, 360, 370) and piercer (380) are described above as having distal ends that are similar to those of tubes (150, 160, 170) and piercer (180), no such limitation is intended. Indeed, tubes (350, 360, 370) and piercer (380) may comprise any suitable distal end configurations as will be apparent to those of ordinary skill in the art in view of the teachings herein.


In the present example, at least a portion of each tube (350, 360, 370) and piercer (380) is flexible. By way of example only, at least a portion of each tube (350, 360, 370) and piercer (380) may be formed of nylon, PEEK, some other flexible polymer, a flexible metal, and/or any other suitable flexible material(s) as will be apparent to those of ordinary skill in the art in view of the teachings herein. Such a flexible portion of each tube (350, 360, 370), and piercer (380) extends through bendable section (324) of cannula (320). In addition to allowing bendable section (324) to flex along a plane, the flexible region(s) of tubes (350, 360, 370) and piercer (380) enable tubes (350, 360, 370) and piercer (380) to translate longitudinally through bendable section (324) while bendable section (324) is in a bent state. In some versions, tubes (350, 360, 370) and piercer (380) each have a rigid distal end or rigid distal portion, in addition to having a flexible region located proximal to the rigid distal end or portion. By way of example only, the rigid distal end or rigid distal section of each tube (350, 360, 370) and piercer (380) may be formed of a rigid metal, a rigid polymer, and/or any other suitable rigid material(s) as will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that a proximal section of each tube (350, 360, 370) and piercer (380) may be rigid, in addition to a distal portion or distal end of each tube (350, 360, 370) and piercer (380) being rigid, with the intermediate region of the length of each tube (350, 360, 370) and piercer (380) being flexible. Various suitable combinations of rigidity and flexibility in the construction of tubes (350, 360, 370) and piercer (380) will be apparent to those of ordinary skill in the art in view of the teachings herein.


Tubes (350, 360, 370) are configured to be used in conjunction with PE tube (200) as similarly described above with respect to PETDD (100). In particular, PE tube (200), tubes (350, 360, 370), and piercer (380) may all be sequentially actuated within cannula (320). The particular sequence is controlled by tracks (332, 334, 336, 338) as camshaft (330) rotates and is substantially similar to the sequence described above with respect to FIG. 9. Thus, even though cannula (320) is bendable, PETDD (300) is still operable to penetrate a patient's tympanic membrane (TM) and deploy PE tube (200) using substantially the same mechanisms as those described above with respect to PETDD (100). In other versions, PETDD (300) may be configured for use without PE tube (200). For instance, PETDD (300) may simply be used to puncture a patient's tympanic membrane (TM) for fluid collection or other similar procedures.



FIG. 22 shows that cannula (320) is bendable to a variety of angles. By way of example only, cannula (230) may bend to achieve angles from approximately 0 degrees to approximately 60 degrees; or from approximately 0 degrees to approximately 45 degrees. In some versions, cannula (320) may be configured to be malleable such that it may be bent to a specific angular location and remain at that specific location without a continuously applied force. Yet in other versions, cannula (320) may merely be flexible such that it may be sustained in a particular angular location only when a continuous force is applied. In either case, such properties may be achieved by, at least in part, the materials used for cannula (320), tubes (350, 360, 370), and/or piercer (380). For instance, to achieve malleable properties, cannula (320) may be comprised of malleable alloys such as stainless steel alloys, aluminum alloys, shape memory alloys, or the like. Additionally, such malleable properties may be achieved with other materials such as malleable plastics or polymers. Alternatively, to achieve properties that render cannula flexible, non-malleable alloys or plastics may be used. Further, materials may be varied between cannula (320), tubes (350, 360, 370), and piercer (380) to render cannula (320) malleable, semi-malleable, or flexible. Of course, cannula (320), tubes (350, 360, 370), and piercer (380) may be comprised of any suitable material to have any suitable properties as will be apparent to those of ordinary skill in the art in view of the teachings herein.


As can be seen in FIGS. 25-27, tubes (350, 360, 370) and piercer (380) extend through bendable section (324) of cannula (320) and are configured to bend as cannula (320) bends. It should be understood that tubes (350, 360, 370) and piercer (380) are configured such that they may be sequentially actuated within cannula (320) even when cannula (320) is bent. In other words, cannula (320) tubes (350, 360, 370), and piercer (380) are configured to maintain a neutral axis throughout bendable section (324) such that each component maintains a consistent relationship with tip member (322) as cannula (320) is bent. In some versions, lubricant may be included between cannula (320), tubes (350, 360, 370), piercer (380) and cannula (320), although such lubricant is entirely optional.


As noted above, cannula (320) is rotatable via thumbwheel (310). Thus, cannula (320) is operable to both bend and rotate relative to its longitudinal axis. In some versions, tubes (350, 360, 370) and piercer (380) may remain stationary while cannula (320) rotates. In some other versions, thumbwheel (310) may be configured to rotate all or some of tubes (350, 360, 370) and/or piercer (380) in conjunction with cannula (320). Still in other versions, tubes (350, 360, 370) and/or piercer tube (380) may be configured to be independently rotatable relative to cannula (320). For instance, piercer tube (380) may be independently rotatable to optimize piercing. Such a combination of bendability and roatatability may increase visualization of, and access to, the tympanic membrane (TM) of a patient. In an exemplary use of PETDD (300), cannula (320) may be pre-bent outside of a patient to account for an obliquely oriented tympanic membrane (TM) of the patient. Cannula (320) may be then inserted into the ear of the patient. An endoscope or other similar device may be used for visualization of the patient's tympanic membrane (TM) as cannula (320) is inserted through the ear canal. As tip member (322) approaches the patient's TM, cannula (320) may be rotated to fine tune the angle of tip member (322) to position tip member (322) into proper alignment with the patient's tympanic membrane (TM). As can be seen in FIG. 28, cannula (320) may be further advanced such that tip member (322) engages the patient's tympanic membrane (TM) in full apposition. Pushbutton (306) may then be actuated by a user, and the PE Tube (200) may be delivered to the patient's tympanic membrane (TM). In some other exemplary procedures, cannula (320) may be merely flexible and the ear canal may be used to provide a force sufficent to bend cannula (320) such that it may be positioned into alignment with the patient's tympanic membrane (TM). Of course, PETDD (300) may be used in various other ways as will be apparent to those of ordinary skill in the art in view of the teachings herein.


IV. Miscellaneous


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


By way of example only, versions described herein may be sterilized before and/or after a procedure. In some instances, the device is sterilized using conventional ethylene oxide sterilization techniques and systems. In some other instances, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag; and the container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, steam, etc.


Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.

Claims
  • 1. An instrument comprising: a handpiece body;a shaft assembly extending distally from the handpiece body and rotatable relative to the handpiece body, the shaft assembly including an elongate tube with a plurality of shafts coaxially and slidably disposed therein, the elongate tube having (1) a bendable section that can bend within a plane between a linear state and a bent state, (2) a proximal section disposed proximal to the bendable section and defining a longitudinal axis, and (3) a tip disposed distal to the bendable section and configured to engage a tympanic membrane of a patient;a thumbwheel coupled to the elongate tube and operable to rotate the elongate tube about the longitudinal axis defined by the proximal section of the elongate tube to change an angle of the tip; anda drive assembly disposed within the handpiece body that can longitudinally translate the plurality of shafts relative to the elongate tube of the shaft assembly including through the bendable section when the bendable section is in the bent state in a predetermined sequence to at least one of pierce the tympanic membrane or deploy a tympanostomy tube into the tympanic membrane.
  • 2. The instrument of claim 1, wherein the thumbwheel and the shaft assembly form a unitary component.
  • 3. The instrument of claim 1, wherein the bendable section defines a plurality of cutouts extending around a portion of the bendable section such that a solid longitudinally extending member extends along a length of the bendable section.
  • 4. The instrument of claim 3, wherein the bendable section includes a plurality of ribs and the longitudinally extending member, the plurality of ribs and the longitudinally extending member defining the plurality of cutouts.
  • 5. The instrument of claim 1, wherein at least one shaft of the plurality of shafts can maintain a neutral axis throughout the bendable section when the bendable section is in the bent state.
  • 6. The instrument of claim 1, wherein the bendable section of the elongate tube is malleable such that the bendable section can remain in the bent state without a continuously applied force.
  • 7. The instrument of claim 1, wherein at least one of the elongate tube or a shaft of the plurality of shafts includes nylon.
  • 8. The instrument of claim 1, wherein at least one of the elongate tube or a shaft of the plurality of shafts includes polyether ether ketone (PEEK).
  • 9. The instrument of claim 1, wherein the plurality of shafts of the shaft assembly includes at least one of a piercer that can pierce the tympanic membrane or a pusher that can deploy the tympanostomy tube into the tympanic membrane.
  • 10. The instrument of claim 1, wherein lubricant is disposed on at least one surface of at least one shaft of the plurality of shafts.
  • 11. The instrument of claim 1, wherein the tip is configured to engage with the tympanic membrane without requiring significant pressure to be applied against the tympanic membrane.
  • 12. The instrument of claim 1, wherein the tip of the elongate tube is obliquely angled relative to a central axis of the elongate tube.
  • 13. The instrument of claim 1, wherein at least one of a portion of the elongate tube or the tip includes at least one of nylon or polyether ether ketone (PEEK).
  • 14. An apparatus, comprising: a handpiece body;a shaft assembly extending distally from the handpiece body and rotatable relative to the handpiece body, the shaft assembly including an elongate tube and a plurality of shafts coaxially and slidably disposed within the elongate tube, the elongate tube having (1) a bendable section that can bend within a plane between a linear state and a bent state, (2) a proximal section disposed proximal to the bendable section and defining a longitudinal axis, and (3) a tip disposed distal to the bendable section and configured to engage a tympanic membrane of a patient;a thumbwheel coupled to the elongate tube and operable to rotate the elongate tube to move the tip in a path around the longitudinal axis defined by the proximal section of the elongate tube; anda drive assembly disposed within the handpiece body that can longitudinally translate the plurality of shafts relative to the elongate tube of the shaft assembly in a predetermined sequence to at least one of pierce the tympanic membrane or deploy a tympanostomy tube into the tympanic membrane.
  • 15. The apparatus of claim 14, wherein: the drive assembly can longitudinally translate at least one shaft of the plurality of shafts relative to the elongate tube including through the bendable section when the bendable section is in the bent state.
  • 16. The apparatus of claim 14, wherein the bendable section defines a plurality of cutouts extending around a portion of the bendable section such that a solid longitudinally extending member extends along a length of the bendable section.
  • 17. The apparatus of claim 14, wherein the thumbwheel and the shaft assembly form a unitary component.
  • 18. The apparatus of claim 14, wherein the thumbwheel is further configured to rotate the elongate tube to change an angle of the tip.
  • 19. An instrument comprising: a handpiece body;a shaft assembly including an elongate tube and a plurality of shafts coaxially and slidably disposed within the elongate tube, the elongate tube having (1) a bendable section that can bend within a plane between a linear state and a bent state, (2) a proximal section disposed proximal to the bendable section, and (3) a distal tip configured to engage a tympanic membrane of a patient;a tympanostomy tube disposed within the elongate tube distal to the bendable section;a thumbwheel coupled to the elongate tube and operable to rotate the elongate tube to (1) change an angle of the tip and (2) move the tympanostomy tube relative to the proximal section of the elongate tube; anda drive assembly disposed within the handpiece body that can longitudinally translate the plurality of shafts relative to the elongate tube of the shaft assembly including through the bendable section when the bendable section is in the bent state in a predetermined sequence to at least one of pierce the tympanic membrane or deploy the tympanostomy tube into the tympanic membrane.
  • 20. The instrument of claim 19, wherein the plurality of shafts of the shaft assembly are coupled to the handpiece body for rotation about a central longitudinal axis of the elongate tube, the bendable section of the elongate tube being configured to remain in the bent state during rotation of the shaft assembly about the central longitudinal axis of the elongate tube.
  • 21. The instrument of claim 19, further comprising a pushbutton disposed on the handpiece body and operable to actuate the drive assembly, the thumbwheel disposed distally of the pushbutton.
US Referenced Citations (226)
Number Name Date Kind
858673 Roswell Jul 1907 A
1920006 Dozier et al. Jul 1933 A
2162681 Ryan Jun 1939 A
3473170 Haase et al. Oct 1969 A
3638643 Hotchkiss Feb 1972 A
3741197 Sanz et al. Jun 1973 A
3807404 Weissman et al. Apr 1974 A
3888258 Akiyama Jun 1975 A
3897786 Garnett et al. Aug 1975 A
3913584 Walchle et al. Oct 1975 A
3948271 Akiyama Apr 1976 A
3991755 Vernon et al. Nov 1976 A
4168697 Cantekin Sep 1979 A
4335713 Komiya Jun 1982 A
4335715 Kirkley Jun 1982 A
4380998 Kieffer, III et al. Apr 1983 A
4406287 Parker et al. Sep 1983 A
4468218 Armstrong Aug 1984 A
4473073 Darnell Sep 1984 A
4552137 Strauss Nov 1985 A
4564009 Brinkhoff Jan 1986 A
4712537 Pender Dec 1987 A
4750491 Kaufman et al. Jun 1988 A
4796624 Trott et al. Jan 1989 A
4800876 Fox et al. Jan 1989 A
4913132 Gabriel Apr 1990 A
4946440 Hall Aug 1990 A
4968296 Ritch et al. Nov 1990 A
4971076 Densert et al. Nov 1990 A
5026378 Goldsmith, III Jun 1991 A
5044373 Northeved et al. Sep 1991 A
5047007 McNichols et al. Sep 1991 A
5053040 Goldsmith, III Oct 1991 A
5092837 Ritch et al. Mar 1992 A
5107861 Narboni Apr 1992 A
5135478 Sibalis Aug 1992 A
5158540 Wijay Oct 1992 A
5178623 Cinberg et al. Jan 1993 A
5254120 Cinberg et al. Oct 1993 A
5261903 Dhaliwal et al. Nov 1993 A
D352780 Glaeser et al. Nov 1994 S
5370656 Shevel Dec 1994 A
5421818 Arenberg Jun 1995 A
5466239 Cinberg et al. Nov 1995 A
5489286 Cinberg et al. Feb 1996 A
5496329 Reisinger Mar 1996 A
D378611 Croley Mar 1997 S
5610988 Miyahara Mar 1997 A
5643280 Del Rio et al. Jul 1997 A
5645584 Suyama Jul 1997 A
5658235 Priest et al. Aug 1997 A
5674196 Donaldson et al. Oct 1997 A
5676635 Levin Oct 1997 A
5681323 Arick Oct 1997 A
D387863 Herman et al. Dec 1997 S
5707383 Bays et al. Jan 1998 A
5775336 Morris Jul 1998 A
5782744 Money Jul 1998 A
5792100 Shantha Aug 1998 A
5827995 Del Rio et al. Oct 1998 A
5893828 Uram Apr 1999 A
5893837 Eagles et al. Apr 1999 A
5984930 Maciunas et al. Nov 1999 A
D418223 Phipps et al. Dec 1999 S
D420741 Croley Feb 2000 S
6022342 Mukherjee Feb 2000 A
6024726 Hill Feb 2000 A
6039748 Savage Mar 2000 A
6045528 Arenberg et al. Apr 2000 A
D424197 Sydlowski et al. May 2000 S
6059803 Spilman May 2000 A
D426135 Lee Jun 2000 S
6077179 Liechty, II Jun 2000 A
6110196 Edwards Aug 2000 A
6137889 Shennib et al. Oct 2000 A
6171236 Bonutti Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6200280 Brenneman et al. Mar 2001 B1
6206888 Bicek et al. Mar 2001 B1
6245077 East et al. Jun 2001 B1
6248112 Garnbale et al. Jun 2001 B1
6251121 Saadat Jun 2001 B1
6258067 Hill Jul 2001 B1
D450843 McGuckin, Jr. et al. Nov 2001 S
6319199 Sheehan et al. Nov 2001 B1
6358231 Schindler et al. Mar 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6416512 Ellman et al. Jul 2002 B1
6440102 Arenberg et al. Aug 2002 B1
6447522 Gambale et al. Sep 2002 B2
6475138 Schechter et al. Nov 2002 B1
6512950 Li et al. Jan 2003 B2
6514261 Randall et al. Feb 2003 B1
6520939 Lafontaine Feb 2003 B2
6522827 Loeb et al. Feb 2003 B1
6553253 Chang Apr 2003 B1
6645173 Liebowitz Nov 2003 B1
6648873 Arenberg et al. Nov 2003 B2
6663575 Leysieffer Dec 2003 B2
6682558 Tu et al. Jan 2004 B2
6770080 Kaplan et al. Aug 2004 B2
6916159 Rush et al. Jul 2005 B2
6962595 Chamness et al. Nov 2005 B1
7127285 Henley et al. Oct 2006 B2
7137975 Miller et al. Nov 2006 B2
D535027 James et al. Jan 2007 S
7160274 Ciok et al. Jan 2007 B2
7344507 Briggs et al. Mar 2008 B2
7351246 Epley Apr 2008 B2
7381910 Zarbatany et al. Jun 2008 B1
D595410 Luzon Jun 2009 S
7563232 Freeman et al. Jul 2009 B2
D598543 Vogel et al. Aug 2009 S
7654997 Makower et al. Feb 2010 B2
7677734 Wallace Mar 2010 B2
7704259 Kaplan et al. Apr 2010 B2
7749254 Sobelman et al. Jul 2010 B2
D622842 Benoist Aug 2010 S
D640374 Liu et al. Jun 2011 S
8052693 Shahoian Nov 2011 B2
8192420 Morriss et al. Jun 2012 B2
8249700 Clifford et al. Aug 2012 B2
8282648 Tekulve Oct 2012 B2
8409175 Lee et al. Apr 2013 B2
8475488 Clifford et al. Apr 2013 B2
8498425 Graylin Jul 2013 B2
8518098 Roeder et al. Aug 2013 B2
8702722 Shahoian Apr 2014 B2
8840602 Morriss et al. Sep 2014 B2
8849394 Clifford et al. Sep 2014 B2
8864774 Liu et al. Oct 2014 B2
8998927 Kaplan et al. Apr 2015 B2
9011363 Clopp et al. Apr 2015 B2
9023059 Loushin et al. May 2015 B2
9216112 Clifford et al. Dec 2015 B2
9320652 Andreas et al. Apr 2016 B2
9387124 Clifford Jul 2016 B2
9539146 Girotra et al. Jan 2017 B2
9681891 Andreas et al. Jun 2017 B2
9707131 Shahoian Jul 2017 B2
9770366 Liu et al. Sep 2017 B2
9833359 Clopp Dec 2017 B2
9833360 Andreas et al. Dec 2017 B2
9833601 Clifford Dec 2017 B2
20010020173 Klumb Sep 2001 A1
20020026125 Leysieffer Feb 2002 A1
20020069883 Hirchenbain Jun 2002 A1
20020111585 Lafontaine Aug 2002 A1
20020138091 Pflueger Sep 2002 A1
20020161379 Kaplan et al. Oct 2002 A1
20020169456 Tu et al. Nov 2002 A1
20030018291 Hill et al. Jan 2003 A1
20030040717 Saulenas et al. Feb 2003 A1
20030060799 Arenberg et al. Mar 2003 A1
20030187456 Perry Oct 2003 A1
20030199791 Boecker et al. Oct 2003 A1
20040054339 Ciok et al. Mar 2004 A1
20040064024 Sommer Apr 2004 A1
20050033343 Chermoni Feb 2005 A1
20050165368 Py et al. Jul 2005 A1
20050182385 Epley Aug 2005 A1
20050187546 Bek et al. Aug 2005 A1
20050235422 Wallace Oct 2005 A1
20050240147 Makower Oct 2005 A1
20060004323 Chang Jan 2006 A1
20060095050 Hartley et al. May 2006 A1
20060142700 Sobelman et al. Jun 2006 A1
20060155304 Kaplan et al. Jul 2006 A1
20060161218 Danilov Jul 2006 A1
20060163313 Larson Jul 2006 A1
20060282062 Ishikawa et al. Dec 2006 A1
20070088247 Bliweis et al. Apr 2007 A1
20070233222 Roeder et al. Oct 2007 A1
20070276466 Lavelle Nov 2007 A1
20080027423 Choi et al. Jan 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080212416 Polonio et al. Sep 2008 A1
20080262468 Clifford et al. Oct 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080262510 Clifford Oct 2008 A1
20090163828 Turner et al. Jun 2009 A1
20090171271 Webster Jul 2009 A1
20090209972 Loushin et al. Aug 2009 A1
20090299344 Lee et al. Dec 2009 A1
20090299379 Katz et al. Dec 2009 A1
20090299433 Lee Dec 2009 A1
20100041447 Graylin Feb 2010 A1
20100048978 Sing Feb 2010 A1
20100061581 Soetejo et al. Mar 2010 A1
20100160819 Parihar Jun 2010 A1
20100198135 Morriss et al. Aug 2010 A1
20100217296 Morriss et al. Aug 2010 A1
20100274188 Chang Oct 2010 A1
20100324488 Smith Dec 2010 A1
20110015645 Liu Jan 2011 A1
20110022069 Mitusina Jan 2011 A1
20110077579 Harrison et al. Mar 2011 A1
20110288559 Shahoian Nov 2011 A1
20120179187 Loushin et al. Jul 2012 A1
20120265097 Melchiorri et al. Oct 2012 A1
20120283563 Moore Nov 2012 A1
20120310145 Clifford et al. Dec 2012 A1
20130030456 Assell et al. Jan 2013 A1
20130090544 Clifford et al. Apr 2013 A1
20130338678 Loushin Dec 2013 A1
20140094733 Clopp et al. Apr 2014 A1
20140100584 Konstorum et al. Apr 2014 A1
20140194891 Shahoian Jul 2014 A1
20140276906 Andreas et al. Sep 2014 A1
20140277050 Andreas et al. Sep 2014 A1
20150142029 Fahn et al. May 2015 A1
20150164695 Liu et al. Jun 2015 A1
20150209509 O'Cearbhaill et al. Jul 2015 A1
20150305944 Kaplan et al. Oct 2015 A1
20160038341 Clopp et al. Feb 2016 A1
20160045369 Clopp Feb 2016 A1
20160045370 Andreas et al. Feb 2016 A1
20160045371 Girotra et al. Feb 2016 A1
20160213519 Andreas et al. Jul 2016 A1
20170209310 Girotra et al. Jul 2017 A1
20170281230 Andreas et al. Oct 2017 A1
20180055693 Liu et al. Mar 2018 A1
20180085258 Andreas et al. Mar 2018 A1
20180085563 Clifford et al. Mar 2018 A1
20180116876 Clopp May 2018 A1
Foreign Referenced Citations (25)
Number Date Country
86105171 Mar 1987 CN
2635015 Aug 2004 CN
102920491 Feb 2013 CN
103327881 Sep 2013 CN
19618585 Nov 1997 DE
19918288 Oct 2000 DE
0214527 Mar 1987 EP
2526656 Nov 1983 FR
H 07-116190 May 1995 JP
WO 1999011175 Mar 1999 WO
WO 2006119512 Nov 2006 WO
WO 2008030485 Mar 2008 WO
WO 2008036368 Mar 2008 WO
WO 2008131195 Oct 2008 WO
WO 2009010788 Jan 2009 WO
WO 2009105619 Aug 2009 WO
WO 2011008948 Jan 2011 WO
WO 2014075949 May 2014 WO
WO 2014143543 Sep 2014 WO
WO 2014158571 Oct 2014 WO
WO 2016022899 Feb 2016 WO
WO 2016025308 Feb 2016 WO
WO 2016025309 Feb 2016 WO
WO 2016025310 Feb 2016 WO
WO 2016025453 Feb 2016 WO
Non-Patent Literature Citations (64)
Entry
International Search Report and Written Opinion for International Application No. PCT/US2015/044177, dated Oct. 30, 2015.
Rhinology Products, Boston Medical Products, www.bosmed.com [date of publication unknown], pp. 1-16.
Patent Examination Report No. 1 for Australian Patent Application No. 2013209354, dated Oct. 13, 2014, 5 pages.
First Office Action for Chinese Patent Application No. 200880020861.9, dated Jul. 12, 2011, 10 pages.
Second Office Action for Chinese Patent Application No. 200880020861.9, dated Dec. 31, 2011, 3 pages.
Search Report for Chinese Patent Application No. 201310047126.X, dated Mar. 6, 2015, 2 pages.
Second Office Action for Chinese Patent Application No. 201310047126.X, dated Mar. 16, 2015, 10 pages.
Office Action for European Application No. 08746237.0, dated Mar. 24, 2016, 3 pages.
Office Action for European Application No. 08746237.0, dated Aug. 4, 2015, 7 pages.
Supplementary Partial Search Report for European Application No. 08746237.0, dated Jun. 30, 2014, 9 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 20, 2012, 4 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 12, 2013, 4 pages.
International Search Report for International Application No. PCT/US2008/060779, dated Sep. 3, 2008.
Written Opinion for International Application No. PCT/US2008/060779, dated Sep. 3, 2008.
International Preliminary Report on Patentability for International Application No. PCT/US2008/060779, dated Nov. 17, 2009.
Office Action for U.S. Appl. No. 11/749,729, dated May 26, 2011, 11 pages.
Office Action for U.S. Appl. No. 11/749,729, dated Jun. 17, 2010, 8 pages.
Office Action for U.S. Appl. No. 11/749,733, dated Jun. 10, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/749,733, dated Dec. 2, 2008, 9 pages.
U.S. Appl. No. 61/085,360, filed Jul. 31, 2008.
International Search Report for International Application No. PCT/US2009/052395, dated Nov. 6, 2009.
Written Opinion for International Application No. PCT/US2009/052395, dated Nov. 6, 2009.
International Search Report for International Application No. PCT/US2010/058718, dated Feb. 17, 2011.
Written Opinion for International Application No. PCT/US2010/058718, dated Feb. 17, 2011.
U.S. Appl. No. 61/225,893, filed Jul. 15, 2009.
Patent Examination Report No. 1 for Australian Application No. 2010273372, dated Nov. 12, 2014, 2 pages.
First Office Action for Chinese Application No. 201080041755.6, dated Jul. 3, 2013.
Notification of Reasons for Refusal for Japanese Application No. 2012-520778, dated Feb. 18, 2014.
Communication of the Substantive Examination Report for Mexican Application No. MX/a/2012/000691, dated Apr. 24, 2014.
International Search Report for International Application No. PCT/US2010/042128, dated Aug. 27, 2010.
Written Opinion International Application No. PCT/US2010/042128, dated Aug. 27, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2010/042128, dated Jan. 17, 2012.
European Search Report for European Application No. 13173409.7, dated Sep. 16, 2013.
Search Report and Written Opinion for International Patent Application No. PCT/US2015/044179, dated Dec. 18, 2015, 15 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/018320, dated Jun. 2, 2014, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/018347, dated Apr. 17, 2014, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044173, dated Oct. 12, 2015, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044183, dated Nov. 4, 2015, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/044610, dated Nov. 5, 2015, 12 pages.
International Search Report for International Application No. PCT/US2009/069388, dated Jun. 30, 2010.
Written Opinion for International Application No. PCT/US2009/069388, dated Jun. 30, 2010.
Comeau, M. et al., “Local Anesthesia of the Ear by lontophoresis,” vol. 98, Arch. Otolaryngol., pp. 114-120 (Aug. 1973).
Comeau, M. et al., “Anesthesia of the Human Tympanic Membrane by lontophoresis of a Local Anesthetic,” The Larynogoscope, vol. 88, pp. 277-285 (1978).
Echols, D. F. et al., “Anesthesia of the Ear by Iontophoresis of Lidocaine,” Arch. Otolaryngol., vol. 101, pp. 418-421 (Jul. 1975).
Epley, J. M., “Modified Technique of Iontophoretic Anesthesia for Myringotomy in Children,” Arch. Otolaryngol., vol. 103, pp. 358-360 (Jun. 1977).
Hasegawa, M. et al., “Iontophorectic anaesthesia of the tympanic membrane,” Clinical Otolaryngoloy, vol. 3, pp. 63-66 (1978).
Ramsden, R. T. et al., “Anaesthesia of the tympanic membrane using iontophoresis,” The Journal of Laryngology and Otology, 56(9):779-785 (Sep. 1977).
“Definition of Plenum,” Compact Oxford English Dictionary [online], Retrieved from the Internet: <http://oxforddictionaries.com/definition/english/plenum>, Retrieved on Aug. 6, 2012, 2 pages.
“Definition of Plenum,” Merriam-Webster's Online Dictionary, 11th Edition [online], Retrieved from the Internet: <http://www.merriam-webster.com/dictionary/plenum>, Retrieved on Aug. 14, 2012, 1 page.
Medtronic XOMED, “Activent® Antimicrobial Ventilation Tubes,” Rev. 1.1, pp. 1-4, 2002, Jacksonville, FL.
Micromedics Innovative Surgical Products, “Micromedics Tympanostomy Tubes,” [online], Retrieved on Jul. 15, 2010, Retrieved from the Internet <URL: http://www.micromedics-usa.com/products/otology/micromedicstubes.htm>, 7 pages.
Armstrong, “A New Treatment for Chronic Secretory Otitis Media” A.M.A. Archives of Otolaryngology, pp. 653-654 (1954).
Feuerstein, “A Split-Tube Prosthesis in Serous Otitis Media” Sixty-ninth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 18-23, 1964, Chicago, IL, pp. 343-344.
Jurgens. et al., “Three New Middle Ear Ventilation Tubes” Seventy-sixth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Sep. 20-24, 1971, Las Vegas, NV, pp. 1017-1019 (1971).
Lindeman et al., The “Arrow Tube” Residents in Otolaryngology, Massachusetts Eye and Ear Infirmary, 1 page (1964).
Pappas, “Middle Ear Ventilation Tubes” Meeting of the Southern Section of the American Laryngological, Rhinological and Otological Society, Inc., Williamsburg, VA, Jan. 12, 1974, pp. 1098-1117.
Per-Lee, “A Wide Flanged Middle Ear Ventilation Tube” Seventy-first Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 16-21, 1966, Chicago, IL, pp. 358-359.
Reuter, “The Stainless Bobbin Middle Ear Ventilation Tube” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, pp. 121-122.
Ringenberg, “A New Middle Ear Ventilation Device” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, 1 page.
Schmidt et al. “Transtympanic Aeration of the Middle Ear With Blocked Eustachian Tube” Acta Otolaryng., pp. 277-282 (1965).
Sheehy, “Collar Button Tube for Chronic Serous Otitis” Sixty-eighth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 20-25, 1963, New York, NY, pp. 888-889.
Santa Barbara Medco, Inc. “Otological Ventilation Tubes” Product Brochure from http://www.sbmedco.com/ptfe_shepard.asp, 8 pages (Feb. 11, 2001).
Office Action for U.S. Appl. No. 14/457,293, dated Apr. 26, 2017, 11 pages.
Office Action for Chinese Application No. 201580050156.3, dated Nov. 28, 2018, 18 pages.
Related Publications (1)
Number Date Country
20160038342 A1 Feb 2016 US