The present invention relates to a tyre having a tread portion provided with a circumferential groove extending continuously in a tyre circumferential direction.
conventionally, in order to improve on-snow performance, an attempt has been made to specify the shape of groove walls of the circumferential groove extending continuously in the tyre circumferential direction formed in the tread portion. For example, Japanese unexamined Patent Application Publication No. 2016-137763 (Patent Literature 1) has proposed a tyre having improved on-snow performance by providing enlarged width portions in the circumferential grooves.
However, there has been a case with the tyre disclosed in Patent Literature 1 where drive power and braking force become insufficient during running on a snowy road surface depending on the use situation, therefore, there has been a demand for further improvement to maintain the on-snow performance high.
The present invention was made in view of the above, and a primary object thereof is to provide a tyre capable of improving the on-snow performance by specifying the shape of the circumferential groove.
In one aspect of the present invention, a tyre comprises a tread portion including a tread surface which is to be in contact with a ground during running, wherein the tread portion is provided with a circumferential groove extending continuously in a tyre circumferential direction, the circumferential groove has a groove bottom and a pair of groove walls extending from the groove bottom to the tread surface in a tyre radial direction, the groove bottom is formed symmetrically with respect to a center line of the circumferential groove in a plan view of the tread portion and includes a plurality of groove bottom protruding portions protruding outwardly in the tyre radial direction from a groove bottom reference surface defined as a surface parallel to the tread surface at a deepest position of a groove depth of the circumferential groove, each of the groove bottom protruding portions has a first groove bottom surface extending in the tyre radial direction and a second groove bottom surface having an angle larger than that of the first groove bottom surface with respect to the tyre radial direction, each of the groove walls includes a plurality of groove wall protruding portions each protruding toward an inner side of the circumferential groove from a groove wall reference surface defined as a surface along the tyre circumferential direction at a widest position of a groove width of the circumferential groove, and each of the groove wall protruding portions has a first groove wall surface extending in a tyre width direction and a second groove wall surface having an angle with respect to the tyre width direction larger than that of the first groove wall surface.
In another aspect of the invention, it is preferred that the groove bottom protruding portions are formed over an entire width in the tyre width direction of the circumferential groove.
In another aspect of the invention, it is preferred that the first groove bottom surface is formed by a flat surface extending in the tyre width direction.
In another aspect of the invention, it is preferred that a height in the tyre radial direction of the first groove bottom surface is not less than 0.5 mm.
In another aspect of the invention, it is preferred that the pair of the groove walls is formed symmetrically with respect to the center line of the circumferential groove in the plan view of the tread portion.
In another aspect of the invention, it is preferred that the second groove wall surface is formed by a curved surface.
In another aspect of the invention, it is preferred that the second groove wall surface is formed by a flat surface.
In another aspect of the invention, it is preferred that an interval between the first groove bottom surfaces adjacent to each other in the tyre circumferential direction is in a range of from 10 to 15 mm.
In another aspect of the invention, it is preferred that an interval between the first groove wall surfaces adjacent to each other in the tyre circumferential direction is equal to the interval between the first groove bottom surfaces adjacent to each other in the tyre circumferential direction.
An embodiment of the present invention will now be described below in detail in conjunction with accompanying drawings.
The tread portion 2 in this embodiment includes at least one circumferential groove 3 extending continuously in the tyre circumferential direction and a plurality of land regions 4 divided by the circumferential groove 3.
As shown in
As shown in
In the circumferential groove 3 configured as such, the groove bottom protruding portions 7 stick themselves into snow even when the tyre 1 is worn, therefore, it is possible that excellent on-snow performance is maintained. Further, the groove bottom protruding portions 7 configured as such disturb vibration in an air column of the circumferential groove 3, therefore, it is possible that air column resonance sound during running is decreased, thereby, it is possible that noise performance of the tyre 1 is improved.
Each of the groove bottom protruding portions 7 in this embodiment has a first groove bottom surface 8 extending in the tyre radial direction and a second groove bottom surface 9 having an angle larger than that of the first groove bottom surface 8 with respect to the tyre radial direction. In the groove bottom protruding portions 7 configured as such, edge components in a tyre width direction are increased by the first groove bottom surfaces 8, therefore, it is possible that the drive power and the braking force during running on a snowy road surface are improved. Further, when the tyre 1 rotates in a second rotational direction (R2), snow moves along the second groove bottom surfaces 9, therefore, condensation of the snow is promoted, thereby, it is possible that snow shearing force is improved even when the tyre 1 is in a worn state.
As shown in
In the circumferential groove 3 configured as such, the groove wall protruding portions 11 stick themselves into the snow, therefore, it is possible that the on-snow performance is improved. Further, the groove wall protruding portions 11 configured as such disturb the vibration in the air column of the circumferential groove 3, therefore, it is possible that the air column resonance sound during running is decreased, thereby, it is possible that the noise performance of the tyre 1 is improved.
Each of the groove wall protruding portions 11 has a first groove wall surface 12 extending in the tyre width direction and a second groove wall surface 13 having an angle with respect to the tyre width direction larger than that of the first groove wall surface 12. In the groove walls 6 configured as such, the edge components in the tyre width direction are increased by the first groove wall surfaces 12, therefore, it is possible that the drive power and the braking force during running on a snowy road surface are improved. Further, when the tyre 1 is rotated in a first rotational direction (R1) in which an opening side of the groove wall protruding portions 11 is a heel side, the snow moves along the second groove wall surfaces 13, therefore, the condensation of the snow is promoted, thereby, it is possible that the snow shearing force is improved. The opening side is a wider side in the tyre width direction between the groove wall protruding portions 11. Thereby, in the tyre 1 in this embodiment, the groove bottom protruding portions 7 stick themselves into the snow condensed by the groove walls 6, therefore, it is possible that the on-snow performance is further improved. Furthermore, in the circumferential groove 3 configured as such, a snow discharging effect is improved due to deformation of the groove bottom protruding portions 7 and the groove wall protruding portions 11 at the time of the tread surface (2A) contacting the ground and leaving the ground, therefore, it is possible that the on-snow performance is further improved.
It is possible that the tyre 1 having the circumferential groove 3 described above maintains good on-snow performance by specifying the shapes of the groove bottom 5 and the groove walls 6 regardless of whether the tyre 1 is worn or not worn. More preferred shapes of the groove bottoms 5 and the groove walls 6 will be described below.
As shown in
As shown in
It is preferred that an interval (P1) between the first groove bottom surfaces 8 adjacent to each other in the tyre circumferential direction is in the range of from 10 to 15 mm. In the groove bottom protruding portions 7 having the first groove bottom surfaces 8 configured as such, the first groove bottom surfaces 8 appropriately stick themselves into the snow, therefore, it is possible that the on-snow performance is improved.
It is preferred that each of the second groove bottom surfaces 9 has an angle θ1 in the range of from 70 to 87 degrees with respect to the tyre radial direction. With the second groove bottom surfaces 9 configured as such, when the tyre 1 is rotated in the second rotational direction (R2), snow moves along the second groove bottom surfaces 9, therefore, condensation of the snow is promoted, thereby, it is possible that the snow shearing force is improved.
A length (Lb) in the tyre circumferential direction of each of the groove bottom protruding portions 7 in this embodiment is substantially equal to the interval (P1) between the first groove bottom surfaces 8 adjacent to each other in the tyre circumferential direction. Note that the length (Lb) of each of the groove bottom protruding portions 7 may be smaller than the interval (P1) between the first groove bottom surfaces 8 adjacent to each other in the tyre circumferential direction.
As shown in
It is preferred that a length W1 in the tyre width direction of each of the first groove wall surfaces 12 is not less than 1 mm. If the length W1 of each of the first groove wall surfaces 12 is less than 1 mm, it is possible that the snow condensation effect by the second groove wall surfaces 13 is decreased.
It is preferred that the length W1 in the tyre width direction of each of the first groove wall surfaces 12 is not more than 20% of an interval (P2) between the first groove wall surfaces 12 adjacent to each other in the tyre circumferential direction. It is preferred that the interval (P2) between the first groove wall surfaces 12 adjacent to each other in the tyre circumferential direction is equal to the interval (P1) between the first groove bottom surfaces 8 adjacent to each other in the tyre circumferential direction. With the circumferential groove 3 configured as such, it is possible that the snow discharging effect by the deformation of the groove bottom protruding portions 7 and the groove wall protruding portions 11 at the time of the tread surface (2A) contacting the ground and leaving the ground is further improved.
A length (Lw) in the tyre circumferential direction of each of the groove wall protruding portions 11 in this embodiment is substantially equal to the interval (P2) between the first groove wall surfaces 12 adjacent to each other in the tyre circumferential direction. Thereby, it is preferred that the length W1 in the tyre width direction of each of the first groove wall surfaces 12 is not more than 20% of the length (Lw) in the tyre circumferential direction of each of the groove wall protruding portions 11. It is possible that the groove wall protruding portions 11 having the first groove wall surfaces 12 configured as such stick themselves into snow at appropriate pitches, therefore, it is possible that the on-snow performance is stably exerted.
It is preferred that each of the second groove wall surfaces 13 has an angle θ2 in the range of from 3 to 20 degrees with respect to the tyre circumferential direction in the plan view of the tread portion. The second groove wall surfaces 13 configured as such promote the condensation of snow, therefore, it is possible that the snow shearing force is improved.
Each of the second groove wall surfaces 22 in this embodiment is formed by a curved surface concave toward the outer side in the tyre width direction of the circumferential groove 20. With the groove wall protruding portions 21 configured as such, it is possible that the snow is condensed along the curved surfaces of the second groove wall surfaces 22, therefore, it is possible that the snow shearing force is improved.
Each of the second groove wall surfaces 32 in this embodiment is formed by a curved surface convex toward the inner side in the tyre width direction of the circumferential groove 30. With the groove wall protruding portions 31 configured as such, it is possible that the snow is condensed along the curved surfaces of the second groove wall surfaces 32, therefore, it is possible that the snow shearing force is improved.
While detailed description has been made of the tyre as an especially preferred embodiment of the present invention, the present invention can be embodied in various forms without being limited to the illustrated embodiments.
Tyres as Examples provided with the circumferential groove(s) having the groove bottom protruding portions and the groove wall protruding portions shown in
Tyre size: 255/50R20
Tyre rim size: 20×8.03
<Driving Performance and Driving Performance when Worn>
The drive power on a snowy road surface of each of the test tyres was measured by using a testing machine. The results are indicated by an index each based on the Conventional Example being 100, wherein the larger the numerical value, the better the driving performance is.
<Braking Performance and Braking Performance when Worn>
The braking performance on a snowy road surface of each of the test tyres was measured by using a testing machine. The results are indicated by an index each based on the conventional Example being 100, wherein the larger the numerical value, the better the braking performance is.
The test results are shown in Table 1.
From the test results, as compared with the Conventional Example and the References, it was confirmed that the tyres as the Examples were excellent in the driving performance and the braking performance during running on a snowy road surface and that they maintained good on-snow performance even when the tyres were worn.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-008980 | Jan 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6415835 | Heinen | Jul 2002 | B1 |
20130333818 | Yamaguchi | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2016-137763 | Aug 2016 | JP |
Number | Date | Country | |
---|---|---|---|
20190225028 A1 | Jul 2019 | US |