Tyrosine Phosphorylation Sites

Abstract
The invention discloses 351 novel phosphorylation sites identified in carcinoma, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
Description
FIELD OF THE INVENTION

The invention relates generally to novel tyrosine phosphorylation sites, methods and compositions for detecting, quantitating and modulating same.


BACKGROUND OF THE INVENTION

The activation of proteins by post-translational modification is an important cellular mechanism for regulating most aspects of biological organization and control, including growth, development, homeostasis, and cellular communication. Protein phosphorylation, for example, plays a critical role in the etiology of many pathological conditions and diseases, including to mention but a few: cancer, developmental disorders, autoimmune diseases, and diabetes. Yet, in spite of the importance of protein modification, it is not yet well understood at the molecular level, due to the extraordinary complexity of signaling pathways, and the slow development of technology necessary to unravel it.


Protein phosphorylation on a proteome-wide scale is extremely complex as a result of three factors: the large number of modifying proteins, e.g., kinases, encoded in the genome, the much larger number of sites on substrate proteins that are modified by these enzymes, and the dynamic nature of protein expression during growth, development, disease states, and aging. The human genome, for example, encodes over 520 different protein kinases, making them the most abundant class of enzymes known. (Hunter, Nature 411: 355-65 (2001)). Most kinases phosphorylate many different substrate proteins, at distinct tyrosine, serine, and/or threonine residues. Indeed, it is estimated that one-third of all proteins encoded by the human genome are phosphorylated, and many are phosphorylated at multiple sites by different kinases.


Many of these phosphorylation sites regulate critical biological processes and may prove to be important diagnostic or therapeutic targets for molecular medicine. For example, of the more than 100 dominant oncogenes identified to date, 46 are protein kinases. See Hunter, supra. Understanding which proteins are modified by these kinases will greatly expand our understanding of the molecular mechanisms underlying oncogenic transformation. Therefore, the identification of, and ability to detect, phosphorylation sites on a wide variety of cellular proteins is crucially important to understanding the key signaling proteins and pathways implicated in the progression of disease states like cancer.


Carcinoma is one of the two main categories of cancer, and is generally characterized by the formation of malignant tumors or cells of epithelial tissue original, such as skin, digestive tract, glands, etc. Carcinomas are malignant by definition, and tend to metastasize to other areas of the body. The most common forms of carcinoma are skin cancer, lung cancer, breast cancer, and colon cancer, as well as other numerous but less prevalent carcinomas. Current estimates show that, collectively, various carcinomas will account for approximately 1.65 million cancer diagnoses in the United States alone, and more than 300,000 people will die from some type of carcinoma during 2005. (Source: American Cancer Society (2005)). The worldwide incidence of carcinoma is much higher.


As with many cancers, deregulation of receptor tyrosine kinases (RTKs) appears to be a central theme in the etiology of carcinomas.


Constitutively active RTKs can contribute not only to unrestricted cell proliferation, but also to other important features of malignant tumors, such as evading apoptosis, the ability to promote blood vessel growth, the ability to invade other tissues and build metastases at distant sites (see Blume-Jensen et al., Nature 411: 355-365 (2001)). These effects are mediated not only through aberrant activity of RTKs themselves, but, in turn, by aberrant activity of their downstream signaling molecules and substrates.


The importance of RTKs in carcinoma progression has led to a very active search for pharmacological compounds that can inhibit RTK activity in tumor cells, and more recently to significant efforts aimed at identifying genetic mutations in RTKs that may occur in, and affect progression of, different types of carcinomas (see, e.g., Bardell et al., Science 300: 949 (2003); Lynch et al., N. Eng. J. Med. 350: 2129-2139 (2004)). For example, non-small cell lung carcinoma patients carrying activating mutations in the epidermal growth factor receptor (EGFR), an RTK, appear to respond better to specific EGFR inhibitors than do patients without such mutations (Lynch et al., supra.; Paez et al., Science 304: 1497-1500 (2004)).


Clearly, identifying activated RTKs and downstream signaling molecules driving the oncogenic phenotype of carcinomas would be highly beneficial for understanding the underlying mechanisms of this prevalent form of cancer, identifying novel drug targets for the treatment of such disease, and for assessing appropriate patient treatment with selective kinase inhibitors of relevant targets when and if they become available. The identification of key signaling mechanisms is highly desirable in many contexts in addition to cancer.


However, although a few key RTKs involved in carcinoma progression are known, there is relatively scarce information about kinase-driven signaling pathways and phosphorylation sites that underlie the different types of carcinoma. Therefore there is presently an incomplete and inaccurate understanding of how protein activation within signaling pathways is driving these complex cancers. Accordingly, there is a continuing and pressing need to unravel the molecular mechanisms of kinase-driven ontogenesis in carcinoma by identifying the downstream signaling proteins mediating cellular transformation in these cancers.


Presently, diagnosis of carcinoma is made by tissue biopsy and detection of different cell surface markers. However, misdiagnosis can occur since some carcinoma cases can be negative for certain markers and because these markers may not indicate which genes or protein kinases may be deregulated. Although the genetic translocations and/or mutations characteristic of a particular form of carcinoma can be sometimes detected, it is clear that other downstream effectors of constitutively active kinases having potential diagnostic, predictive, or therapeutic value, remain to be elucidated.


Accordingly, identification of downstream signaling molecules and phosphorylation sites involved in different types of diseases including for example, carcinoma and development of new reagents to detect and quantify these sites and proteins may lead to improved diagnostic/prognostic markers, as well as novel drug targets, for the detection and treatment of many diseases.


SUMMARY OF THE INVENTION

The present invention provides in one aspect novel tyrosine phosphorylation sites (Table 1) identified in carcinoma. The novel sites occur in proteins such as: protein kinases (such as serine/threonine dual specificity kinases or tyrosine kinases), adaptor/scaffold proteins, cell cycle regulation proteins, lipid binding proteins, vesicle proteins, ahesion or extracellular matrix proteins, transcription factors, phosphatases, tumor suppressors, ubiquitin conjugating system proteins, translation initiation complex proteins, RNA binding proteins, apoptosis proteins, transcriptional regulator proteins, cytoskeletal proteins, receptor/channel/transporter/cellsurface proteins, motor or contractile proteins, non-protein kinases, enzymes, G protein regulators/GTPase activating protein/Guanine nucleotide exchange factor proteins, and DNA binding/replication/repair proteins.


In another aspect, the invention provides peptides comprising the novel phosphorylation sites of the invention, and proteins and peptides that are mutated to eliminate the novel phosphorylation sites.


In another aspect, the invention provides modulators that modulate tyrosine phosphorylation at a novel phosphorylation site of the invention, including small molecules, peptides comprising a novel phosphorylation site, and binding molecules that specifically bind at a novel phosphorylation site, including but not limited to antibodies or antigen-binding fragments thereof.


In another aspect, the invention provides compositions for detecting, quantitating or modulating a novel phosphorylation site of the invention, including peptides comprising a novel phosphorylation site and antibodies or antigen-binding fragments thereof that specifically bind at a novel phosphorylation site. In certain embodiments, the compositions for detecting, quantitating or modulating a novel phosphorylation site of the invention are Heavy-Isotype Labeled Peptides (AQUA peptides) comprising a novel phosphorylation site.


In another aspect, the invention discloses phosphorylation site specific antibodies or antigen-binding fragments thereof. In one embodiment, the antibodies specifically bind to an amino acid sequence comprising a phosphorylation site identified in Table 1 when the tyrosine identified in Column D is phosphorylated, and do not significantly bind when the tyrosine is not phosphorylated. In another embodiment, the antibodies specifically bind to an amino acid sequence comprising a phosphorylation site when the tyrosine is not phosphorylated, and do not significantly bind when the tyrosine is phosphorylated.


In another aspect, the invention provides a method for making phosphorylation site-specific antibodies.


In another aspect, the invention provides compositions comprising a peptide, protein, or antibody of the invention, including pharmaceutical compositions.


In a further aspect, the invention provides methods of treating or preventing carcinoma in a subject, wherein the carcinoma is associated with the phosphorylation state of a novel phosphorylation site in Table 1, whether phosphorylated or dephosphorylated. In certain embodiments, the methods comprise administering to a subject a therapeutically effective amount of a peptide comprising a novel phosphorylation site of the invention. In certain embodiments, the methods comprise administering to a subject a therapeutically effective amount of an antibody or antigen-binding fragment thereof that specifically binds at a novel phosphorylation site of the invention.


In a further aspect, the invention provides methods for detecting and quantitating phosphorylation at a novel tyrosine phosphorylation site of the invention.


In another aspect, the invention provides a method for identifying an agent that modulates tyrosine phosphorylation at a novel phosphorylation site of the invention, comprising: contacting a peptide or protein comprising a novel phosphorylation site of the invention with a candidate agent, and determining the phosphorylation state or level at the novel phosphorylation site. A change in the phosphorylation state or level at the specified tyrosine in the presence of the test agent, as compared to a control, indicates that the candidate agent potentially modulates tyrosine phosphorylation at a novel phosphorylation site of the invention.


In another aspect, the invention discloses immunoassays for binding, purifying, quantifying and otherwise generally detecting the phosphorylation of a protein or peptide at a novel phosphorylation site of the invention.


Also provided are pharmaceutical compositions and kits comprising one or more antibodies or peptides of the invention and methods of using them.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram depicting the immuno-affinity isolation and mass-spectrometric characterization methodology (IAP) used in the Examples to identify the novel phosphorylation sites disclosed herein.



FIG. 2 is a table (corresponding to Table 1) summarizing the 349 novel phosphorylation sites of the invention: Column A=the parent proteins from which the phosphorylation sites are derived; Column B=the SwissProt accession number for the human homologue of the identified parent proteins; Column C=the protein type/classification; Column D=the tyrosine residues at which phosphorylation occurs (each number refers to the amino acid residue position of the tyrosine in the parent human protein, according to the published sequence retrieved by the SwissProt accession number); Column E=flanking sequences of the phosphorylatable tyrosine residues; sequences (SEQ ID NOs: 1-174, 176-280, 282-353) were identified using Trypsin digestion of the parent proteins; in each sequence, the tyrosine (see corresponding rows in Column D) appears in lowercase; Column F=the type of carcinoma in which each of the phosphorylation site was discovered; Column G=the cell type(s)/Tissue/Patient Sample in which each of the phosphorylation site was discovered; and Column H=the SEQ ID NOs of the trypsin-digested peptides identified in Column E.



FIG. 3 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 193 in TAGLN, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 79).



FIG. 4 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 107 in RPS3, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 246).



FIG. 5 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 146 in SnRNP70, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 212).



FIG. 6 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 75 in TAF15, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 215).



FIG. 7 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 1149 in Tensin 1, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 14).



FIG. 8 is an exemplary mass spectrograph depicting the detection of the phosphorylation of tyrosine 197 in SCP2, as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* (and pY) indicates the phosphorylated tyrosine (corresponds to lowercase “y” in Column E of Table 1; SEQ ID NO: 136).





DETAILED DESCRIPTION OF THE INVENTION

The inventors have discovered and disclosed herein novel tyrosine phosphorylation sites in signaling proteins extracted from carcinoma cells. The newly discovered phosphorylation sites significantly extend our knowledge of kinase substrates and of the proteins in which the novel sites occur. The disclosure herein of the novel phosphorylation sites and reagents including peptides and antibodies specific for the sites add important new tools for the elucidation of signaling pathways that are associate with a host of biological processes including cell division, growth, differentiation, develomental changes and disease. Their discovery in carcinoma cells provides and focuses further elucidation of the disease process. And, the novel sites provide additional diagnostic and therapeutic targets.


1. Novel Phosphorylation Sites in Carcinoma

In one aspect, the invention provides 351 novel tyrosine phosphorylation sites in signaling proteins from cellular extracts from a variety of human carcinoma-derived cell lines and tissue samples (such as H3255, lung tumor T26, etc., as further described below in Examples), identified using the techniques described in “Immunoaffinity Isolation of Modified Peptides From Complex Mixtures,” U.S. Patent Publication No. 20030044848, Rush et al., using Table 1 summarizes the identified novel phosphorylation sites.


These phosphorylation sites thus occur in proteins found in carcinoma. The sequences of the human homologues are publicly available in SwissProt database and their Accession numbers listed in Column B of Table 1. The novel sites occur in proteins such as: protein kinases (such as serine/threonine dual specificity kinases or tyrosine kinases), adaptor/scaffold proteins, transcription factors, phosphatases, tumor suppressors, ubiquitin conjugating system proteins, translation initiation complex proteins, RNA binding proteins, apoptosis proteins, adhesion proteins, G protein regulators/GTPase activating protein/Guanine nucleotide exchange factor proteins, and DNA binding/replication/repair proteins (see Column C of Table 1).


The novel phosphorylation sites of the invention were identified according to the methods described by Rush et al., U.S. Patent Publication No. 20030044848, which are herein incorporated by reference in its entirety. Briefly, phosphorylation sites were isolated and characterized by immunoaffinity isolation and mass-spectrometric characterization (IAP) (FIG. 1), using the following human carcinoma-derived cell lines and tissue samples: 293T, 3T3-EGFR(L858R), 3T3-EGFR(del), 3T3-EGFRwt, 8-MG-BA, 831/13, A172, A549, BaF3-10ZF, BaF3-4ZF, BaF3-PRTK, BaF3-Tel/FGFR3, Baf3/E255K, Baf3/Jak2(IL-3 dep), BxPC-3, CCF-STTG1, CHRF, CI-1, CTV-1, Calu-3, DBTRG-05MG, DMS 153, DMS 79, DND41, DU-528, DU145, GAMG, GDM-1, GMS-10, H1299, H1437, H1648, H1650, H1650 XG, H1651, H1666, H1693, H1703, H1734, H1793, H1869, H1915, H1944, H1975, H1993, H2023, H2030, H2085, H209, H2172, H2286, H2347, H3255, H446, H520, H524, H526, H661, H69, H810, H838, HCC1143, HCC1395, HCC1428, HCC1435, HCC1500, HCC1806, HCC1937, HCC366, HCC78, HCC827, HCT116, HEL, HL107A, HL107B, HL116A, HL116B, HL117A, HL117B, HL129A, HL130A, HL131A, HL131B, HL132A, HL132B, HL133A, HL1881, HL25A, HL41A, HL53A, HL53B, HL55A, HL55B, HL57, HL59A, HL59b, HL61a, HL61b, HL66A, HL66B, HL68A, HL75A, HL79A, HL79B, HL83A, HL84A, HL84B, HL87A, HL87B, HL92A, HL92B, HL97A, HL97B, HL98A, HT29, HeLa, Human lung tumor, JB, Jurkat, K562, KG-1, KG1-A, KMS11, KMS18, KY821, Karpas-1106p, LN18, LN229, LNCaP, LOU-NH91, M-07e, M059J, M059K, MCF-10A (Y561F), MCF-10A(Y969F), MDA-MB-453, MDA-MB-468, MDS-857, MKPL-1, ML-1, MO-91, MOLT15, MV4-11, Marimo, Me-F2, NCI-N87, NKM-1, Nomo-1, OCI/AML2, OCI/AML3, OPM-1, PANC-1, PC-3, PT9-pancreatic tumor, Pfeiffer, RC-K8, RI-1, RKO, RPMI8266, SCLC T1, SCLC T2, SH-SY5Y, SK-N-AS, SK-N-MC, SK-N-SH, SNB-19, SU-DHL1, SUPT-13, SW1783, SW620, SuDHL5, T17, T98G, TS, VAC0432, Verona 3, Verona 5, Verona 6, XG2, cs001, cs015, cs018, cs019, cs024, cs025, cs026, cs029, cs037, cs041, cs042, cs048, cs057, cs068, cs069, cs070, gz21, gz30, gz33, gz42, gz47, gz56, gz61, gz63, gz7, gz70, gz73, gz74, gzB1, h2228, h1144b, h1145a, h1145b, h1146a, h1146b, h1148b, h1152a, h1152b, lung tumor T26, lung tumor T57, normal human lung, pancreatic xenograft, rat brain, sw480. In addition to the newly discovered phosphorylation sites (all having a phosphorylatable tyrosine), many known phosphorylation sites were also identified.


The immunoaffinity/mass spectrometric technique described in Rush et al, i.e., the “IAP” method, is described in detail in the Examples and briefly summarized below.


The IAP method generally comprises the following steps: (a) a proteinaceous preparation (e.g., a digested cell extract) comprising phosphopeptides from two or more different proteins is obtained from an organism; (b) the preparation is contacted with at least one immobilized general phosphotyrosine-specific antibody; (c) at least one phosphopeptide specifically bound by the immobilized antibody in step (b) is isolated; and (d) the modified peptide isolated in step (c) is characterized by mass spectrometry (MS) and/or tandem mass spectrometry (MS-MS). Subsequently, (e) a search program (e.g., Sequest) may be utilized to substantially match the spectra obtained for the isolated, modified peptide during the characterization of step (d) with the spectra for a known peptide sequence. A quantification step, e.g., using SILAC or AQUA, may also be used to quantify isolated peptides in order to compare peptide levels in a sample to a baseline.


In the IAP method as disclosed herein, a general phosphotyrosine-specific monoclonal antibody (commercially available from Cell Signaling Technology, Inc., Beverly, Mass., Cat #9411 (p-Tyr-100)) may be used in the immunoaffinity step to isolate the widest possible number of phospho-tyrosine containing peptides from the cell extracts.


As described in more detail in the Examples, lysates may be prepared from various carcinoma cell lines or tissue samples and digested with trypsin after treatment with DTT and iodoacetamide to alkylate cysteine residues. Before the immunoaffinity step, peptides may be pre-fractionated (e.g., by reversed-phase solid phase extraction using Sep-Pak C18 columns) to separate peptides from other cellular components. The solid phase extraction cartridges may then be eluted (e.g., with acetonitrile). Each lyophilized peptide fraction can be redissolved and treated with phosphotyrosine-specific antibody (e.g., P-Tyr-100, CST #9411) immobilized on protein Agarose. Immunoaffinity-purified peptides can be eluted and a portion of this fraction may be concentrated (e.g., with Stage or Zip tips) and analyzed by LC-MS/MS (e.g., using a ThermoFinnigan LCQ Deca XP Plus ion trap mass spectrometer or LTQ). MS/MS spectra can be evaluated using, e.g., the program Sequest with the NCBI human protein database.


The novel phosphorylation sites identified are summarized in Table1/FIG. 2. Column A lists the parent (signaling) protein in which the phosphorylation site occurs. Column D identifies the tyrosine residue at which phosphorylation occurs (each number refers to the amino acid residue position of the tyrosine in the parent human protein, according to the published sequence retrieved by the SwissProt accession number). Column E shows flanking sequences of the identified tyrosine residues (which are the sequences of trypsin-digested peptides). FIG. 2 also shows the particular type of carcinoma (see Column G) and cell line(s) (see Column F) in which a particular phosphorylation site was discovered.









TABLE 1







Novel Phosphorylation Sites in Carcinoma.















A


D






Protein
B
C
Phospho-
E
H


1
Name
Accession No.
Protein Type
Residue
Phosphorylation Site Sequence
SEQ ID NO

















2
PHIP
NP_060404.3
Adaptor/scaffold
Y454
VWNSyTGQLIHVLMGHEDEVFVLEPHPFDPR
SEQ ID NO: 1






3
PPFIBP2
NP_003612.1
Adaptor/scaffold
Y835
FDESTDyICPMEPSDGVSDSHR
SEQ ID NO: 2





4
PZR
NP_003944.1
Adaptor/scaffold
Y200
DyTGCSTSESLSPVK
SEQ ID NO: 3





5
RAPH1
NP_079528.1
Adaptor/scaffold
Y576
TESAyDWTSLSSSSIK
SEQ ID NO: 4





6
SAP97
NP_004078.1
Adaptor/scaffold
Y399
NTSDFVyLK
SEQ ID NO: 5





7
sciellin
NP_003834.2
Adaptor/scaffold
Y275
SLESLIyMSTR
SEQ ID NO: 6





8
sciellin
NP_003834.2
Adaptor/scaffold
Y649
CEICKQPLENLQAGDSIWIyR
SEQ ID NO: 7





9
SH2-B-
NP_056318.1
Adaptor/scaffold
Y55
LYLASHPQyAGPGAEAAFSRR
SEQ ID NO: 8



beta





10
Shb
NP_003019.2
Adaptor/scaffold
Y301
GIQLYDTPyEPEGQSVDSDSESTVSPR
SEQ ID NO: 9





11
SSB1
NP_079382.2
Adaptor/scaffold
Y31
PLKQELQGLDyCK
SEQ ID NO: 10





12
SYNE2
NP_055995.4
Adaptor/scaffold
Y6169
TAACPNSSEVLyTSAK
SEQ ID NO: 11





13
tensin 1
NP_072174.3
Adaptor/scaffold
Y1131
NyQSSSPLPTVGSSYSSPDYSLQHFSSSPE
SEQ ID NO: 12







SQAR





14
tensin 1
NP_072174.3
Adaptor/scaffold
Y1144
NYQSSSPLPTVGSSySSPDYSLQHFSSSPE
SEQ ID NO: 13







SQAR





15
tensin 1
NP_072174.3
Adaptor/scaffold
Y1149
NYQSSSPLPTVGSSYSSPDySLQHFSSSPE
SEQ ID NO: 14







SQAR





16
tensin 1
NP_072174.3
Adaptor/scaffold
Y1345
QSSASGyQAPSTPSFPVSPAYYPGLSSPAT
SEQ ID NO: 15







SPSPDSAAFR





17
tensin 1
NP_072174.3
Adaptor/scaffold
Y339
WDSyDNFSGHRDDGMEEVVGHTQGPLDG
SEQ ID NO: 16







SLYAK





18
tensin 1
NP_072174.3
Adaptor/scaffold
Y561
SYPMEPMVNGGGYPyESASR
SEQ ID NO: 17





19
tensin 1
NP_072174.3
Adaptor/scaffold
Y766
SGyIPSGHSLGTPEPAPR
SEQ ID NO: 18





20
tensin 1
NP_072174.3
Adaptor/scaffold
Y793
SySPYDYQPCLAGPNQDFHSK
SEQ ID NO: 19





21
tensin 1
NP_072174.3
Adaptor/scaffold
Y903
RAASDGQyENQSPEATSPR
SEQ ID NO: 20





22
tensin 3
NP_073585.8
Adaptor/scaffold
Y1256
LKGCSNEPyFGSLTALVCQHSITPLALPCK
SEQ ID NO: 21





23
tensin 3
NP_073585.8
Adaptor/scaffold
Y549
SSQNSLLSDGFGSNVGEDPQGTLVPDLGL
SEQ ID NO: 22







GMDGPyERER





24
tensin 3
NP_073585.8
Adaptor/scaffold
Y579
KPSVSAQMQAyGQSSYSTQTWVR
SEQ ID NO: 23





25
tensin 3
NP_073585.8
Adaptor/scaffold
Y823
ETMTPGyPQDLDIIDGR
SEQ ID NO: 24





26
TFG
NP_006061.2
Adaptor/scaffold
Y399
NRPPFGQGYTQPGPGyR
SEQ ID NO: 25





27
TTC5
NP_612385.1
Adaptor/scaffold
Y236
yEESYGEALEGFSR
SEQ ID NO: 26





28
UBE2M
NP_003960.1
Adaptor/scaffold
Y172
GGyIGSTYFER
SEQ ID NO: 27





29
UBE2M
NP_003960.1
Adaptor/scaffold
Y177
GGYIGSTyFER
SEQ ID NO: 28





30
VANGL1
NP_620409.1
Adaptor/scaffold
Y344
RDSSHNELyYEEAEHER
SEQ ID NO: 29





31
VANGL1
NP_620409.1
Adaptor/scaffold
Y345
DSSHNELYyEEAEHER
SEQ ID NO: 30





32
WIRE
NP_573571.1
Adaptor/scaffold
Y400
SFLDDFESKySFHPVEDFPAPEEYK
SEQ ID NO: 31





33
WIRE
NP_573571.1
Adaptor/scaffold
Y74
SAPILEKPKGSSGGyGSGGAALQPK
SEQ ID NO: 32





34
ZO1
NP_003248.3
Adaptor/scaffold
Y1199
SyEQVPPQGFTSR
SEQ ID NO: 33





35
ZO2
NP_004808.2
Adaptor/scaffold
Y1015
SYEyKSNPSAVAGNETPGASTK
SEQ ID NO: 34





36
ZO2
NP_004808.2
Adaptor/scaffold
Y506
TFLRPSPEDEAIyGPNTK
SEQ ID NO: 35





37
Plakophilin
NP_000290.2
Adhesion or
Y80
GSMYDGLADNYNYGTTSR
SEQ ID NO: 36



1

extracellular





matrix protein





38
Plakophilin
NP_003619.2
Adhesion or
Y1139
LYLQSPHSyEDPYFDDRVHFPASTDYSTQY
SEQ ID NO: 37



4

extracellular

GLK





matrix protein





39
Plakophilin
NP_003619.2
Adhesion or
Y1172
STTNYVDFySTK
SEQ ID NO: 38



4

extracellular





matrix protein





40
Plakophilin
NP_003619.2
Adhesion or
Y152
SSTQMNSySDSGYQEAGSFHNSQNVSK
SEQ ID NO: 39



4

extracellular





matrix protein





41
Plakophilin
NP_003619.2
Adhesion or
Y224
AQSPSyVISTGVSPSR
SEQ ID NO: 40



4

extracellular





matrix protein





42
Plakophilin
NP_003619.2
Adhesion or
Y420
SAVSPDLHITPIYEGRTyYSPVYR
SEQ ID NO: 41



4

extracellular





matrix protein





43
Plakophitin
NP_003619.2
Adhesion or
Y421
SAVSPDLHITPIYEGRTYySPVYR
SEQ ID NO: 42



4

extracellular





matrix protein





44
plexin C1
NP_005752.1
Adhesion or
Y1471
LLyAKDIPTYKEEVK
SEQ ID NO: 43





extracellular





matrix protein





45
plexin C1
NP_005752.1
Adhesion or
Y1478
LLYAKDIPTyKEEVK
SEQ ID NO: 44





extracellular





matrix protein





46
PVRL3
NP_056295.1
Adhesion or
Y511
FERPMDYyEDLK
SEQ ID NO: 45





extracellular





matrix protein





47
SDK2
NP_061937.3
Adhesion or
Y1712
yNDLIPAESSSLTEK
SEQ ID NO: 46





extracellular





matrix protein





48
ZAN
NP_003377.1
Adhesion or
Y187
GSTAyLDIALDALSIRR
SEQ ID NO: 47





extracellular





matrix protein





49
TNS4
NP_116254.3
Apoptosis
Y150
KKEESEALDIKyIEVTSAR
SEQ ID NO: 48





50
RCV1
NP_002894.1
Calcium-binding
Y158
yFGKNDDDKLTEK
SEQ ID NO: 49





protein





51
S100A10
NP_002957.1
Calcium-binding
Y25
FAGDKGyLTKEDLR
SEQ ID NO: 50





protein





52
septin 7
NP_001779.2
Cell cycle
Y204
IyEFPETDDEEENK
SEQ ID NO: 51





regulation





53
SKB1
NP_006100.2
Cell cycle
Y280
EFCSyLQYLEYLSQNR
SEQ ID NO: 52





regulation





54
SKB1
NP_006100.2
Cell cycle
Y286
EFCSYLQYLEyLSQNR
SEQ ID NO: 53





regulation





55
SMC2L1
NP_006435.2
Cell cycle
Y938
MLKDyDWINAER
SEQ ID NO: 54





regulation





56
STI1
NP_006810.1
Chaperone
Y48
SAAyAKKGDYQKAYEDGCK
SEQ ID NO: 55





57
STI1
NP_006810.1
Chaperone
Y54
SAAYAKKGDyQKAYEDGCK
SEQ ID NO: 56





58
TBCA
NP_004598.1
Chaperone
Y75
RLEAAyLDLQR
SEQ ID NO: 57





59
PMS1
NP_000525.1
Chromatin, DNA-
Y620
yEEKATKDLERYNSQMK
SEQ ID NO: 58





binding, DNA





repair or DNA





replication protein





60
POLA
NP_058633.2
Chromatin, DNA-
Y87
QDDDWIVDDDGIGyVEDGR
SEQ ID NO: 59





binding, DNA





repair or DNA





replication protein





61
PRIM1
NP_000937.1
Chromatin, DNA-
Y188
SGIVEyLSLVKGGQDVK
SEQ ID NO: 60





Binding, DNA





repair or DNA





replication protein





62
Rad54L
NP_003570.1
Chromatin, DNA-
Y503
MLVLDyILAVTR
SEQ ID NO: 61





binding, DNA





repair or DNA





replication protein





63
SON
NP_115571.1
Chromatin, DNA-
Y956
LGHDPyRLTPDPYR
SEQ ID NO: 62





binding, DNA





repair or DNA





replication protein





64
ZNF185
NP_009081.2
Chromatin, DNA-
Y498
GALADyEGKDVATR
SEQ ID NO: 63





binding, DNA





repair or DNA





replication protein





65
ZNF262
NP_005086.2
Chromatin, DNA-
Y811
YTVLFyQMAKCDACKRQGK
SEQ ID NO: 64





binding, DNA





repair or DNA





replication protein





66
PGM5
NP_068800.2
Cytoskeletal
Y153
FNVANGGPAPDVVSDKIyQISK
SEQ ID NO: 65





protein





67
plectin 1
NP_000436.2
Cytoskeletal
Y2923
GGELVyTDSEAR
SEQ ID NO: 66





protein





68
plectin 1
NP_000436.2
Cytoskeletal
Y4045
AVTGYKDPySGK
SEQ ID NO: 67





protein





69
plectin 1
NP_000436.2
Cytoskeletal
Y4408
GWLYyEAGQR
SEQ ID NO: 68





protein





70
plectin 1
NP_000436.2
Cytoskeletal
Y3252
ARQEELySELQAR
SEQ ID NO: 69



iso11

protein





71
profilin 2
NP_002619.1
Cytoskeletal
Y99
SQGGEPTyNVAVGR
SEQ ID NO: 70





protein





72
RIL
NP_003678.2
Cytoskeletal
Y191
VDLGSEVyR
SEQ ID NO: 71





protein





73
RIL
NP_003678.2
Cytoskeletal
Y316
VKPPEGyDVVAVYPNAK
SEQ ID NO: 72





protein





74
slingshot 2
NP_203747.2
Cytoskeletal
Y411
MGVSRSASTVIAYAMKEyGWNLDRAYDYV
SEQ ID NO: 73





protein

KER





75
slingshot 2
NP_203747.2
Cytoskeletal
Y419
MGVSRSASTVIAYAMKEYGWNLDRAyDYV
SEQ ID NO: 74





protein

KER





76
slingshot 2
NP_203747.2
Cytoskeletal
Y421
MGVSRSASTVIAYAMKEYGWNLDRAYDyV
SEQ ID NO: 75





protein

KER





77
spastin
NP_055761.2
Cytoskeletal
Y212
SQTDVyNDSTNLACR
SEQ ID NO: 76





protein





78
SPTBN1
NP_003119.2
Cytoskeletal
Y1805
TQILAASyELHK
SEQ ID NO: 77





protein





79
SPT8N2
NP_008877.1
Cytoskeletal
Y1801
GQVLAAAyELQR
SEQ ID NO: 78





protein





80
TAGLN
NP_003177.2
Cytoskeletal
Y193
GASQAGMTGyGRPR
SEQ ID NO: 79





protein





81
talin 2
NP_055874.1
Cytoskeletal
Y1665
DKAPGQRECDySIDGINR
SEQ ID NO: 80





protein





82
talin 2
NP_055874.1
Cytoskeletal
Y72
TLDyYMLR
SEQ ID NO: 81





protein





83
tensin 2
NP_056134.2
Cytoskeletal
Y454
NDPSVSVDyNTTEPAVR
SEQ ID NO: 82





protein





84
tensin 2
NP_056134.2
Cytoskeletal
Y683
APGyREVVILEDPGLPALYPCPACEEK
SEQ ID NO: 83





protein





85
tensin 2
NP_056134.2
Cytoskeletal
Y828
GyPSPGAHSPRAGSISPGSPPYPQSR
SEQ ID NO: 84





protein





86
TES
NP_056456.1
Cytoskeletal
Y313
CAGCDELIFSNEyTQAENQNWHLK
SEQ ID NO: 85





protein





87
utrophin
NP_009055.2
Cytoskeletal
Y2355
yEARLYILQQAR
SEQ ID NO: 86





protein





88
utrophin
NP_009055.2
Cytoskeletal
Y2360
YEARLyILQQAR
SEQ ID NO: 87





protein





89
VIM
NP_003371.2
Cytoskeletal
Y150
LGDLyEEEMR
SEQ ID NO: 88





protein





90
PGM1
NP_002624.2
Enzyme, misc.
Y66
QEATLVVGGDGRFyMK
SEQ ID NO: 89





91
PIGG
NP_060203.2
Enzyme, misc.
Y92
FMPyTTYLVEK
SEQ ID NO: 90





92
PIGG
NP_060203.2
Enzyme, misc.
Y95
FMPYTTyLVEK
SEQ ID NO: 91





93
PLCB1
NP_056007.1
Enzyme, misc.
Y1102
TEMIRSyIQEVVQYIKRLEEAQSK
SEQ ID NO: 92





94
PLCB1
NP_056007.1
Enzyme, misc.
Y1109
TEMIRSYIQEVVQyIKRLEEAQSK
SEQ ID NO: 93





95
PLCD3
NP_588614.1
Enzyme, misc.
Y706
QETDyVLNNGFNPR
SEQ ID NO: 94





96
POR
NP_000932.3
Enzyme, misc.
Y376
TALTyYLDITNPPR
SEQ ID NO: 95





97
POR
NP_000932.3
Enzyme, misc.
Y377
TALTYyLDITNPPR
SEQ ID NO: 96





98
PYGL
NP_002854.3
Enzyme, misc.
Y76
TQQHYyDKCPK
SEQ ID NO: 97





99
PYGM
NP_005600.1
Enzyme, misc.
Y733
GYNAQEYyDRIPELR
SEQ ID NO: 98





100
RNGTT
NP_003791.3
Enzyme, misc.
Y359
yLIYDIIK
SEQ ID NO: 99





101
SETDB1
NP_036564.2
Enzyme, misc.
Y230
GTLIAIQTVGPGKKyK
SEQ ID NO: 100





102
SI
NP_001032.1
Enzyme, misc.
Y983
QDNSySVNSAR
SEQ ID NO: 101





103
SOD2
NP_000627.2
Enzyme, misc.
Y58
HHAAyVNNLNVTEEKYQEALAK
SEQ ID NO: 102





104
SPTLC1
NP_006406.1
Enzyme, misc.
Y82
DHPALNyNIVSGPPSHK
SEQ ID NO: 103





105
SULT4A1
NP_055166.1
Enzyme, misc.
Y142
NPKDLVVSyYQFHR
SEQ ID NO: 104





106
TRXR1
NP_003321.2
Enzyme, misc.
Y405
FGEENIEVYHSyFWPLEWTIPSR
SEQ ID NO: 105





107
UGCGL1
NP_064505.1
Enzyme, misc.
Y240
KEPVyLSGYGVELAIKSTEYKAK
SEQ ID NO: 106





108
UGCGL1
NP_064505.1
Enzyme, misc.
Y244
KEPVYLSGyGVELAIKSTEYKAK
SEQ ID NO: 107





109
UGDH
NP_003350.1
Enzyme, misc.
Y53
INAWNSPTLPIyEPGLK
SEQ ID NO: 108





110
UPP1
NP_003355.1
Enzyme, misc.
Y35
MKEDILyHFNLTTSR
SEQ ID NO: 109





111
ZDHHC3
NP_057682.1
Enzyme, misc.
Y18
KPEyLQPEK
SEQ ID NO: 110





112
PSD
NP_002770.3
G protein or
Y700
ELLKALySSIKNEK
SEQ ID NO: 111





regulator





113
RAB7L1
NP_003920.1
G protein or
Y190
NSTEDIMSLSTQGDyINLQTK
SEQ ID NO: 112





regulator





114
Ran
NP_006316.1
G protein or
Y146
NLQyYDISAK
SEQ ID NO: 113





regulator





115
RICS
NP_055530.2
G protein or
Y1439
GPVMSQYDNMTPAVQDDLGGIyVIHLR
SEQ ID NO: 114





regulator





116
RICS
NP_055530.2
G protein or
Y1674
QSSVTVVSQyDNLEDYHSLPQHQR
SEQ ID NO: 115





regulator





117
RICS
NP_055530.2
G protein or
Y272
TQAQVNSPIVTENKyIEVGEGPAALQGK
SEQ ID NO: 116





regulator





118
RIN2
NP_061866.1
G protein or
Y790
TIPSVDDFQNyLR
SEQ ID NO: 117





regulator





119
StARD13
NP_443083.1
G protein or
Y537
MKVPDyKDK
SEQ ID NO: 118





regulator





120
SPINT2
NP_066925.1
Inhibitor protein
Y250
TVWSSGDDKEQLVKNTyVL
SEQ ID NO: 119





121
SPRED1
NP_689807.1
Inhibitor protein
Y292
KSDyLYSCGDETK
SEQ ID NO: 120





122
TTRAP
NP_057698.2
Inhibitor protein
Y139
GVCSyLALYSPDVIFLQEVIPPYYSYLKK
SEQ ID NO: 121





123
TTRAP
NP_057698.2
Inhibitor protein
Y157
GVCSYLALYSPDVIFLQEVIPPyYSYLKK
SEQ ID NO: 122





124
TTRAP
NP_057698.2
Inhibitor protein
Y158
GVCSYLALYSPDVIFLQEVIPPYySYLKK
SEQ ID NO: 123





125
TTRAP
NP_057698.2
Inhibitor protein
Y160
GVCSYLALYSPDVIFLQEVIPPYYSyLKK
SEQ ID NO: 124





126
PI4KII
NP_060895.1
Kinase (non-
Y465
SSSESyTQSFQSR
SEQ ID NO: 125





protein)





127
PIK3CA
NP_006209.2
Kinase (non-
Y317
ISTATPyMNGETSTK
SEQ ID NO: 126





protein)





128
PIK3CA
NP_006209.2
Kinase (non-
Y508
EAGFSySHAGLSNR
SEQ ID NO: 127





protein)





129
PIK3CG
NP_002640.2
Kinase (non-
Y757
yDVSSQVISQLK
SEQ ID NO: 128





protein)





130
PIK3R1
NP_852556.2
Kinase (non-
Y193
SREyDRLYEEYTR
SEQ ID NO: 129





protein)





131
PIK3R3
NP_003620.2
Kinase (non-
Y188
LQEYHSQyQEK
SEQ ID NO: 130





protein)





132
PIK3R3
NP_003620.2
Kinase (non-
Y199
SKEYDRLyEEYTR
SEQ ID NO: 131





protein)





133
PIK3R3
NP_003620.2
Kinase (non-
Y373
VQAEDLLyGKPDGAFLIR
SEQ ID NO: 132





protein)





134
PIPK II-
NP_005019.2
Kinase (non-
Y246
IyIDDNNKKVFLEK
SEQ ID NO: 133



alpha

protein)





135
PLEKHA5
NP_061885.2
Lipid binding
Y353
LNSLPSEyESGSACPAQTVHYRPINLSS
SEQ ID NO: 134





protein

SENK





136
PLEKHA6
NP_055750.2
Lipid binding
Y433
QPVyYDELDAASSSLR
SEQ ID NO: 135





protein





137
SCP2
NP_002970.2
Lipid binding
Y197
HSVNNPySQFQDEYSLDEVMASK
SEQ ID NO: 136





protein





138
SCP2
NP_002970.2
Lipid binding
Y204
HSVNNPYSQFQDEySLDEVMASK
SEQ ID NO: 137





protein





139
SEC14L2
NP_036561.1
Lipid binding
Y36
FRENVQDVLPALPNPDDyFLLR
SEQ ID NO: 138





protein





140
SFTPC
NP_003009.1
Lipid binding
Y16
EVLMESPPDySAAPR
SEQ ID NO: 139





protein





141
SLC25A32
NP_110407.2
Mitochondrial
Y163
QyKGMFDTLVK
SEQ ID NO: 140





protein





142
PPM1J
NP_005158.5
Phosphatase
Y458
yTALAQALVLGARGTPR
SEQ ID NO: 141





143
PTPN2
NP_002819.1
Phosphatase
Y384
KRWLyWQPILTK
SEQ ID NO: 142





144
PTPRN2
NP_002838.1
Phosphatase
Y666
LSGLGGDPGADATAAyQELCR
SEQ ID NO: 143





145
TPP2
NP_003282.1
Protease
Y118
NGyDFYPK
SEQ ID NO: 144





146
TPSAB1
NP_003285.2
Protease
Y97
EQHLYyQDQLLPVSR
SEQ ID NO: 145





147
USP34
NP_055524.3
Protease
Y2118
LDMTPyTEDFLMGKSER
SEQ ID NO: 146





148
RIOK1
NP_113668.2
Protein kinase
Y83
GyVWNGGSNPQANR
SEQ ID NO: 147





149
RIOK3
NP_003822.2
Protein kinase
Y517
AASFLKDDGDPPLLyDE
SEQ ID NO: 148





150
PKCD
NP_006245.2
Protein kinase,
Y630
VKSPRDySNFDQEFLNEK
SEQ ID NO: 149





Ser/Thr (non-





receptor)





151
SgK223
XP_291277.2
Protein kinase,
Y487
TIyLSSPDSAVGVQWPR
SEQ ID NO: 150





Ser/Thr (non-





receptor)





152
SgK223
XP_291277.2
Protein kinase,
Y862
LNLSHSETNVHDESHFSySLSPGNR
SEQ ID NO: 151





Ser/Thr (non-





receptor)





153
SgK269
XP_370878.3
Protein kinase,
Y1107
EDGKEDISDPMDPNPCSATySNLGQSR
SEQ ID NO: 152





Ser/Thr (non-





receptor)





154
SgK307
NP_112562.3
Protein kinase,
Y502
MNLQDIRyILKNDLK
SEQ ID NO: 153





Ser/Thr (non-





receptor)





155
smMLCK
NP_444253.3
Protein kinase,
Y104
yTCEATNGSGAR
SEQ ID NO: 154





Ser/Thr (non-





receptor)





156
smMLCK
NP_444253.3
Protein kinase,
Y611
KSEyLLPVAPSKPTAPIFLQGLSDLK
SEQ ID NO: 155





Ser/Thr (non-





receptor)





157
TAF1
NP_004597.2
Protein kinase,
Y364
yGPARLWYDMLGVPEDGSGFDYGFKLR
SEQ ID NO: 156





Ser/Thr (non-





receptor)





158
TAF1
NP_004597.2
Protein kinase,
Y371
YGPARLWyDMLGVPEDGSGFDYGFKLR
SEQ ID NO: 157





Ser/Thr (non-





receptor)





159
TAF1
NP_004597.2
Protein kinase,
Y385
YGPARLWYDMLGVPEDGSGFDyGFKLR
SEQ ID NO: 158





Ser/Thr (non-





receptor)





160
Titin
NP_003310.3
Protein kinase,
Y5167
VLEADPyFTVK
SEQ ID NO: 159





Ser/Thr (non-





receptor)





161
Titin
NP_003310.3
Protein kinase,
Y6952
TLSAyAELVISPSER
SEQ ID NO: 160





Ser/Thr (non-





receptor)





162
Titin
NP_003310.3
Protein kinase,
Y15525
VDQLQEGCSYyFR
SEQ ID NO: 161





Ser/Thr (non-





receptor)





163
Titin
NP_003310.3
Protein kinase,
Y16607
IDQLQEGCSYyFR
SEQ ID NO: 162





Ser/Thr (non-





receptor)





164
Titin
NP_003310.3
Protein kinase,
Y18078
FKTTGLDEGLEyEFK
SEQ ID NO: 163





Ser/Thr (non-





receptor)





165
Titin
NP_003310.3
Protein kinase,
Y18772
IENLQEGCSYyFR
SEQ ID NO: 164





Ser/Thr (non-





receptor)





166
Src
NP_005408.1
Protein kinase,
Y187
GAyCLSVSDFDNAK
SEQ ID NO: 165





Tyr (non-





receptor)





167
Syk
NP_003168.2
Protein kinase,
Y203
ARDNNGSyALCLLHEGK
SEQ ID NO: 166





Tyr (non-





receptor)





168
Syk
NP_003168.2
Protein kinase,
Y244
KFDTLWQLVEHySYK
SEQ ID NO: 167





Tyr (non-





receptor)





169
Yes
NP_005424.1
Protein kinase,
Y141
NGyIPSNYVAPADSIQAEEWYFGK
SEQ ID NO: 168





Tyr (non-





receptor)





170
Yes
NP_005424.1
Protein kinase,
Y194
GAySLSIRDWDEIRGDNVK
SEQ ID NO: 169





Tyr (non-





receptor)





171
Yes
NP_005424.1
Protein kinase,
Y336
HDKLVPLyAVVSEEPIYIVTEFMSK
SEQ ID NO: 170





Tyr (non-





receptor)





172
ROR1
NP_005003.2
Protein kinase,
Y786
yPNYMFPSQGITPQGQIAGFIGPPIPQNQR
SEQ ID NO: 171





Tyr (receptor)





173
ROR1
NP_005003.2
Protein kinase,
Y789
YPNyMFPSQGITPQGQIAGFIGPPIPQNQR
SEQ ID NO: 172





Tyr (receptor)





174
ROR1
NP_005003.2
Protein kinase,
Y828
FIPINGYPIPPGyAAFPAAHYQPTGPPR
SEQ ID NO: 173





Tyr (receptor)





175
ROS
NP_002935.2
Protein kinase,
Y1923
GLAAGVGLANACyAIHTLPTQEEIENLPA
SEQ ID NO: 174





Tyr (receptor)

FPR





176
ROS
NP_002935.2
Protein kinase,
Y2323
QVAyCPSGKPEGLNYACLTHSGYGDGSD
SEQ ID NO: 176





Tyr (receptor)





177
ROS
NP_002935.2
Protein kinase,
Y2342
QVAYCPSGKPEGLNYACLTHSGyGDGSD
SEQ ID NO: 177





Tyr (receptor)





178
Tyro3
NP_006284.2
Protein kinase,
Y828
AEEPTAGGSLELPGRDQPySGAGDGSGMG
SEQ ID NO: 178





Tyr (receptor)

AVGGTPSDCR





179
VEGFR-1
NP_002010.1
Protein kinase,
Y383
yLTRGYSLIIK
SEQ ID NO: 179





Tyr (receptor)





180
VEGFR-1
NP_002010.1
Protein kinase,
Y388
YLTRGySLIIK
SEQ ID NO: 180





Tyr (receptor)





181
PROM1
NP_006008.1
Receptor,
Y828
MDSEDVyDDVETIPMK
SEQ ID NO: 181





channel,





transporter or cell





surface protein





182
PROM1
NP_006008.1
Receptor,
Y852
DHVyGIHNPVMTSPSQH
SEQ ID NO: 182





channel,





transporter or cell





surface protein





183
RAIG1
NP_003970.1
Receptor,
Y300
AySQEEITQGFEETGDTLYAPYSTHFQLQN
SEQ ID NO: 183





channel,

QPPQK





transporter or cell





surface protein





184
rhodopsin
NP_000530.1
Receptor,
Y301
SAAIyNPVIYIMMNK
SEQ ID NO: 184





channel,





transporter or cell





surface protein





185
SEMA4B
NP_064595.2
Receptor,
Y787
GyQSLSDSPPGSR
SEQ ID NO: 185





channel,





transporter or cell





surface protein





186
SEMA6D
NP_065909.1
Receptor,
Y676
LySNLLTSR
SEQ ID NO: 186





channel,





transporter or cell





surface protein





187
SERCA2
NP_001672.1
Receptor,
Y836
yLAIGCYVGAATVGAAAWWFIAADGGPR
SEQ ID NO: 187





channel,





transporter or cell





surface protein





188
SLC12A4
NP_005063.1
Receptor,
Y61
GIDyYDRNLALFEEELDIRPK
SEQ ID NO: 188





channel,





transporter or cell





surface protein





189
SLC12A4
NP_005063.1
Receptor,
Y62
GIDYyDRNLALFEEELDIRPK
SEQ ID NO: 189





channel,





transporter or cell





surface protein





190
SLC12A6
NP_005126.1
Receptor,
Y77
NAYLNNSNYEEGDEyFDKNLALFEEEMDTR
SEQ ID NO: 190





channel,

PK





transporter or cell





surface protein





191
SLC15A1
NP_005064.1
Receptor,
Y697
SNPyFMSGANSQK
SEQ ID NO: 191





channel,





transporter or cell





surface protein





192
SLC20A1
NP_005406.3
Receptor,
Y421
NNSYTSyTMAICGMPLDSFR
SEQ ID NO: 192





channel,





transporter or cell





surface protein





193
SLC25A12
NP_003696.2
Receptor,
Y236
KIySTLAGTRK
SEQ ID NO: 193





channel,





transporter or cell





surface protein





194
SLC25A2
NP_114153.1
Receptor,
Y138
LQTMyEMEMSGKIAK
SEQ ID NO: 194





channel,





transporter or cell





surface protein





195
SLC25A4
NP_001142.2
Receptor,
Y191
AAyFGVYDTAK
SEQ ID NO: 195





channel,





transporter or cell





surface protein





196
SLC25A5
NP_001143.1
Receptor,
Y191
AAyFGIYDTAK
SEQ ID NO: 196





channel,





transporter or cell





surface protein





197
SLC34A2
NP_006415.2
Receptor,
Y54
IELLPSySTATLIDEPTEVDDPWNLPTLQDS
SEQ ID NO: 197





channel,

GIK





transporter or cell





surface protein





198
SLC6A8
NP_005620.1
Receptor,
Y11
SAENGIySVSGDEK
SEQ ID NO: 198





channel,





transporter or cell





surface protein





199
TMEM27
NP_065716.1
Receptor,
Y40
TALGDKAyAWDTNEEYLFKAMVAFSMRKV
SEQ ID NO: 199





channel,

PNR





transporter or cell





surface protein





200
TMEM27
NP_065716.1
Receptor,
Y48
TALGDKAYAWDTNEEyLFKAMVAFSMRKV
SEQ ID NO: 200





channel,

PNR





transporter or cell





surface protein





201
TRPV4
NP_067638.3
Receptor,
Y113
KAPMDSLFDYGTyR
SEQ ID NO: 201





channel,





transporter or cell





surface protein





202
TRPV4
NP_067638.3
Receptor,
Y91
KGVPNPIDLLESTLyESSVVPGPK
SEQ ID NO: 202





channel,





transporter or cell





surface protein





203
TSPAN3
NP_005715.1
Receptor,
Y243
SRDPAyELLITGGTYA
SEQ ID NO: 203





channel,





transporter or cell





surface protein





204
TSPAN3
NP_005715.1
Receptor,
Y252
SRDPAYELLITGGTyA
SEQ ID NO: 204





channel,





transporter or cell





surface protein





205
TTYH2
NP_116035.5
Receptor,
Y517
ATyLSVADEHLR
SEQ ID NO: 205





channel,





transporter or cell





surface protein





206
VIGR
NP_065188.4
Receptor,
Y1196
NSHTDNVSyEHSFNK
SEQ ID NO: 206





channel,





transporter or cell





surface protein





207
PRPF8
NP_006436.3
RNA binding
Y2256
GNNPKGYLPSHyER
SEQ ID NO: 207





protein





208
RBM14
NP_006319.1
RNA binding
Y652
RLPDAHSDYARYSGSyNDYLRAAQMHSGY
SEQ ID NO: 208





protein

QR





209
RBM14
NP_006319.1
RNA binding
Y665
RLPDAHSDYARYSGSYNDYLRAAQMHSGy
SEQ ID NO: 209





protein

QR





210
SF2
NP_008855.1
RNA binding
Y77
DGyDYDGYR
SEQ ID NO: 210





protein





211
SF3B4
NP_005841.1
RNA binding
Y16
NQDATVyVGGLDEK
SEQ ID NO: 211





protein





212
SnRNP 70
NP_003080.2
RNA binding
Y146
GyAFIEYEHER
SEQ ID NO: 212





protein





213
TAF15
NP_003478.1
RNA binding
Y452
SSGGGYSGDRSGGGYGGDRSGGGyGGD
SEQ ID NO: 213





protein

RGGGYGGDR





214
TAF15
NP_003478.1
RNA binding
Y460
SSGGGYSGDRSGGGYGGDRSGGGYGGD
SEQ ID NO: 214





protein

RGGGyGGDR





215
TAF15
NP_003478.1
RNA binding
Y75
QSSySQQPYNNQGQQQNMESSGSQGGR
SEQ ID NO: 215





protein





216
TAF15
NP_003478.1
RNA binding
Y80
QSSYSQQPyNNQGQQQNMESSGSQGGR
SEQ ID NO: 216





protein





217
U2AF1
NP_006749.1
RNA binding
Y93
yGEVEEMNVCDNLGDHLVGNVYVKFRR
SEQ ID NO: 217





protein





218
U5-200kD
NP_054733.2
RNA binding
Y1177
TIHKyVHLFPK
SEQ ID NO: 218





protein





219
SCGB1D1
NP_006543.1
Secreted protein
Y71
KCVDTMAyEKRVLITK
SEQ ID NO: 219





220
transferrin
NP_001054.1
Secreted protein
Y533
LCMGSGLNLCEPNNKEGyYGYTGAFR
SEQ ID NO: 220





221
transferrin
NP_001054.1
Secreted protein
Y536
YYGyTGAFR
SEQ ID NO: 221





222
transferrin
NP_001054.1
Secreted protein
Y64
ASyLDCIR
SEQ ID NO: 222





223
PHB
NP_002625.1
Transcriptional
Y249
KLEAAEDIAyQLSR
SEQ ID NO: 223





regulator





224
PPARGC1B
NP_573570.2
Transcriptional
Y990
YTDyDSNSEEALPASGKSK
SEQ ID NO: 224





regulator





225
similar to
NP_848618.2
Transcriptional
Y255
IFRKNSyFVRHQRSHTGQK
SEQ ID NO: 225



ZFP347

regulator





226
Sin3A
NP_056292.1
Transcriptional
Y558
LGSSyRALPKSYQQPK
SEQ ID NO: 226





regulator





227
Sin3A
NP_056292.1
Transcriptional
Y565
LGSSYRALPKSyQQPK
SEQ ID NO: 227





regulator





228
SMRT
AAD20946.1
Transcriptional
Y302
FCQRyDQLMEALEK
SEQ ID NO: 228





regulator





229
SND1
NP_055205.2
Transcriptional
Y329
IWRDyVAPTANLDQK
SEQ ID NO: 229





regulator





230
SSRP1
NP_003137.1
Transcriptional
Y441
EGMNPSYDEyADSDEDQHDAYLER
SEQ ID NO: 230





regulator





231
STAG2
NP_006594.3
Transcriptional
Y433
PVAVAAGEFLyK
SEQ ID NO: 231





regulator





232
STAG2
NP_006594.3
Transcriptional
Y892
yYNDYGDIIKETMSK
SEQ ID NO: 232





regulator





233
STAG2
NP_006594.3
Transcriptional
Y893
YyNDYGDIIKETMSK
SEQ ID NO: 233





regulator





234
STAG2
NP_006594.3
Transcriptional
Y896
YYNDyGDIIKETMSK
SEQ ID NO: 234





regulator





235
SUPT16H
NP_009123.1
Transcriptional
Y741
RHTDVQFyTEVGEITTDLGKHQHMHDR
SEQ ID NO: 235





regulator





236
TAF172
NP_003963.1
Transcriptional
Y974
GIITLyRHQK
SEQ ID NO: 236





regulator





237
TAF1B
NP_005671.1
Transcriptional
Y404
KWyQIMKKAFDEK
SEQ ID NO: 237





regulator





238
TBX1
NP_005983.1
Transcriptional
Y255
KDSEKyAEENFK
SEQ ID NO: 238





regulator





239
TRIM29
NP_036233.2
Transcriptional
Y106
SPyAGLQLGAAK
SEQ ID NO: 239





regulator





240
ZFP57
XP_294093.4
Transcriptional
Y236
TYCDASGLSRHRRVHLGyR
SEQ ID NO: 240





regulator





241
ZNF331
NP_061025.5
Transcriptional
Y107
SRGRYVNQMIINyVK
SEQ ID NO: 241





regulator





242
RPL27
NP_000979.1
Translational
Y49
NIDDGTSDRPYSHALVAGIDRyPR
SEQ ID NO: 242





regulator





243
RPL6
NP_000961.2
Translational
Y216
IPKHLTDAyFKK
SEQ ID NO: 243





regulator





244
RPS10
NP_001005.1
Translational
Y78
HFYWYLTNEGIQyLR
SEQ ID NO: 244





regulator





245
RPS21
NP_001015.1
Translational
Y53
TyAICGAIR
SEQ ID NO: 245





regulator





246
RPS3
NP_000996.2
Translational
Y107
yKLLGGLAVRR
SEQ ID NO: 246





regulator





247
SASH1
NP_056093.3
Tumor
Y570
VHTDFTPSPyDTDSLKLK
SEQ ID NO: 247





suppressor





248
SASH1
NP_056093.3
Tumor
Y728
DSGCyESSENLENGK
SEQ ID NO: 248





suppressor





249
SASH1
NP_056093.3
Tumor
Y766
NQLGNyPTLPLMK
SEQ ID NO: 249





suppressor





250
TOPORS
NP_005793.2
Ubiquitin
Y180
yRTTLTRERNASVYSPSGPVNR
SEQ ID NO: 250





conjugating





system





251
TOPORS
NP_005793.2
Ubiquitin
Y193
YRTTLTRERNASVySPSGPVNR
SEQ ID NO: 251





conjugating





system





252
UBE3A
NP_000453.2
Ubiquitin
Y127
DVTyLTEEK
SEQ ID NO: 252





conjugating





system





253
UBE3A
NP_000453.2
Ubiquitin
Y720
EFVNLYSDyILNK
SEQ ID NO: 253





conjugating





system





254
UBE4A
NP_004779.2
Ubiquitin
Y756
PMyPILRYMWGTDTYR
SEQ ID NO: 254





conjugating





system





255
UREB1
NP_113584.3
Ubiquitin
Y191
DLHMMKyPPSATTLHFEFYADPGAEVKIEKR
SEQ ID NO: 255





conjugating





system





256
USP26
NP_114113.1
Ubiquitin
Y203
MLSSSSEMNEEFLKENNSVEyKKSK
SEQ ID NO: 256





conjugating





system





257
USP54
NP_689799.3
Ubiquitin
Y1529
TLNyQSLPHR
SEQ ID NO: 257





conjugating





system





258
PHLDB2
NP_665696.1
Unknown function
Y162
SHDNVySLGGLEGR
SEQ ID NO: 258





259
PHLDB2
NP_665696.1
Unknown function
Y301
DLPHSVIDNDNyLNFSSLSSGALPYK
SEQ ID NO: 259





260
PHLDB2
NP_665696.1
Unknown function
Y55
FKANGDySGSYLTLSQPVPAK
SEQ ID NO: 260





261
PHLDB2
NP_665696.1
Unknown function
Y567
ASSESSyLSILPK
SEQ ID NO: 261





262
PHLDB2
NP_665696.1
Unknown function
Y59
FKANGDYSGSyLTLSQPVPAKR
SEQ ID NO: 262





263
PLEKHG1
NP_001025055.1
Unknown function
Y1042
IAEYSQLyDQIVFR
SEQ ID NO: 263





264
PLEKHJ1
NP_060519.1
Unknown function
Y3
yNEKELQALSRQPAEMAAELGMR
SEQ ID NO: 264





265
PPIL4
NP_624311.1
Unknown function
Y401
EDEDyMPIK
SEQ ID NO: 265





266
PTTG1IP
NP_004330.1
Unknown function
Y165
KKyGLFKEENPYAR
SEQ ID NO: 266





267
Q99KJ2
NP_056290.3
Unknown function
Y394
HQGGWTDGGSGGGGGyQDGGYR
SEQ ID NO: 267





268
RAP140
NP_056039.1
Unknown function
Y409
ALGLSTDDAyEELR
SEQ ID NO: 268





269
RBM22
NP_060517.1
Unknown function
Y156
PVGMLGKATSTSDMLLKLARTTPyYKR
SEQ ID NO: 269





270
RBM22
NP_060517.1
Unknown function
Y157
PVGMLGKATSTSDMLLKLARTTPYyKR
SEQ ID NO: 270





271
RNF17
NP_112567.2
Unknown function
Y86
yYPMAGYIKEDSIMEKLQPK
SEQ ID NO: 271





272
RNF17
NP_112567.2
Unknown function
Y87
YyPMAGYIKEDSIMEKLQPK
SEQ ID NO: 272





273
S100A14
NP_065723.1
Unknown function
Y32
NFHQySVEGGKETLTPSELR
SEQ ID NO: 273





274
SACS
NP_055178.2
Unknown function
Y3352
LEHLIyLKNR
SEQ ID NO: 274





275
SAS10
NP_065101.1
Unknown function
Y44
AGPTLTDENGDDLGLPPSPGDTSYyQDQV
SEQ ID NO: 275







DDFHEAR





276
SCAND2
EAX01938.1
Unknown function
Y294
VMyVMLIIQMETEDV
SEQ ID NO: 276





277
SFRS16
NP_008987.2
Unknown function
Y652
SPSPRySR
SEQ ID NO: 277





278
SFT2D3
NP_116129.3
Unknown function
Y11
QLQEyLAQGK
SEQ ID NO: 278





279
SHC4
NP_976224.2
Unknown function
Y424
CSSVyENCLEQSR
SEQ ID NO: 279





280
SHC4
NP_976224.2
Unknown function
Y465
VDLFDDPCyINTQALQSTPGSAGNQR
SEQ ID NO: 280





281
SIPA1L2
NP_065859.3
Unknown function
Y263
ISGLDyVDSALLMGR
SEQ ID NO: 282





282
SIPA1L3
NP_055888.1
Unknown function
Y1169
QPSGSFSTPGSATyVR
SEQ ID NO: 283





283
SLC35E1
NP_079157.2
Unknown function
Y250
NNILTDHFQySR
SEQ ID NO: 284





284
SLITRK5
NP_056382.1
Unknown function
Y945
LNVEPDyLEVLEK
SEQ ID NO: 285





285
SMC6L1
NP_078900.1
Unknown function
Y223
YKFFMKATQLEQMKEDySYIMETKER
SEQ ID NO: 286





286
SMC6L1
NP_078900.1
Unknown function
Y225
YKFFMKATQLEQMKEDYSyIMETKER
SEQ ID NO: 287





287
SPAG9
NP_003962.3
Unknown function
Y640
yKQVTNGQGENK
SEQ ID NO: 288





288
SPECC1
NP_690868.3
Unknown function
Y626
VEKDySYLK
SEQ ID NO: 289





289
SPECC1
NP_690868.3
Unknown function
Y628
VEKDYSyLK
SEQ ID NO: 290





290
SSX4
NP_005627.1
Unknown function
Y50
IVYVyMKLNYEVMTK
SEQ ID NO: 291





291
SSX7
NP_775494.1
Unknown function
Y48
EWEKMKSLEKISyVYMKRK
SEQ ID NO: 292





292
ST5
NP_005409.3
Unknown function
Y488
STLEENAyEDIVGDLPKENPYEDVDLK
SEQ ID NO: 293





293
ST5
NP_005409.3
Unknown function
Y501
STLEENAYEDIVGDLPKENPyEDVDLK
SEQ ID NO: 294





294
symplekin
NP_004810.2
Unknown function
Y624
LDLAFAWLyQEYNAYLAAGASGSLDKYEDC
SEQ ID NO: 295







LIR





295
symplekin
NP_004810.2
Unknown function
Y627
LDLAFAWLYQEyNAYLAAGASGSLDKYEDC
SEQ ID NO: 296







LIR





296
symplekin
NP_004810.2
Unknown function
Y642
LDLAFAWLYQEYNAYLAAGASGSLDKyEDC
SEQ ID NO: 297







LIR





297
TCP11L2
NP_689985.1
Unknown function
Y244
QLVEyERTK
SEQ ID NO: 298





298
TGM6
NP_945345.1
Unknown function
Y569
LGPQEEKRIPITISySKYK
SEQ ID NO: 299





299
TGM6
NP_945345.1
Unknown function
Y572
LGPQEEKRIPITISYSKyK
SEQ ID NO: 300





300
TMEM16C
NP_113606.1
Unknown function
Y366
HLLyERWARWGMWYK
SEQ ID NO: 301





301
TMEM16C
NP_113606.1
Unknown function
Y376
HLLYERWARWGMWyK
SEQ ID NO: 302





302
TMEPAI
NP_064567.2
Unknown function
Y219
LGGPCPPSSNSGISATCyGSGGR
SEQ ID NO: 303





303
TMEPAI
NP_064567.2
Unknown function
Y232
MEGPPPTySEVIGHYPGSSFQHQQSSGPP
SEQ ID NO: 304







SLLEGTR





304
TMTC1
NP_787057.2
Unknown function
Y306
VLyMPSMGYCILFVHGLSK
SEQ ID NO: 305





305
TMTC1
NP_787057.2
Unknown function
Y312
VLYMPSMGyCILFVHGLSK
SEQ ID NO: 306





306
TNKS1BP1
NP_203754.2
Unknown function
Y897
DSLGAyASQDANEQGQDLGKR
SEQ ID NO: 307





307
TOM1L2
AAL78338.1
Unknown function
Y372
QTVTyEDPQAVGGLASALDNRK
SEQ ID NO: 308





308
TPM4
NP_003281.1
Unknown function
Y185
yEEEIKLLSDK
SEQ ID NO: 309





309
TSGA14
NP_061188.1
Unknown function
Y312
KIEyYLEEEQGPADHPSR
SEQ ID NO: 310





310
TSPYL4
NP_067680.3
Unknown function
Y278
yMINLEVEELK
SEQ ID NO: 311





311
TTC13
NP_078801.2
Unknown function
Y288
NQPIAMLyKGLTFFHR
SEQ ID NO: 312





312
TTC4
NP_004614.2
Unknown function
Y129
AAAQYyLGNFR
SEQ ID NO: 313





313
USP6NL
NP_001073960.1
Unknown function
Y568
GSTASQyDNVPGPELDSGASVEEALER
SEQ ID NO: 314





314
USP6NL
NP_001073960.1
Unknown function
Y649
GLAHPPSySNPPVYHGNSPK
SEQ ID NO: 315





315
USP6NL
NP_001073960.1
Unknown function
Y819
ASPAAEDASPSGyPYSGPPPPAYHYR
SEQ ID NO: 316





316
USP6NL
NP_001073960.1
Unknown function
Y821
ASPAAEDASPSGYPySGPPPPAYHYR
SEQ ID NO: 317





317
USP6NL
NP_001073960.1
Unknown function
Y831
ASPAAEDASPSGYPYSGPPPPAYHyR
SEQ ID NO: 318





318
WDR9
NP_061836.2
Unknown function
Y19
RPVPLIESELyFLIARYLSAGPCR
SEQ ID NO: 319





319
XKR6
NP_775954.2
Unknown function
Y578
PyLPEGPLIKIDMPRK
SEQ ID NO: 320





320
ZC3H6
GI: 47117369
Unknown function
Y46
ENEKQKNEKAyRKSRK
SEQ ID NO: 321





321
ZCCHC12
NP_776159.1
Unknown function
Y199
LKDFLRMyANEQER
SEQ ID NO: 322





322
ZDHHC5
NP_056272.2
Unknown function
Y456
SEGTTSTSyKSLANQTR
SEQ ID NO: 323





323
ZDHHC5
NP_056272.2
Unknown function
Y91
AEEDEDKEDDFRAPLyK
SEQ ID NO: 324





324
ZDHHC7
NP_060210.1
Unknown function
Y130
EYMESLQLKPGEVIyKCPK
SEQ ID NO: 325





325
ZFHX2
EAW66143.1
Unknown function
Y1053
YRTQMSSLQLKIMKACYEAyR
SEQ ID NO: 326





326
ZNF100
NP_775802.1
Unknown function
Y6
MDDPRyGMCPLKGASGCPGAER
SEQ ID NO: 327





327
ZNF326
NP_892021.1
Unknown function
Y136
NQGGSSWEAPySR
SEQ ID NO: 328





328
ZNF334
NP_060572.3
Unknown function
Y165
KIPDGySGFGKHEK
SEQ ID NO: 329





329
ZNF347
NP_115973.1
Unknown function
Y292
SHTKEKPYKCyECGK
SEQ ID NO: 330





330
ZNF510
NP_055745.1
Unknown function
Y379
TQTWVKSSEyHENKKSYQTSVHR
SEQ ID NO: 331





331
ZNF510
NP_055745.1
Unknown function
Y386
TQTWVKSSEYHENKKSyQTSVHR
SEQ ID NO: 332





332
ZNF546
NP_848639.1
Unknown function
Y721
IHTGELPyECKECGK
SEQ ID NO: 333





333
ZNF577
NP_116068.1
Unknown function
Y57
EEWQFLDQSQKVLYKEVMLENYINLVSIGyR
SEQ ID NO: 334





334
ZNF91
NP_003421.2
Unknown function
Y1078
AFISSSTLNGHKRIHTREKPyK
SEQ ID NO: 335





335
ZNRF3
XP_290972.5
Unknown function
Y512
HGEQSLySPQTPAYIR
SEQ ID NO: 336





336
ZNRF3
XP_290972.5
Unknown function
Y519
HGEQSLYSPQTPAyIR
SEQ ID NO: 337





337
ZNRF3
XP_290972.5
Unknown function
Y698
SSLSSDyDPFIYR
SEQ ID NO: 338





338
ZNRF3
XP_290972.5
Unknown function
Y703
SSLSSDYDPFIyR
SEQ ID NO: 339





339
ZSWIM5
XP_046581.8
Unknown function
Y1186
DHIAFEAAYQIAIDAAAGGMTHSQLFTIARy
SEQ ID NO: 340







MELR





340
ZSWIM5
XP_046581.8
Unknown function
Y1164
DHIAFEAAyQIAIDAAAGGMTHSQLFTIARY
SEQ ID NO: 341







MELR





341
SDBCAG84
NP_057050.1
Vesicle protein
Y202
NEGCQVyGFLEVNK
SEQ ID NO: 342





342
SEC22L1
AAC39893.1
Vesicle protein
Y186
yLNMRSTYAKLAAVAVFFIMLIVYVR
SEQ ID NO: 343





343
SEC22L1
AAC39893.1
Vesicle protein
Y209
YLNMRSTYAKLAAVAVFFIMLIVyVR
SEQ ID NO: 344





344
SNX3
NP_003786.1
Vesicle protein
Y22
LITKPQNLNDAyGPPSNFLEIDVSNPQTVGV
SEQ ID NO: 345







GR





345
SPRED2
NP_861449.1
Vesicle protein
Y268
GEVPKHDYNYPyVDSSDFGLGEDPK
SEQ ID NO: 346





346
STX16
NP_003754.2
Vesicle protein
Y193
SQHFFDTSVPLMDDGDDNTLyHR
SEQ ID NO: 347





347
STX6
NP_005810.1
Vesicle protein
Y140
QALLGDSGSQNWSTGTTDKyGR
SEQ ID NO: 348





348
STXBP3
NP_009200.2
Vesicle protein
Y521
ANyLEDR
SEQ ID NO: 349





349
SYT1
NP_005630.1
Vesicle protein
Y312
MDVGGLSDPyVK
SEQ ID NO: 350





350
VPS45A
NP_009190.2
Vesicle protein
Y318
AFVENyPQFK
SEQ ID NO: 351





351
VTI1B
NP_006361.1
Vesicle protein
Y112
yGIYAVENEHMNR
SEQ ID NO: 352





352
ZFYVE1
NP_067083.1
Vesicle protein
Y655
GWGPAPVRVCDNCyEAR
SEQ ID NO: 353









One of skill in the art will appreciate that, in many instances the utility of the instant invention is best understood in conjunction with an appreciation of the many biological roles and significance of the various target signaling proteins/polypeptides of the invention. The foregoing is illustrated in the following paragraphs summarizing the knowledge in the art relevant to a few non-limiting representative peptides containing selected phosphorylation sites according to the invention.


PGM1, phosphorylated at Y66, is among the proteins listed in this patent. PGM1, Phosphoglucomutase 1, catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate and may play a role in pathways that generate and utilize phosphorylated forms of glucose; may be associated with gestational diabetes and pulmonary tuberculosis. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased expression of PGM1 in macrophages correlates with kidney failure associated with lupus nephritis (Kidney Int 59: 304-16 (2001)). Increased expression of PGM1 in macrophages correlates with proteinuria associated with lupus nephritis (Kidney Int 59: 304-16 (2001)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


PHB, phosphorylated at Y249, is among the proteins listed in this patent. PHB, Prohibitin, a repressor of E2F-induced transcription and cell proliferation, regulates cell cycle and cell migration, aberrant expression correlates with stomach cancer, cervical and endometrial adenocarcinomas; gene mutations may cause breast cancer. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Missense mutation in the PHB gene may cause breast neoplasms (Cancer Res 52: 1643-6 (1992)). Single nucleotide polymorphism in the PHB gene may cause increased occurrence of early onset form of breast neoplasms (Lancet 357: 1588-9. (2001)). Frameshift mutation in the PHB protein may cause breast neoplasms (Cancer Res 52: 1643-6 (1992)). Increased expression of PHB mRNA may correlate with decreased response to hormone stimulus associated with prostatic neoplasms (Carcinogenesis 23: 967-75. (2002)). Increased expression of PHB mRNA may correlate with increased severity of disease progression associated with prostatic neoplasms (Carcinogenesis 23: 967-75. (2002)). Point mutation in the PHB gene may cause breast neoplasms (Cancer Res 52: 1643-6 (1992)). Loss of function mutation in the PHB protein may cause increased cell proliferation associated with breast neoplasms (Cell Growth Differ 7: 871-8 (1996)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


PKCD, phosphorylated at Y630, is among the proteins listed in this patent. PKCD, Protein kinase C delta, calcium-independent serine-threonine kinase, promotes apoptosis, phospholipid scrambling, and lamin cleavage, inhibits histamine signaling in myeloid cells, may function as a tumor suppressor. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Decreased membrane fraction localization of PRKCD may correlate with increased cell proliferation associated with prostatic neoplasms (Biochem Biophys Res Commun 283: 806-12. (2001)). Decreased endoproteolysis of PRKCD may prevent increased anti-apoptosis associated with prostatic neoplasms (J Clin Invest 109: 827-36. (2002)). Increased expression of PRKCD mRNA may prevent increased cell proliferation associated with glioma (Biochem Biophys Res Commun 201: 363-72. (1994)). Increased expression of PRKCD mRNA may prevent increased anti-apoptosis associated with prostatic neoplasms (JBC 275: 7574-82. (2000)). Decreased endoproteolysis of PRKCD may prevent increased anti-apoptosis associated with prostatic neoplasms (Cancer Res 60: 6590-6. (2000)). Increased membrane fraction localization of PRKCD correlates with increased response to hypoxia associated with anoxia (J Cell Physiol 188: 223-35. (2001)). Induced inhibition of the protein kinase activity of PRKCD may prevent increased anti-apoptosis associated with non-small-cell lung carcinoma (Cancer Res 63: 780-6. (2003)). Increased expression of PRKCD protein may cause decreased severity of neoplastic processes associated with colonic neoplasms (Int J Cancer 113: 42-53 (2005)). Increased expression of PRKCD mRNA may prevent increased anti-apoptosis associated with prostatic neoplasms (J Biol Chem 275: 7574-82. (2000)). Decreased expression of PRKCD mRNA may correlate with malignant form of neuroblastoma (EMBO 10: 1119-25. (1991)). Increased protein binding of PRKCD may prevent increased insulin-like growth factor receptor signaling pathway associated with renal cell carcinoma (JBC 275: 20700-6 (2000)). Decreased cytosol localization of PRKCD may correlate with increased cell proliferation associated with prostatic neoplasms (Biochem Biophys Res Commun 283: 806-12. (2001)). Increased proteolysis of PRKCD may cause increased cell differentiation associated with melanoma (Biochem Pharmacol 55: 1691-9. (1998)). Increased protein binding of PRKCD may prevent increased insulin-like growth factor receptor signaling pathway associated with renal cell carcinoma (J Biol Chem 275: 20700-6 (2000)). Decreased expression of PRKCD mRNA may correlate with malignant form of neuroblastoma (EMBO J 10: 1119-25. (1991)). Decreased expression of PRKCD mRNA may correlate with malignant form of neuroblastoma (EMBO J. 10: 1119-25. (1991)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


POR, phosphorylated at Y376 and Y377, is among the proteins listed in this patent. POR, NADPH cytochrome P450 oxidoreductase, catalyzes electron transfer from NADPH to cytochrome P450 via two flavin cofactors, regulates the activity and protein level of cytochrome P450; increased expression may be therapeutic for breast cancer. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Decreased expression of POR protein may correlate with drug-resistant form of bladder neoplasms (Int J Cancer 58: 686-92. (1994)). Increased expression of POR protein may cause increased response to drug associated with breast neoplasms (Br J Cancer 76: 1338-47. (1997)). Decreased expression of POR protein may cause decreased steroid biosynthetic process associated with adrenal cortex neoplasms (J Clin Endocrinol Metab 78: 36-40. (1994)). Decreased expression of POR protein may correlate with adenocarcinoma tumors associated with breast neoplasms (J Steroid Biochem Mol Biol 43: 515-22. (1992)). Decreased expression of POR protein correlates with adenoma tumors associated with adrenal cortex neoplasms (J Clin Endocrinol Metab 78: 36-40. (1994)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


Ran, phosphorylated at Y146, is among the proteins listed in this patent. Ran, Ras-related nuclear protein, a GTPase that acts in nucleocytoplasmic transport, binding to the polyglutamine tract in the androgen receptor may contribute to Kennedy disease, increased mRNA expression correlates with prostatic intraepithelial neoplasia. (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


RPL27, phosphorylated at Y49, is among the proteins listed in this patent. RPL27, Ribosomal protein L27, putative component of the large 60S ribosomal subunit. (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


S100A14, phosphorylated at Y32, is among the proteins listed in this patent. S100A14, S100 calcium binding protein A14, putative calcium-binding protein of the S100 family, may be involved in malignant transformation, overexpressed in breast, ovarian, and uterine tumors, downregulated in kidney, rectal, and colon tumors. (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


SCP2, phosphorylated at Y197 and Y204, is among the proteins listed in this patent. SCP2, Sterol carrier protein 2, a fatty acid binding protein that functions in cholesterol metabolism and transport, protein deficiency is associated with adrenoleukodystrophy, thiolase activity is increased in Zellweger syndrome. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased sterol carrier protein X-related thiolase activity of SCP2 correlates with Zellweger syndrome (J Lipid Res 41: 336-42. (2000)). Mislocalization of SCP2 protein correlates with Zellweger syndrome (J Lipid Res 41: 336-42. (2000)). Decreased expression of SCP2 mRNA correlates with carcinoma tumors associated with adrenal cortex neoplasms (Cell Struct Funct 17: 1-8. (1992)). Mislocalization of SCP2 protein correlates with peroxisomal disorders (Cell Struct Funct 17: 1-8. (1992)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


SF2, phosphorylated at Y77, is among the proteins listed in this patent. SF2, Splicing factor arginine and serine-rich 1, acts in splice site selection and mRNA splicing, regulates topoisomerase activity, downregulated in autoimmune inflammatory myositis; aberrant mRNA expression correlates with colonic and trophoblastic neoplasms. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Viral exploitation of the protein binding of SFRS1 may correlate with increased retroviral genome replication associated with retroviridae infections (Mol. Cell Biol 18: 3103-11. (1998)). Viral exploitation of the protein binding of SFRS1 may correlate with increased retroviral genome replication associated with retroviridae infections (Mol. Cell. Biol. 18: 3103-11. (1998)). Viral exploitation of the protein binding of SFRS1 may cause increased suppression by virus of host mRNA splicing associated with retroviridae infections (MCB 18: 3103-11. (1998)). Abnormal expression of SFRS1 mRNA may correlate with neoplasm metastasis associated with colonic neoplasms (Br J Cancer 83: 725-8. (2000)). Decreased expression of SFRS1 mRNA correlates with abnormal RNA splicing associated with colonic neoplasms (Cancer Res 58: 5818-24. (1998)). Viral exploitation of the protein binding of SFRS1 correlates with increased protein amino acid dephosphorylation associated with adenoviridae infections (EMBO 20: 864-71. (2001)). Viral exploitation of the SFRS1 protein may cause increased modification by virus of host mRNA processing associated with HIV infections (Proc Natl Acad Sci USA 94: 973-8. (1997)). Viral exploitation of the SFRS1 protein may cause increased regulation of retroviral genome replication associated with HIV infections (Proc Natl Acad Sci USA 94: 973-8. (1997)). Viral exploitation of the protein binding of SFRS1 may cause increased suppression by virus of host mRNA splicing associated with retroviridae infections (Mol. Cell. Biol. 18: 3103-11. (1998)). Viral exploitation of the protein binding of SFRS1 correlates with increased protein amino acid dephosphorylation associated with adenoviridae infections (EMBO J. 20: 864-71. (2001)). Viral exploitation of the protein binding of SFRS1 correlates with increased modification by virus of host mRNA processing associated with adenoviridae infections (EMBO J. 20: 864-71. (2001)). Viral exploitation of the protein binding of SFRS1 correlates with increased modification by virus of host mRNA processing associated with adenoviridae infections (EMBO J 20: 864-71. (2001)). Viral exploitation of the protein binding of SFRS1 correlates with increased modification by virus of host mRNA processing associated with adenoviridae infections (EMBO 20: 864-71. (2001)). Abnormal expression of SFRS1 mRNA correlates with early stage or low grade form of gestational trophoblastic neoplasms (Int J Cancer 94: 674-84. (2001)). Viral exploitation of the protein binding of SFRS1 may cause increased suppression by virus of host mRNA splicing associated with retroviridae infections (Mol Cell Biol 18: 3103-11. (1998)). Viral exploitation of the SFRS1 protein may cause increased regulation of retroviral genome replication associated with HIV infections (PNAS 94: 973-8. (1997)). Viral exploitation of the protein binding of SFRS1 may cause increased suppression by virus of host mRNA splicing associated with retroviridae infections (Mol Cell Biol. 18: 3103-11. (1998)). Viral exploitation of the SFRS1 protein may cause increased regulation of retroviral genome replication associated with HIV infections (Proc Natl Acad Sci USA 94: 973-8. (1997)). Viral exploitation of the protein binding of SFRS1 may correlate with increased retroviral genome replication associated with retroviridae infections (MCB 18: 3103-11. (1998)). Viral exploitation of the protein binding of SFRS1 may cause increased suppression by virus of host mRNA splicing associated with retroviridae infections (Mol. Cell Biol 18: 3103-11. (1998)). Decreased expression of SFRS1 mRNA correlates with adenocarcinoma tumors associated with colonic neoplasms (Cancer Res 58: 5818-24. (1998)). Viral exploitation of the protein binding of SFRS1 may correlate with increased retroviral genome replication associated with retroviridae infections (Mol Cell Biol. 18: 3103-11. (1998)). Viral exploitation of the SFRS1 protein may cause increased modification by virus of host mRNA processing associated with HIV infections (Proc Natl Acad Sci USA 94: 973-8. (1997)). Viral exploitation of the protein binding of SFRS1 correlates with increased protein amino acid dephosphorylation associated with adenoviridae infections (EMBO J 20: 864-71. (2001)). Viral exploitation of the protein binding of SFRS1 may correlate with increased retroviral genome replication associated with retroviridae infections (Mol Cell Biol 18: 3103-11. (1998)). Viral exploitation of the SFRS1 protein may cause increased modification by virus of host mRNA processing associated with HIV infections (PNAS 94: 973-8. (1997)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


SFTPC, phosphorylated at Y16, is among the proteins listed in this patent. SFTPC, Surfactant pulmonary-associated protein C, lowers surface tension at air-liquid interface in alveoli, required for respiration, involved in lung inflammatory responses; gene alterations are associated with pneumonitis and respiratory distress syndrome. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased expression of SFTPC mRNA may correlate with lymphatic metastasis associated with lung neoplasms (Cancer Res 55: 4283-6. (1995)). Decreased palmitoylation of SFTPC may cause abnormal regulation of liquid surface tension associated with pulmonary alveolar proteinosis (Biochim Biophys Acta 1138: 261-7. (1992)). Mutation in the SFTPC gene may cause defective lung development associated with lung diseases (J Biol Chem 278: 52739-46 (2003)). Increased expression of SFTPC mRNA may correlate with lymphatic metastasis associated with adenocarcinoma (Cancer Res 55: 4283-6. (1995)). Mutation in the SFTPC gene may cause defective lung development associated with lung diseases (JBC 278: 52739-46 (2003)). Decreased palmitoylation of SFTPC may cause amyloidosis associated with pulmonary alveolar proteinosis (FEBS Lett 464: 138-42. (1999)). Decreased proteolysis of SFTPC may cause abnormal regulation of liquid surface tension associated with pulmonary alveolar proteinosis (Biochim Biophys Acta 1138: 261-7. (1992)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


Sin3A, phosphorylated at Y558 and Y565, is among the proteins listed in this patent. Sin3A, SIN3 homolog A transcriptional regulator, a transcription corepressor present in histone deacetylase complexes that mediates the activity of several transcription factors, failure to bind HD likely contributes to the pathology of Huntington disease. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Absence of nucleus localization of SIN3A correlates with Huntington disease (Hum Mol Genet 8: 1647-55 (1999)). Mislocalization of SIN3A protein may cause abnormal regulation of transcription, DNA-dependent associated with Huntington disease (Hum Mol Genet 8: 1647-55 (1999)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


Src, phosphorylated at Y187, is among the proteins listed in this patent. Src, V-src avian sarcoma viral oncogene homolog (Schmidt-Ruppin A-2), tyrosine kinase involved in cell proliferation, cell adhesion, and cytoskeletal organization, implicated in colon, breast, and other cancers, exploited during Shigella flexneri infection. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased protein-tyrosine kinase activity of SRC may correlate with abnormal G-protein coupled receptor protein signaling pathway associated with pancreatic neoplasms (JBC 279: 40400-4 (2004)). Bacterial exploitation of the cytoskeleton localization of SRC may cause increased phagocytosis associated with bacillary dysentery (EMBO 14: 2471-82. (1995)). Increased phosphorylation of SRC may cause increased intracellular signaling cascade associated with adenocarcinoma (Arch Biochem Biophys 377: 350-6. (2000)). Increased expression of SRC protein correlates with carcinoma tumors associated with colorectal neoplasms (Cancer 92: 61-70. (2001)). Increased expression of SRC protein may correlate with increased response to hypoxia associated with breast neoplasms (Cancer Res 61: 6952-7. (2001)). Increased protein-tyrosine kinase activity of SRC may correlate with abnormal G-protein coupled receptor protein signaling pathway associated with colorectal neoplasms (JBC 279: 40400-4 (2004)). Increased expression of SRC protein correlates with ulcerative colitis associated with colonic neoplasms (J Clin Invest 93: 509-15. (1994)). Induced inhibition of SRC protein may prevent neoplasm metastasis associated with colorectal neoplasms (Cancer 94: 344-51. (2002)). Increased phosphorylation of SRC may cause increased adenocarcinoma associated with pancreatic neoplasms (Arch Biochem Biophys 377: 350-6. (2000)). Increased expression of SRC protein correlates with carcinoma tumors associated with colonic neoplasms (Oncogene 8: 2627-35. (1993)). Increased nitration of SRC may cause increased adenocarcinoma associated with pancreatic neoplasms (Arch Biochem Biophys 377: 350-6. (2000)). Bacterial exploitation of the protein-tyrosine kinase activity of SRC may cause increased protein amino acid phosphorylation associated with bacillary dysentery (EMBO J. 14: 2471-82. (1995)). Induced inhibition of the protein binding of SRC may prevent bone resorption (Oncogene 20: 2068-79. (2001)). Increased expression of SRC protein correlates with hairy cell leukemia (Leukemia 7: 1416-22. (1993)). Increased protein-tyrosine kinase activity of SRC may cause increased intracellular signaling cascade associated with adenocarcinoma (Arch Biochem Biophys 377: 350-6. (2000)). Alternative form of SRC mRNA may correlate with neuroendocrine tumors (Int J Cancer 60: 38-44 (1995)). Abnormal expression of SRC mRNA correlates with cystic fibrosis (J Biol Chem 277: 17239-47. (2002)). Bacterial exploitation of the protein-tyrosine kinase activity of SRC may cause increased protein amino acid phosphorylation associated with bacillary dysentery (EMBO J 14: 2471-82. (1995)). Bacterial exploitation of the cytoskeleton localization of SRC may cause increased phagocytosis associated with bacillary dysentery (EMBO J. 14: 2471-82. (1995)). Increased expression of SRC protein correlates with advanced stage or high grade form of breast neoplasms (Mol Carcinog 21: 261-72. (1998)). Increased expression of SRC protein correlates with colonic neoplasms associated with ulcerative colitis (J Clin Invest 93: 509-15. (1994)). Increased expression of SRC protein correlates with disease progression associated with colorectal neoplasms (Cancer 94: 344-51. (2002)). Increased protein-tyrosine kinase activity of SRC may cause increased insulin-like growth factor receptor signaling pathway associated with pancreatic neoplasms (Cancer Res 58: 3551-4 (1998)). Increased nitration of SRC may cause increased intracellular signaling cascade associated with adenocarcinoma (Arch Biochem Biophys 377: 350-6. (2000)). Increased protein-tyrosine kinase activity of SRC may cause increased adenocarcinoma associated with pancreatic neoplasms (Arch Biochem Biophys 377: 350-6. (2000)). Increased tyrosine dephosphorylation of SRC correlates with adenocarcinoma associated with non-small-cell lung carcinoma (Eur J Cancer 39: 1447-55 (2003)). Increased protein-tyrosine kinase activity of SRC may correlate with abnormal G-protein coupled receptor protein signaling pathway associated with colorectal neoplasms (J Biol Chem 279: 40400-4 (2004)). Bacterial exploitation of the cytoskeleton localization of SRC may cause increased phagocytosis associated with bacillary dysentery (EMBO J 14: 2471-82. (1995)). Abnormal expression of SRC mRNA correlates with cystic fibrosis (JBC 277: 17239-47. (2002)). Increased protein-tyrosine kinase activity of SRC may correlate with abnormal G-protein coupled receptor protein signaling pathway associated with pancreatic neoplasms (J Biol Chem 279: 40400-4 (2004)). Induced inhibition of SRC protein may prevent disease progression associated with colorectal neoplasms (Cancer 94: 344-51. (2002)). Induced inhibition of SRC protein may prevent increased amyloid precursor protein metabolic process associated with Alzheimer disease (J Biol Chem 278: 9290-7. (2003)). Increased tyrosine dephosphorylation of SRC correlates with carcinoma tumors associated with colonic neoplasms (Oncogene 11: 1.955-62. (1995)). Increased expression of SRC protein correlates with increased occurrence of death associated with colorectal neoplasms (Cancer 94: 344-51. (2002)). Increased expression of SRC protein correlates with large-cell lymphoma (Leukemia 7: 1416-22. (1993)). Bacterial exploitation of the protein-tyrosine kinase activity of SRC may cause increased protein amino acid phosphorylation associated with bacillary dysentery (EMBO 14: 2471-82. (1995)). Increased protein-tyrosine kinase activity of SRC correlates with carcinoma tumors associated with colonic neoplasms (Oncogene 11: 1955-62. (1995)). Increased protein-tyrosine kinase activity of SRC may cause increased cell proliferation associated with pancreatic neoplasms (Cancer Res 58: 3551-4 (1998)). Induced inhibition of SRC protein may prevent increased amyloid precursor protein metabolic process associated with Alzheimer disease (JBC 278: 9290-7. (2003)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


Syk, phosphorylated at Y203 and 244, is among the proteins listed in this patent. Syk, Spleen tyrosine kinase, regulates transcription, signaling, cell proliferation, neutrophil phagocytosis, leukocyte chemotaxis and lamellipodium biogenesis; mutated in childhood acute lymphoblastic leukemia, hypermethylated in breast and gastric cancers. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased expression of SYK protein may prevent increased cell motility associated with breast neoplasms (Nature 406: 742-7 (2000)). Increased expression of SYK protein may prevent increased cell proliferation associated with breast neoplasms (Nature 406: 742-7 (2000)). Decreased expression of SYK protein may correlate with decreased B cell activation associated with chronic B-cell leukemia (Blood 86: 1090-7. (1995)). Decreased expression of SYK protein may prevent increased chemotaxis associated with nasal polyps (J Immunol 166: 538-43. (2001)). Abnormal expression of SYK mRNA may correlate with acute lymphocytic leukemia (Oncogene 20: 3969-78. (2001)). Lack of expression of SYK protein correlates with invasive form of breast neoplasms (Nature 406: 742-7 (2000)). Decreased phosphorylation of SYK may correlate with abnormal B cell activation associated with chronic B-cell leukemia (Leukemia 11: 1921-8. (1997)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


TAF1, phosphorylated at Y364, 371 and 385, and is among the proteins listed in this patent. TAF1, TAF1 RNA polymerase II TATA box binding protein (TBP)-associated factor 250 kDa, component of the TFIID complex, has protein kinase and histone acetyltransferase activities, acts in cell cycle control and RELA-mediated activation of the HIV-1 Tat promoter. (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


talin 2, phosphorylated at Y1665 and Y72, is among the proteins listed in this patent. talin 2, Talin 2, a putative focal adhesion protein that binds and stimulates the kinase activity of phosphatidylinositol phosphate kinase type 1 gamma (PIK3CG), also binds actin and focal adhesion kinase (PTK2). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


Yes, phosphorylated at Y141, Y194 and Y336, is among the proteins listed in this patent. Yes, Yamaguchi sarcoma viral oncogene homolog 1, a nonreceptor protein tyrosine kinase of the Src family, functions downstream of GM-CSF (CSF2), involved in disrupting cell-cell contacts; corresponding gene is an oncogene associated with Yamaguchi sarcoma. This protein has potential diagnostic and/or therapeutic implications based on the following findings. Increased expression of YES 1 protein may correlate with increased severity of malignant form of melanoma (Oncogene 16: 3253-60. (1998)). Increased expression of YES 1 protein correlates with squamous cell carcinoma associated with head and neck neoplasms (J Biol Chem 278: 31574-83 (2003)). Increased expression of YES1 protein correlates with squamous cell carcinoma associated with head and neck neoplasms (JBC 278: 31574-83 (2003)). Increased expression of YES1 mRNA may correlate with squamous cell carcinoma tumors associated with esophageal neoplasms (Carcinogenesis 23: 19-24. (2002)). Increased expression of YES1 protein correlates with squamous cell carcinoma (JBC 278: 31574-83 (2003)). Decreased expression of YES1 in keratinocytes correlates with basal cell carcinoma associated with skin neoplasms (Oncogene 6: 933-40 (1991)). Amplification of the YES1 gene may correlate with squamous cell carcinoma tumors associated with esophageal neoplasms (Carcinogenesis 23: 19-24. (2002)). Increased expression of YES1 protein may correlate with increased occurrence of brain neoplasms associated with melanoma (Oncogene 16: 3253-60. (1998)). Increased expression of YES1 protein may correlate with malignant form of melanoma (Oncogene 8: 2637-44. (1993)). Increased expression of YES1 protein correlates with squamous cell carcinoma (J Biol Chem 278: 31574-83 (2003)). Increased expression of YES1 mRNA may correlate with increased response to radiation associated with breast neoplasms (Mol Carcinog 31: 192-203. (2001)). Increased expression of YES1 protein correlates with carcinoma tumors associated with colonic neoplasms (Oncogene 8: 2627-35. (1993)). Decreased expression of YES 1 in keratinocytes correlates with basal cell carcinoma (Oncogene 6: 933-40 (1991)). (PhosphoSiteREGISTERED, Cell Signaling Technology (Danvers, Mass.), Human PSDTRADEMARK, Biobase Corporation, (Beverly, Mass.)).


The invention also provides peptides comprising a novel phosphorylation site of the invention. In one particular embodiment, the peptides comprise any one of the an amino acid sequences as set forth in column E of Table 1 and FIG. 2, which are trypsin-digested peptide fragments of the parent proteins. Alternatively, a parent signaling protein listed in Table 1 may be digested with another protease, and the sequence of a peptide fragment comprising a phosphorylation site can be obtained in a similar way. Suitable proteases include, but are not limited to, serine proteases (e.g. hepsin), metallo proteases (e.g. PUMP 1), chymotrypsin, cathepsin, pepsin, thermolysin, carboxypeptidases, etc.


The invention also provides proteins and peptides that are mutated to eliminate a novel phosphorylation site of the invention. Such proteins and peptides are particular useful as research tools to understand complex signaling transduction pathways of cancer cells, for example, to identify new upstream kinase(s) or phosphatase(s) or other proteins that regulates the activity of a signaling protein; to identify downstream effector molecules that interact with a signaling protein, etc.


Various methods that are well known in the art can be used to eliminate a phosphorylation site. For example, the phosphorylatable tyrosine may be mutated into a non-phosphorylatable residue, such as phenylalanine. A “phosphorylatable” amino acid refers to an amino acid that is capable of being modified by addition of a phosphate group (any includes both phosphorylated form and unphosphorylated form). Alternatively, the tyrosine may be deleted. Residues other than the tyrosine may also be modified (e.g., delete or mutated) if such modification inhibits the phosphorylation of the tyrosine residue. For example, residues flanking the tyrosine may be deleted or mutated, so that a kinase can not recognize/phosphorylate the mutated protein or the peptide. Standard mutagenesis and molecular cloning techniques can be used to create amino acid substitutions or deletions.


2. Modulators of the Phosphorylation Sites

In another aspect, the invention provides a modulator that modulates tyrosine phosphorylation at a novel phosphorylation site of the invention, including small molecules, peptides comprising a novel phosphorylation site, and binding molecules that specifically bind at a novel phosphorylation site, including but not limited to antibodies or antigen-binding fragments thereof.


Modulators of a phosphorylation site include any molecules that directly or indirectly counteract, reduce, antagonize or inhibit tyrosine phosphorylation of the site. The modulators may compete or block the binding of the phosphorylation site to its upstream kinase(s) or phosphatase(s), or to its downstream signaling transduction molecule(s).


The modulators may directly interact with a phosphorylation site. The modulator may also be a molecule that does not directly interact with a phosphorylation site. For example, the modulators can be dominant negative mutants, i.e., proteins and peptides that are mutated to eliminate the phosphorylation site. Such mutated proteins or peptides could retain the binding ability to a downstream signaling molecule but lose the ability to trigger downstream signaling transduction of the wild type parent signaling protein.


The modulators include small molecules that modulate the tyrosine phosphorylation at a novel phosphorylation site of the invention. Chemical agents, referred to in the art as “small molecule” compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, less than 5,000, less than 1,000, or less than 500 daltons. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of a phosphorylation site of the invention or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries. Methods for generating and obtaining compounds are well known in the art (Schreiber S L, Science 151: 1964-1969(2000); Radmann J. and Gunther J., Science 151: 1947-1948 (2000)).


The modulators also include peptidomimetics, small protein-like chains designed to mimic peptides. Peptidomimetics may be analogues of a peptide comprising a phosphorylation site of the invention. Peptidomimetics may also be analogues of a modified peptide that are mutated to eliminate a phosphorylation site of the invention. Peptidomimetics (both peptide and non-peptidyl analogues) may have improved properties (e.g., decreased proteolysis, increased retention or increased bioavailability). Peptidomimetics generally have improved oral availability, which makes them especially suited to treatment of disorders in a human or animal.


In certain embodiments, the modulators are peptides comprising a novel phosphorylation site of the invention. In certain embodiments, the modulators are antibodies or antigen-binding fragments thereof that specifically bind at a novel phosphorylation site of the invention.


3. Heavy-Isotope Labeled Peptides (AQUA Peptides).

In another aspect, the invention provides peptides comprising a novel phosphorylation site of the invention. In a particular embodiment, the invention provides Heavy-Isotype Labeled Peptides (AQUA peptides) comprising a novel phosphorylation site. Such peptides are useful to generate phosphorylation site-specific antibodies for a novel phosphorylation site. Such peptides are also useful as potential diagnostic tools for screening carcinoma, or as potential therapeutic agents for treating carcinoma.


The peptides may be of any length, typically six to fifteen amino acids. The novel tyrosine phosphorylation site can occur at any position in the peptide; if the peptide will be used as an immnogen, it preferably is from seven to twenty amino acids in length. In some embodiments, the peptide is labeled with a detectable marker.


“Heavy-isotope labeled peptide” (used interchangeably with AQUA peptide) refers to a peptide comprising at least one heavy-isotope label, as described in WO/03016861, “Absolute Quantification of Proteins and Modified Forms Thereof by Multistage Mass Spectrometry” (Gygi et al.) (the teachings of which are hereby incorporated herein by reference, in their entirety). The amino acid sequence of an AQUA peptide is identical to the sequence of a proteolytic fragment of the parent protein in which the novel phosphorylation site occurs. AQUA peptides of the invention are highly useful for detecting, quantitating or modulating a phosphorylation site of the invention (both in phosphorylated and unphosphorylated forms) in a biological sample.


A peptide of the invention, including an AQUA peptides comprises any novel phosphorylation site. Preferably, the peptide or AQUA peptide comprises a novel phosphorylation site of a protein in Table 1 that is an protein kinases (such as serine/threonine dual specificity kinases or tyrosine kinases), adaptor/scaffold proteins, cell cycle regulation proteins, lipid binding proteins, vesicle proteins, ahesion or extracellular matrix proteins, transcription factors, phosphatases, tumor suppressors, ubiquitin conjugating system proteins, translation initiation complex proteins, RNA binding proteins, apoptosis proteins, transcriptional regulator proteins, cytoskeletal proteins, receptor/channel/transporter/cellsurface proteins, motor or contractile proteins, non-protein kinases, enzymes, G protein regulators/GTPase activating protein/Guanine nucleotide exchange factor proteins, and DNA binding/replication/repair proteins.


Particularly preferred peptides and AQUA peptides are these comprising a novel tyrosine phosphorylation site (shown as a lower case “y” in a sequence listed in Table 1) selected from the group consisting of SEQ ID NOs: 5 (SAP97); 9 (Shb); 14 (tensin 1); 30 (VANGL1); 36 (Plakophilin 1); 43 (plexin C1); 45 (PVRL3); 46 (SDK2); 51 (septin 7); 52 (SKB1); 54 (SMC2L1); 67 (plectin 1); 70 (profiling 2); 71 (RIL); 85 (talin 2); 93 (PLCB1); 102 (SOD2); 109 (UPP1); 135 (PLEKHA6); 136 (SCP2); 138 (SEC14L2); 139 (SFTPC); 148 (RIOK3); 158 (TAF1); 162 (Titin); 167 (Syk); 180 (VEGFR-1); 210 (SF2); 211 (SF3B4); 212 (snRNP 70); 215 (TAF15); 223 (PHB); 226 (Sin3A); 228 (SMRT); 233 (STAG2); 344 (SEC22L1); 348 (STX6); 349 (STXBP3); 350 (SYT1); 49 (RCV1); 50 (S100A10); 126 (PIK3CA); 191 (SLC15A1); 198 (SLC6A8).


In some embodiments, the peptide or AQUA peptide comprises the amino acid sequence shown in any one of the above listed SEQ ID NOs. In some embodiments, the peptide or AQUA peptide consists of the amino acid sequence in said SEQ ID NOs. In some embodiments, the peptide or AQUA peptide comprises a fragment of the amino acid sequence in said SEQ ID NOs., wherein the fragment is six to twenty amino acid long and includes the phosphorylatable tyrosine. In some embodiments, the peptide or AQUA peptide consists of a fragment of the amino acid sequence in said SEQ ID NOs., wherein the fragment is six to twenty amino acid long and includes the phosphorylatable tyrosine.


In certain embodiments, the peptide or AQUA peptide comprises any one of the SEQ ID NOs listed in column H, which are trypsin-digested peptide fragments of the parent proteins.


It is understood that parent protein listed in Table 1 may be digested with any suitable protease (e.g., serine proteases (e.g. trypsin, hepsin), metallo proteases (e.g. PUMP1), chymotrypsin, cathepsin, pepsin, thermolysin, carboxypeptidases, etc), and the resulting peptide sequence comprising a phosphorylated site of the invention may differ from that of trypsin-digested fragments (as set forth in Column E), depending the cleavage site of a particular enzyme. An AQUA peptide for a particular a parent protein sequence should be chosen based on the amino acid sequence of the parent protein and the particular protease for digestion; that is, the AQUA peptide should match the amino acid sequence of a proteolytic fragment of the parent protein in which the novel phosphorylation site occurs.


An AQUA peptide is preferably at least about 6 amino acids long. The preferred ranged is about 7 to 15 amino acids.


The AQUA method detects and quantifies a target protein in a sample by introducing a known quantity of at least one heavy-isotope labeled peptide standard (which has a unique signature detectable by LC-SRM chromatography) into a digested biological sample. By comparing to the peptide standard, one may readily determines the quantity of a peptide having the same sequence and protein modification(s) in the biological sample. Briefly, the AQUA methodology has two stages:(1) peptide internal standard selection and validation; method development; and (2) implementation using validated peptide internal standards to detect and quantify a target protein in a sample. The method is a powerful technique for detecting and quantifying a given peptide/protein within a complex biological mixture, such as a cell lysate, and may be used, e.g., to quantify change in protein phosphorylation as a result of drug treatment, or to quantify a protein in different biological states.


Generally, to develop a suitable internal standard, a particular peptide (or modified peptide) within a target protein sequence is chosen based on its amino acid sequence and a particular protease for digestion. The peptide is then generated by solid-phase peptide synthesis such that one residue is replaced with that same residue containing stable isotopes (13C, 15N). The result is a peptide that is chemically identical to its native counterpart formed by proteolysis, but is easily distinguishable by MS via a mass shift. A newly synthesized AQUA internal standard peptide is then evaluated by LC-MS/MS. This process provides qualitative information about peptide retention by reverse-phase chromatography, ionization efficiency, and fragmentation via collision-induced dissociation. Informative and abundant fragment ions for sets of native and internal standard peptides are chosen and then specifically monitored in rapid succession as a function of chromatographic retention to form a selected reaction monitoring (LC-SRM) method based on the unique profile of the peptide standard.


The second stage of the AQUA strategy is its implementation to measure the amount of a protein or the modified form of the protein from complex mixtures. Whole cell lysates are typically fractionated by SDS-PAGE gel electrophoresis, and regions of the gel consistent with protein migration are excised. This process is followed by in-gel proteolysis in the presence of the AQUA peptides and LC-SRM analysis. (See Gerber et al. supra.) AQUA peptides are spiked in to the complex peptide mixture obtained by digestion of the whole cell lysate with a proteolytic enzyme and subjected to immunoaffinity purification as described above. The retention time and fragmentation pattern of the native peptide formed by digestion (e.g., trypsinization) is identical to that of the AQUA internal standard peptide determined previously; thus, LC-MS/MS analysis using an SRM experiment results in the highly specific and sensitive measurement of both internal standard and analyte directly from extremely complex peptide mixtures. Because an absolute amount of the AQUA peptide is added (e.g. 250 fmol), the ratio of the areas under the curve can be used to determine the precise expression levels of a protein or phosphorylated form of a protein in the original cell lysate. In addition, the internal standard is present during in-gel digestion as native peptides are formed, such that peptide extraction efficiency from gel pieces, absolute losses during sample handling (including vacuum centrifugation), and variability during introduction into the LC-MS system do not affect the determined ratio of native and AQUA peptide abundances.


An AQUA peptide standard may be developed for a known phosphorylation site previously identified by the IAP-LC-MS/MS method within a target protein. One AQUA peptide incorporating the phosphorylated form of the site, and a second AQUA peptide incorporating the unphosphorylated form of site may be developed. In this way, the two standards may be used to detect and quantify both the phosphorylated and unphosphorylated forms of the site in a biological sample.


Peptide internal standards may also be generated by examining the primary amino acid sequence of a protein and determining the boundaries of peptides produced by protease cleavage. Alternatively, a protein may actually be digested with a protease and a particular peptide fragment produced can then sequenced. Suitable proteases include, but are not limited to, serine proteases (e.g. trypsin, hepsin), metallo proteases (e.g. PUMP1), chymotrypsin, cathepsin, pepsin, thermolysin, carboxypeptidases, etc.


A peptide sequence within a target protein is selected according to one or more criteria to optimize the use of the peptide as an internal standard. Preferably, the size of the peptide is selected to minimize the chances that the peptide sequence will be repeated elsewhere in other non-target proteins. Thus, a peptide is preferably at least about 6 amino acids. The size of the peptide is also optimized to maximize ionization frequency. Thus, peptides longer than about 20 amino acids are not preferred. The preferred ranged is about 7 to 15 amino acids. A peptide sequence is also selected that is not likely to be chemically reactive during mass spectrometry, thus sequences comprising cysteine, tryptophan, or methionine are avoided.


A peptide sequence that is outside a phosphorylation site may be selected as internal standard to determine the quantity of all forms of the target protein. Alternatively, a peptide encompassing a phosphorylated site may be selected as internal standard to detect and quantify only the phosphorylated form of the target protein. Peptide standards for both phosphorylated form and unphosphorylated form can be used together, to determine the extent of phosphorylation in a particular sample.


The peptide is labeled using one or more labeled amino acids (i.e. the label is an actual part of the peptide) or less preferably, labels may be attached after synthesis according to standard methods. Preferably, the label is a mass-altering label selected based on the following considerations: The mass should be unique to shift fragment masses produced by MS analysis to regions of the spectrum with low background; the ion mass signature component is the portion of the labeling moiety that preferably exhibits a unique ion mass signature in MS analysis; the sum of the masses of the constituent atoms of the label is preferably uniquely different than the fragments of all the possible amino acids. As a result, the labeled amino acids and peptides are readily distinguished from unlabeled ones by the ion/mass pattern in the resulting mass spectrum.


Preferably, the ion mass signature component imparts a mass to a protein fragment that does not match the residue mass for any of the 20 natural amino acids.


The label should be robust under the fragmentation conditions of MS and not undergo unfavorable fragmentation. Labeling chemistry should be efficient under a range of conditions, particularly denaturing conditions, and the labeled tag preferably remains soluble in the MS buffer system of choice. The label preferably does not suppress the ionization efficiency of the protein and is not chemically reactive. The label may contain a mixture of two or more isotopically distinct species to generate a unique mass spectrometric pattern at 34S, are among preferred labels. Pairs of peptide internal standards that incorporate a different isotope label may also be prepared. Preferred amino acid residues into which a heavy isotope label may be incorporated include leucine, proline, valine, and phenylalanine.


Peptide internal standards are characterized according to their mass-to-charge (m/z) ratio, and preferably, also according to their retention time on a chromatographic column (e.g. an HPLC column). Internal standards that co-elute with unlabeled peptides of identical sequence are selected as optimal internal standards. The internal standard is then analyzed by fragmenting the peptide by any suitable means, for example by collision-induced dissociation (CID) using, e.g., argon or helium as a collision gas. The fragments are then analyzed, for example by multi-stage mass spectrometry (MSn) to obtain a fragment ion spectrum, to obtain a peptide fragmentation signature. Preferably, peptide fragments have significant differences in m/z ratios to enable peaks corresponding to each fragment to be well separated, and a signature that is unique for the target peptide is obtained. If a suitable fragment signature is not obtained at the first stage, additional stages of MS are performed until a unique signature is obtained.


Fragment ions in the MS/MS and MS3 spectra are typically highly specific for the peptide of interest, and, in conjunction with LC methods, allow a highly selective means of detecting and quantifying a target peptide/protein in a complex protein mixture, such as a cell lysate, containing many thousands or tens of thousands of proteins. Any biological sample potentially containing a target protein/peptide of interest may be assayed. Crude or partially purified cell extracts are preferably used. Generally, the sample has at least 0.01 mg of protein, typically a concentration of 0.1-10 mg/mL, and may be adjusted to a desired buffer concentration and pH.


A known amount of a labeled peptide internal standard, preferably about 10 femtomoles, corresponding to a target protein to be detected/quantified is then added to a biological sample, such as a cell lysate. The spiked sample is then digested with one or more protease(s) for a suitable time period to allow digestion. A separation is then performed (e.g., by HPLC, reverse-phase HPLC, capillary electrophoresis, ion exchange chromatography, etc.) to isolate the labeled internal standard and its corresponding target peptide from other peptides in the sample. Microcapillary LC is a preferred method.


Each isolated peptide is then examined by monitoring of a selected reaction in the MS. This involves using the prior knowledge gained by the characterization of the peptide internal standard and then requiring the MS to continuously monitor a specific ion in the MS/MS or MSn spectrum for both the peptide of interest and the internal standard. After elution, the area under the curve (AUC) for both peptide standard and target peptide peaks are calculated. The ratio of the two areas provides the absolute quantification that can be normalized for the number of cells used in the analysis and the protein's molecular weight, to provide the precise number of copies of the protein per cell. Further details of the AQUA methodology are described in Gygi et al., and Gerber et al. supra.


Accordingly, AQUA internal peptide standards (heavy-isotope labeled peptides) may be produced, as described above, for any of the 349 novel phosphorylation sites of the invention (see Table 1/FIG. 2). For example, peptide standards for a given phosphorylation site (e.g., an AQUA peptide having the sequence NTSDFVyLK (SEQ ID NO: 5), wherein “y” corresponds to phosphorylatable tyrosine 399 of SAP97) may be produced for both the phosphorylated and unphosphorylated forms of the sequence. Such standards may be used to detect and quantify both phosphorylated form and unphosphorylated form of the parent signaling protein (e.g., SAP97) in a biological sample.


Heavy-isotope labeled equivalents of a phosphorylation site of the invention, both in phosphorylated and unphosphorylated form, can be readily synthesized and their unique MS and LC-SRM signature determined, so that the peptides are validated as AQUA peptides and ready for use in quantification.


The novel phosphorylation sites of the invention are particularly well suited for development of corresponding AQUA peptides, since the IAP method by which they were identified (see Part A above and Example 1) inherently confirmed that such peptides are in fact produced by enzymatic digestion (e.g., trypsinization) and are in fact suitably fractionated/ionized in MS/MS. Thus, heavy-isotope labeled equivalents of these peptides (both in phosphorylated and unphosphorylated form) can be readily synthesized and their unique MS and LC-SRM signature determined, so that the peptides are validated as AQUA peptides and ready for use in quantification experiments.


Accordingly, the invention provides heavy-isotope labeled peptides (AQUA peptides) that may be used for detecting, quantitating, or modulating any of the phosphorylation sites of the invention (Table 1). For example, an AQUA peptide having the sequence VLEADPyFTVK (SEQ ID NO: 159), wherein y (Tyr 5167) may be either phosphotyrosine or tyrosine, and wherein V=labeled valine (e.g., 14C)) is provided for the quantification of phosphorylated (or unphosphorylated) form of Titin (a protein kinase) in a biological sample.


Example 4 is provided to further illustrate the construction and use, by standard methods described above, of exemplary AQUA peptides provided by the invention. For example, AQUA peptides corresponding to both the phosphorylated and unphosphorylated forms of SEQ ID NO: 159 (a trypsin-digested fragment of Titin, with a tyrosine 5167 phosphorylation site) may be used to quantify the amount of phosphorylated Titin in a biological sample, e.g., a tumor cell sample or a sample before or after treatment with a therapeutic agent.


Peptides and AQUA peptides provided by the invention will be highly useful in the further study of signal transduction anomalies underlying cancer, including carcinomas. Peptides and AQUA peptides of the invention may also be used for identifying diagnostic/bio-markers of carcinomas, identifying new potential drug targets, and/or monitoring the effects of test therapeutic agents on signaling proteins and pathways.


4. Phosphorylation Site-Specific Antibodies

In another aspect, the invention discloses phosphorylation site-specific binding molecules that specifically bind at a novel tyrosine phosphorylation site of the invention, and that distinguish between the phosphorylated and unphosphorylated forms. In one embodiment, the binding molecule is an antibody or an antigen-binding fragment thereof. The antibody may specifically bind to an amino acid sequence comprising a phosphorylation site identified in Table 1.


In some embodiments, the antibody or antigen-binding fragment thereof specifically binds the phosphorylated site. In other embodiments, the antibody or antigen-binding fragment thereof specially binds the unphosphorylated site. An antibody or antigen-binding fragment thereof specially binds an amino acid sequence comprising a novel tyrosine phosphorylation site in Table 1 when it does not significantly bind any other site in the parent protein and does not significantly bind a protein other than the parent protein. An antibody of the invention is sometimes referred to herein as a″phospho-specific” antibody.


An antibody or antigen-binding fragment thereof specially binds an antigen when the dissociation constant is ≦1mM, preferably ≦100nM, and more preferably ≦10 nM.


In some embodiments, the antibody or antigen-binding fragment of the invention binds an amino acid sequence that comprises a novel phosphorylation site of a protein in Table 1 that is an adaptor/scaffold protein, an adhesion or extracellular matrix protein, a cell cycle regulation protein, a cytoskeletal protein, an enzyme, a G protein regulator protein, a protein kinase, a receptor/channel/transporter/cell surface protein, a transcriptional regulator, or a ubiquitin conjugating system protein.


In particularly preferred embodiments, an antibody or antigen-binding fragment thereof of the invention specially binds an amino acid sequence comprising a novel tyrosine phosphorylation site shown as a lower case “y” in a sequence listed in Table 1 selected from the group consisting of SEQ ID NOS: 5 (SAP97); 9 (Shb); 14 (tensin 1); 30 (VANGL1); 36 (Plakophilin 1); 43 (plexin C1); 45 (PVRL3); 46 (SDK2); 51 (septin 7); 52 (SKB1); 54 (SMC2L1); 67 (plectin 1); 70 (profiling 2); 71 (RIL); 85 (talin 2); 93 (PLCB1); 102 (SOD2); 109 (UPP1); 135 (PLEKHA6); 136 (SCP2); 138 (SEC14L2); 139 (SFTPC); 148 (RIOK3); 158 (TAF1); 162 (Titin); 167 (Syk); 180 (VEGFR-1); 210 (SF2); 211 (SF3B4); 212 (snRNP 70); 215 (TAF15); 223 (PHB); 226 (Sin3A); 228 (SMRT); 233 (STAG2); 344 (SEC22L1); 348 (STX6); 349 (STXBP3); 350 (SYT1); 49 (RCV1); 50 (S100A10); 126 (PIK3CA); 191 (SLC15A1); 198 (SLC6A8).


In some embodiments, an antibody or antigen-binding fragment thereof of the invention specifically binds an amino acid sequence comprising any one of the above listed SEQ ID NOs. In some embodiments, an antibody or antigen-binding fragment thereof of the invention especially binds an amino acid sequence comprises a fragment of one of said SEQ ID NOs., wherein the fragment is four to twenty amino acid long and includes the phosphorylatable tyrosine.


In certain embodiments, an antibody or antigen-binding fragment thereof of the invention specially binds an amino acid sequence that comprises a peptide produced by proteolysis of the parent protein with a protease wherein said peptide comprises a novel tyrosine phosphorylation site of the invention. In some embodiments, the peptides are produced from trypsin digestion of the parent protein. The parent protein comprising the novel tyrosine phosphorylation site can be from any species, preferably from a mammal including but not limited to non-human primates, rabbits, mice, rats, goats, cows, sheep, and guinea pigs. In some embodiments, the parent protein is a human protein and the antibody binds an epitope comprising the novel tyrosine phosphorylation site shown by a lower case “y” in Column E of Table 1. Such peptides include any one of the SEQ ID NOs.


An antibody of the invention can be an intact, four immunoglobulin chain antibody comprising two heavy chains and two light chains. The heavy chain of the antibody can be of any isotype including IgM, IgG, IgE, IgG, IgA or IgD or sub-isotype including IgG1, IgG2, IgG3, IgG4, IgE1, IgE2, etc. The light chain can be a kappa light chain or a lambda light chain.


Also within the invention are antibody molecules with fewer than 4 chains, including single chain antibodies, Camelid antibodies and the like and components of the antibody, including a heavy chain or a light chain. The term “antibody” (or “antibodies”) refers to all types of immunoglobulins. The term “an antigen-binding fragment of an antibody” refers to any portion of an antibody that retains specific binding of the intact antibody. An exemplary antigen-binding fragment of an antibody is the heavy chain and/or light chain CDR, or the heavy and/or light chain variable region. The term “does not bind,” when appeared in context of an antibody's binding to one phospho-form (e.g., phosphorylated form) of a sequence, means that the antibody does not substantially react with the other phospho-form (e.g., non-phosphorylated form) of the same sequence. One of skill in the art will appreciate that the expression may be applicable in those instances when (1) a phospho-specific antibody either does not apparently bind to the non-phospho form of the antigen as ascertained in commonly used experimental detection systems (Western blotting, IHC, Immunofluorescence, etc.); (2) where there is some reactivity with the surrounding amino acid sequence, but that the phosphorylated residue is an immunodominant feature of the reaction. In cases such as these, there is an apparent difference in affinities for the two sequences. Dilutional analyses of such antibodies indicates that the antibodies apparent affinity for the phosphorylated form is at least 10-100 fold higher than for the non-phosphorylated form; or where (3) the phospho-specific antibody reacts no more than an appropriate control antibody would react under identical experimental conditions. A control antibody preparation might be, for instance, purified immunoglobulin from a pre-immune animal of the same species, an isotype- and species-matched monoclonal antibody. Tests using control antibodies to demonstrate specificity are recognized by one of skill in the art as appropriate and definitive.


In some embodiments an immunoglobulin chain may comprise in order from 5′ to 3′, a variable region and a constant region. The variable region may comprise three complementarity determining regions (CDRs), with interspersed framework (FR) regions for a structure FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. Also within the invention are heavy or light chain variable regions, framework regions and CDRs. An antibody of the invention may comprise a heavy chain constant region that comprises some or all of a CH1 region, hinge, CH2 and CH3 region.


An antibody of the invention may have an binding affinity (KD) of 1×10−7M or less. In other embodiments, the antibody binds with a KD of 1×10−8 M, 1×10−9 M, 1×10−10 M, 1×10−11M, 1×10−12M or less. In certain embodiments, the KD is 1 pM to 500 pM, between 500 pM to 1 μM, between 1 μM to 100 nM, or between 100 mM to 10 nM.


Antibodies of the invention can be derived from any species of animal, preferably a mammal. Non-limiting exemplary natural antibodies include antibodies derived from human, chicken, goats, and rodents (e.g., rats, mice, hamsters and rabbits), including transgenic rodents genetically engineered to produce human antibodies (see, e.g., Lonberg et al., WO93/12227; U.S. Pat. No. 5,545,806; and Kucherlapati, et al., WO91/10741; U.S. Pat. No. 6,150,584, which are herein incorporated by reference in their entirety). Natural antibodies are the antibodies produced by a host animal. “Genetically altered antibodies” refer to antibodies wherein the amino acid sequence has been varied from that of a native antibody. Because of the relevance of recombinant DNA techniques to this application, one need not be confined to the sequences of amino acids found in natural antibodies; antibodies can be redesigned to obtain desired characteristics. The possible variations are many and range from the changing of just one or a few amino acids to the complete redesign of, for example, the variable or constant region. Changes in the constant region will, in general, be made in order to improve or alter characteristics, such as complement fixation, interaction with membranes and other effector functions. Changes in the variable region will be made in order to improve the antigen binding characteristics.


The antibodies of the invention include antibodies of any isotype including IgM, IgG, IgD, IgA and IgE, and any sub-isotype, including IgG1, IgG2a, IgG2b, IgG3 and IgG4, IgE1, IgE2 etc. The light chains of the antibodies can either be kappa light chains or lambda light chains.


Antibodies disclosed in the invention may be polyclonal or monoclonal. As used herein, the term “epitope” refers to the smallest portion of a protein capable of selectively binding to the antigen binding site of an antibody. It is well accepted by those skilled in the art that the minimal size of a protein epitope capable of selectively binding to the antigen binding site of an antibody is about five or six to seven amino acids.


Other antibodies specifically contemplated are oligoclonal antibodies. As used herein, the phrase “oligoclonal antibodies” refers to a predetermined mixture of distinct monoclonal antibodies. See, e.g., PCT publication WO 95/20401; U.S. Pat. Nos. 5,789,208 and 6,335,163. In one embodiment, oligoclonal antibodies consisting of a predetermined mixture of antibodies against one or more epitopes are generated in a single cell. In other embodiments, oligoclonal antibodies comprise a plurality of heavy chains capable of pairing with a common light chain to generate antibodies with multiple specificities (e.g., PCT publication WO 04/009618). Oligoclonal antibodies are particularly useful when it is desired to target multiple epitopes on a single target molecule. In view of the assays and epitopes disclosed herein, those skilled in the art can generate or select antibodies or mixtures of antibodies that are applicable for an intended purpose and desired need.


Recombinant antibodies against the phosphorylation sites identified in the invention are also included in the present application. These recombinant antibodies have the same amino acid sequence as the natural antibodies or have altered amino acid sequences of the natural antibodies in the present application. They can be made in any expression systems including both prokaryotic and eukaryotic expression systems or using phage display methods (see, e.g., Dower et al., WO91/17271 and McCafferty et al., WO92/01047; U.S. Pat. No. 5,969,108, which are herein incorporated by reference in their entirety).


Antibodies can be engineered in numerous ways. They can be made as single-chain antibodies (including small modular immunopharmaceuticals or SMIPs™ ), Fab and F(ab′)2 fragments, etc. Antibodies can be humanized, chimerized, deimmunized, or fully human. Numerous publications set forth the many types of antibodies and the methods of engineering such antibodies. For example, see U.S. Pat. Nos. 6,355,245; 6,180,370; 5,693,762; 6,407,213; 6,548,640; 5,565,332; 5,225,539; 6,103,889; and 5,260,203.


The genetically altered antibodies should be functionally equivalent to the above-mentioned natural antibodies. In certain embodiments, modified antibodies provide improved stability or/and therapeutic efficacy. Examples of modified antibodies include those with conservative substitutions of amino acid residues, and one or more deletions or additions of amino acids that do not significantly deleteriously alter the antigen binding utility. Substitutions can range from changing or modifying one or more amino acid residues to complete redesign of a region as long as the therapeutic utility is maintained. Antibodies of this application can be modified post-translationally (e.g., acetylation, and/or phosphorylation) or can be modified synthetically (e.g., the attachment of a labeling group).


Antibodies with engineered or variant constant or Fc regions can be useful in modulating effector functions, such as, for example, antigen-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Such antibodies with engineered or variant constant or Fc regions may be useful in instances where a parent singling protein (Table 1) is expressed in normal tissue; variant antibodies without effector function in these instances may elicit the desired therapeutic response while not damaging normal tissue. Accordingly, certain aspects and methods of the present disclosure relate to antibodies with altered effector functions that comprise one or more amino acid substitutions, insertions, and/or deletions.


In certain embodiments, genetically altered antibodies are chimeric antibodies and humanized antibodies.


The chimeric antibody is an antibody having portions derived from different antibodies. For example, a chimeric antibody may have a variable region and a constant region derived from two different antibodies. The donor antibodies may be from different species. In certain embodiments, the variable region of a chimeric antibody is non-human, e.g., murine, and the constant region is human.


The genetically altered antibodies used in the invention include CDR grafted humanized antibodies. In one embodiment, the humanized antibody comprises heavy and/or light chain CDRs of a non-human donor immunoglobulin and heavy chain and light chain frameworks and constant regions of a human acceptor immunoglobulin. The method of making humanized antibody is disclosed in U.S. Pat. Nos: 5,530,101; 5,585,089; 5,693,761; 5,693,762; and 6,180,370 each of which is incorporated herein by reference in its entirety.


Antigen-binding fragments of the antibodies of the invention, which retain the binding specificity of the intact antibody, are also included in the invention. Examples of these antigen-binding fragments include, but are not limited to, partial or full heavy chains or light chains, variable regions, or CDR regions of any phosphorylation site-specific antibodies described herein.


In one embodiment of the application, the antibody fragments are truncated chains (truncated at the carboxyl end). In certain embodiments, these truncated chains possess one or more immunoglobulin activities (e.g., complement fixation activity). Examples of truncated chains include, but are not limited to, Fab fragments (consisting of the VL, VH, CL and CH1 domains); Fd fragments (consisting of the VH and CH1 domains); Fv fragments (consisting of VL and VH domains of a single chain of an antibody); dAb fragments (consisting of a VH domain); isolated CDR regions; (Fab′)2 fragments, bivalent fragments (comprising two Fab fragments linked by a disulphide bridge at the hinge region). The truncated chains can be produced by conventional biochemical techniques, such as enzyme cleavage, or recombinant DNA techniques, each of which is known in the art. These polypeptide fragments may be produced by proteolytic cleavage of intact antibodies by methods well known in the art, or by inserting stop codons at the desired locations in the vectors using site-directed mutagenesis, such as after CH1 to produce Fab fragments or after the hinge region to produce (Fab′)2 fragments. Single chain antibodies may be produced by joining VL- and VH-coding regions with a DNA that encodes a peptide linker connecting the VL and VH protein fragments


Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment of an antibody yields an F(ab′)2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.


“Fv” usually refers to the minimum antibody fragment that contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising three CDRs specific for an antigen) has the ability to recognize and bind antigen, although likely at a lower affinity than the entire binding site.


Thus, in certain embodiments, the antibodies of the application may comprise 1, 2, 3, 4, 5, 6, or more CDRs that recognize the phosphorylation sites identified in Column E of Table 1.


The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments that have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.


“Single-chain Fv” or “scFv” antibody fragments comprise the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. In certain embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the scFv to form the desired structure for antigen binding. For a review of scFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore, eds. (Springer-Verlag: New York, 1994), pp. 269-315.


SMIPs are a class of single-chain peptides engineered to include a target binding region and effector domain (CH2 and CH3 domains). See, e.g., U.S. Patent Application Publication No. 20050238646. The target binding region may be derived from the variable region or CDRs of an antibody, e.g., a phosphorylation site-specific antibody of the application. Alternatively, the target binding region is derived from a protein that binds a phosphorylation site.


Bispecific antibodies may be monoclonal, human or humanized antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the phosphorylation site, the other one is for any other antigen, such as for example, a cell-surface protein or receptor or receptor subunit. Alternatively, a therapeutic agent may be placed on one arm. The therapeutic agent can be a drug, toxin, enzyme, DNA, radionuclide, etc.


In some embodiments, the antigen-binding fragment can be a diabody. The term “diabody” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).


Camelid antibodies refer to a unique type of antibodies that are devoid of light chain, initially discovered from animals of the camelid family. The heavy chains of these so-called heavy-chain antibodies bind their antigen by one single domain, the variable domain of the heavy immunoglobulin chain, referred to as VHH. VHHs show homology with the variable domain of heavy chains of the human VHIII family. TheVHHs obtained from an immunized camel, dromedary, or llama have a number of advantages, such as effective production in microorganisms such as Saccharomyces cerevisiae.


In certain embodiments, single chain antibodies, and chimeric, humanized or primatized (CDR-grafted) antibodies, as well as chimeric or CDR-grafted single chain antibodies, comprising portions derived from different species, are also encompassed by the present disclosure as antigen-binding fragments of an antibody. The various portions of these antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques. For example, nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., U.S. Pat. Nos. 4,816,567 and 6,331,415; U.S. Pat. No. 4,816,397; European Patent No. 0,120,694; WO 86/01533; European Patent No. 0,194,276 B1; U.S. Pat. No. 5,225,539; and European Patent No. 0,239,400 B1. See also, Newman et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody. See, e.g., Ladner et al., U.S. Pat. No. 4,946,778; and Bird et al., Science, 242: 423-426 (1988)), regarding single chain antibodies.


In addition, functional fragments of antibodies, including fragments of chimeric, humanized, primatized or single chain antibodies, can also be produced. Functional fragments of the subject antibodies retain at least one binding function and/or modulation function of the full-length antibody from which they are derived.


Since the immunoglobulin-related genes contain separate functional regions, each having one or more distinct biological activities, the genes of the antibody fragments may be fused to functional regions from other genes (e.g., enzymes, U.S. Pat. No. 5,004,692, which is incorporated by reference in its entirety) to produce fusion proteins or conjugates having novel properties.


Non-immunoglobulin binding polypeptides are also contemplated. For example, CDRs from an antibody disclosed herein may be inserted into a suitable non-immunoglobulin scaffold to create a non-immunoglobulin binding polypeptide. Suitable candidate scaffold structures may be derived from, for example, members of fibronectin type III and cadherin superfamilies.


Also contemplated are other equivalent non-antibody molecules, such as protein binding domains or aptamers, which bind, in a phospho-specific manner, to an amino acid sequence comprising a novel phosphorylation site of the invention. See, e.g., Neuberger et al., Nature 312: 604 (1984). Aptamers are oligonucleic acid or peptide molecules that bind a specific target molecule. DNA or RNA aptamers are typically short oligonucleotides, engineered through repeated rounds of selection to bind to a molecular target. Peptide aptamers typically consist of a variable peptide loop attached at both ends to a protein scaffold. This double structural constraint generally increases the binding affinity of the peptide aptamer to levels comparable to an antibody (nanomolar range).


The invention also discloses the use of the phosphorylation site-specific antibodies with immunotoxins. Conjugates that are immunotoxins including antibodies have been widely described in the art. The toxins may be coupled to the antibodies by conventional coupling techniques or immunotoxins containing protein toxin portions can be produced as fusion proteins. In certain embodiments, antibody conjugates may comprise stable linkers and may release cytotoxic agents inside cells (see U.S. Pat. Nos. 6,867,007 and 6,884,869). The conjugates of the present application can be used in a corresponding way to obtain such immunotoxins. Illustrative of such immunotoxins are those described by Byers et al., Seminars Cell Biol 2:59-70 (1991) and by Fanger et al., Immunol Today 12:51-54 (1991). Exemplary immunotoxins include radiotherapeutic agents, ribosome-inactivating proteins (RIPs), chemotherapeutic agents, toxic peptides, or toxic proteins.


The phosphorylation site-specific antibodies disclosed in the invention may be used singly or in combination. The antibodies may also be used in an array format for high throughput uses. An antibody microarray is a collection of immobolized antibodies, typically spotted and fixed on a solid surface (such as glass, plastic and silicon chip).


In another aspect, the antibodies of the invention modulate at least one, or all, biological activities of a parent protein identified in Column A of


Table 1. The biological activities of a parent protein identified in Column A of Table 1 include: 1) ligand binding activities (for instance, these neutralizing antibodies may be capable of competing with or completely blocking the binding of a parent signaling protein to at least one, or all, of its ligands; 2) signaling transduction activities, such as receptor dimerization, or tyrosine phosphorylation; and 3) cellular responses induced by a parent signaling protein, such as oncogenic activities (e.g., cancer cell proliferation mediated by a parent signaling protein), and/or angiogenic activities.


In certain embodiments, the antibodies of the invention may have at least one activity selected from the group consisting of: 1) inhibiting cancer cell growth or proliferation; 2) inhibiting cancer cell survival; 3) inhibiting angiogenesis; 4) inhibiting cancer cell metastasis, adhesion, migration or invasion; 5) inducing apoptosis of cancer cells; 6) incorporating a toxic conjugate; and 7) acting as a diagnostic marker.


In certain embodiments, the phosphorylation site specific antibodies disclosed in the invention are especially indicated for diagnostic and therapeutic applications as described herein. Accordingly, the antibodies may be used in therapies, including combination therapies, in the diagnosis and prognosis of disease, as well as in the monitoring of disease progression. The invention, thus, further includes compositions comprising one or more embodiments of an antibody or an antigen binding portion of the invention as described herein. The composition may further comprise a pharmaceutically acceptable carrier. The composition may comprise two or more antibodies or antigen-binding portions, each with specificity for a different novel tyrosine phosphorylation site of the invention or two or more different antibodies or antigen-binding portions all of which are specific for the same novel tyrosine phosphorylation site of the invention. A composition of the invention may comprise one or more antibodies or antigen-binding portions of the invention and one or more additional reagents, diagnostic agents or therapeutic agents.


The present application provides for the polynucleotide molecules encoding the antibodies and antibody fragments and their analogs described herein. Because of the degeneracy of the genetic code, a variety of nucleic acid sequences encode each antibody amino acid sequence. The desired nucleic acid sequences can be produced by de novo solid-phase DNA synthesis or by PCR mutagenesis of an earlier prepared variant of the desired polynucleotide. In one embodiment, the codons that are used comprise those that are typical for human or mouse (see, e.g., Nakamura, Y., Nucleic Acids Res. 28: 292 (2000)).


The invention also provides immortalized cell lines that produce an antibody of the invention. For example, hybridoma clones, constructed as described above, that produce monoclonal antibodies to the targeted signaling protein phosphorylation sties disclosed herein are also provided. Similarly, the invention includes recombinant cells producing an antibody of the invention, which cells may be constructed by well known techniques; for example the antigen combining site of the monoclonal antibody can be cloned by PCR and single-chain antibodies produced as phage-displayed recombinant antibodies or soluble antibodies in E. coil (see, e.g., ANTIBODY ENGINEERING PROTOCOLS, 1995, Humana Press, Sudhir Paul editor.)


5. Methods of Making Phosphorylation Site-Specific Antibodies

In another aspect, the invention provides a method for making phosphorylation site-specific antibodies.


Polyclonal antibodies of the invention may be produced according to standard techniques by immunizing a suitable animal (e.g., rabbit, goat, etc.) with an antigen comprising a novel tyrosine phosphorylation site of the invention. (i.e. a phosphorylation site shown in Table 1) in either the phosphorylated or unphosphorylated state, depending upon the desired specificity of the antibody, collecting immune serum from the animal, and separating the polyclonal antibodies from the immune serum, in accordance with known procedures and screening and isolating a polyclonal antibody specific for the novel tyrosine phosphorylation site of interest as further described below. Methods for immunizing non-human animals such as mice, rats, sheep, goats, pigs, cattle and horses are well known in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Press, 1990.


The immunogen may be the full length protein or a peptide comprising the novel tyrosine phosphorylation site of interest. In some embodiments the immunogen is a peptide of from 7 to 20 amino acids in length, preferably about 8 to 17 amino acids in length. In some embodiments, the peptide antigen desirably will comprise about 3 to 8 amino acids on each side of the phosphorylatable tyrosine. In yet other embodiments, the peptide antigen desirably will comprise four or more amino acids flanking each side of the phosphorylatable amino acid and encompassing it. Peptide antigens suitable for producing antibodies of the invention may be designed, constructed and employed in accordance with well-known techniques. See, e.g., Antibodies: A Laboratory Manual, Chapter 5, p. 75-76, Harlow & Lane Eds., Cold Spring Harbor Laboratory (1988); Czernik, Methods In Enzymology, 201: 264-283 (1991); Merrifield, J. Am. Chem. Soc. 85: 21-49 (1962)).


Suitable peptide antigens may comprise all or partial sequence of a trypsin-digested fragment as set forth in Column E of Table 1/FIG. 2. Suitable peptide antigens may also comprise all or partial sequence of a peptide fragment produced by another protease digestion.


Preferred immunogens are those that comprise a novel phosphorylation site of a protein in Table 1 that is an adaptor/scaffold protein, an adhesion or extracellular matrix protein, a cell cycle regulation protein, a cytoskeletal protein, an enzyme, a lipid binding protein a G protein regulator protein, a protein kinase, a receptor/channel/transporter/cell surface protein, a transcriptional regulator, or a ubiquitin conjugating system protein. In some embodiments, the peptide immunogen is an AQUA peptide, for example, any one of SEQ ID NOS: 1-174, 176-280, 282-353.


Particularly preferred immunogens are peptides comprising any one of the novel tyrosine phosphorylation site shown as a lower case “y” in a sequence listed in Table 1 selected from the group consisting of SEQ ID NOS: 5 (SAP97); 9 (Shb); 14 (tensin 1); 30 (VANGL1); 36 (Plakophilin 1); 43 (plexin C1); 45 (PVRL3); 46 (SDK2); 51 (septin 7); 52 (SKB1); 54 (SMC2L1); 67 (plectin 1); 70 (profiling 2); 71 (RIL); 85 (talin 2); 93 (PLCB1); 102 (SOD2); 109 (UPP1); 135 (PLEKHA6); 136 (SCP2); 138 (SEC14L2); 139 (SFTPC); 148 (RIOK3); 158 (TAF1); 162 (Titin); 167 (Syk); 180 (VEGFR-1); 210 (SF2); 211 (SF3B4); 212 (snRNP 70); 215 (TAF15); 223 (PHB); 226 (Sin3A); 228 (SMRT); 233 (STAG2); 344 (SEC22L1); 348 (STX6); 349 (STXBP3); 350 (SYT1); 49 (RCV1); 50 (S100A10); 126 (PIK3CA); 191 (SLC15A1); 198 (SLC6A8).


In some embodiments the immunogen is administered with an adjuvant. Suitable adjuvants will be well known to those of skill in the art. Exemplary adjuvants include complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes).


For example, a peptide antigen comprising the novel receptor tyrosine kinase phosphorylation site in SEQ ID NO: 156 shown by the lower case “y” in Table 1 may be used to produce antibodies that specifically bind the novel tyrosine phosphorylation site.


When the above-described methods are used for producing polyclonal antibodies, following immunization, the polyclonal antibodies which secreted into the bloodstream can be recovered using known techniques. Purified forms of these antibodies can, of course, be readily prepared by standard purification techniques, such as for example, affinity chromatography with Protein A, anti-immunoglobulin, or the antigen itself. In any case, in order to monitor the success of immunization, the antibody levels with respect to the antigen in serum will be monitored using standard techniques such as ELISA, RIA and the like.


Monoclonal antibodies of the invention may be produced by any of a number of means that are well-known in the art. In some embodiments, antibody-producing B cells are isolated from an animal immunized with a peptide antigen as described above. The B cells may be from the spleen, lymph nodes or peripheral blood. Individual B cells are isolated and screened as described below to identify cells producing an antibody specific for the novel tyrosine phosphorylation site of interest. Identified cells are then cultured to produce a monoclonal antibody of the invention.


Alternatively, a monoclonal phosphorylation site-specific antibody of the invention may be produced using standard hybridoma technology, in a hybridoma cell line according to the well-known technique of Kohler and Milstein. See Nature 265: 495-97 (1975); Kohler and Milstein, Eur. J. Immunol. 6: 511 (1976); see also, Current Protocols in Molecular Biology, Ausubel et al. Eds. (1989). Monoclonal antibodies so produced are highly specific, and improve the selectivity and specificity of diagnostic assay methods provided by the invention. For example, a solution containing the appropriate antigen may be injected into a mouse or other species and, after a sufficient time (in keeping with conventional techniques), the animal is sacrificed and spleen cells obtained. The spleen cells are then immortalized by any of a number of standard means. Methods of immortalizing cells include, but are not limited to, transfecting them with oncogenes, infecting them with an oncogenic virus and cultivating them under conditions that select for immortalized cells, subjecting them to carcinogenic or mutating compounds, fusing them with an immortalized cell, e.g., a myeloma cell, and inactivating a tumor suppressor gene. See, e.g., Harlow and Lane, supra. If fusion with myeloma cells is used, the myeloma cells preferably do not secrete immunoglobulin polypeptides (a non-secretory cell line). Typically the antibody producing cell and the immortalized cell (such as but not limited to myeloma cells) with which it is fused are from the same species. Rabbit fusion hybridomas, for example, may be produced as described in U.S. Pat. No. 5,675,063, C. Knight, Issued Oct. 7, 1997. The immortalized antibody producing cells, such as hybridoma cells, are then grown in a suitable selection media, such as hypoxanthine-aminopterin-thymidine (HAT), and the supernatant screened for monoclonal antibodies having the desired specificity, as described below. The secreted antibody may be recovered from tissue culture supernatant by conventional methods such as precipitation, ion exchange or affinity chromatography, or the like.


The invention also encompasses antibody-producing cells and cell lines, such as hybridomas, as described above.


Polyclonal or monoclonal antibodies may also be obtained through in vitro immunization. For example, phage display techniques can be used to provide libraries containing a repertoire of antibodies with varying affinities for a particular antigen. Techniques for the identification of high affinity human antibodies from such libraries are described by Griffiths et al., (1994) EMBO J, 13:3245-3260 ; Nissim et al., ibid, pp. 692-698 and by Griffiths et al., ibid, 12:725-734, which are incorporated by reference.


The antibodies may be produced recombinantly using methods well known in the art for example, according to the methods disclosed in U.S. Pat. No. 4,349,893 (Reading) or U.S. Pat. No. 4,816,567 (Cabilly et al.) The antibodies may also be chemically constructed by specific antibodies made according to the method disclosed in U.S. Pat. No. 4,676,980 (Segel et al.)


Once a desired phosphorylation site-specific antibody is identified, polynucleotides encoding the antibody, such as heavy, light chains or both (or single chains in the case of a single chain antibody) or portions thereof such as those encoding the variable region, may be cloned and isolated from antibody-producing cells using means that are well known in the art. For example, the antigen combining site of the monoclonal antibody can be cloned by PCR and single-chain antibodies produced as phage-displayed recombinant antibodies or soluble antibodies in E. coli (see, e.g., Antibody Engineering Protocols, 1995, Humana Press, Sudhir Paul editor.)


Accordingly, in a further aspect, the invention provides such nucleic acids encoding the heavy chain, the light chain, a variable region, a framework region or a CDR of an antibody of the invention. In some embodiments, the nucleic acids are operably linked to expression control sequences. The invention, thus, also provides vectors and expression control sequences useful for the recombinant expression of an antibody or antigen-binding portion thereof of the invention. Those of skill in the art will be able to choose vectors and expression systems that are suitable for the host cell in which the antibody or antigen-binding portion is to be expressed.


Monoclonal antibodies of the invention may be produced recombinantly by expressing the encoding nucleic acids in a suitable host cell under suitable conditions. Accordingly, the invention further provides host cells comprising the nucleic acids and vectors described above.


Monoclonal Fab fragments may also be produced in Escherichia coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, Science 246: 1275-81 (1989); Mullinax et al., Proc. Nat'l Acad. Sci. 87: 8095 (1990).


If monoclonal antibodies of a single desired isotype are preferred for a particular application, particular isotypes can be prepared directly, by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class-switch variants (Steplewski, et al., Proc. Nat'l. Acad. Sci., 82: 8653 (1985); Spira et al., J. Immunol. Methods, 74: 307 (1984)). Alternatively, the isotype of a monoclonal antibody with desirable propertied can be changed using antibody engineering techniques that are well-known in the art.


Phosphorylation site-specific antibodies of the invention, whether polyclonal or monoclonal, may be screened for epitope and phospho-specificity according to standard techniques. See, e.g., Czernik et al., Methods in Enzymology, 201: 264-283 (1991). For example, the antibodies may be screened against the phosphorylated and/or unphosphosphorylated peptide library by ELISA to ensure specificity for both the desired antigen (i.e. that epitope including a phosphorylation site of the invention and for reactivity only with the phosphorylated (or unphosphorylated) form of the antigen. Peptide competition assays may be carried out to confirm lack of reactivity with other phospho-epitopes on the parent protein. The antibodies may also be tested by Western blotting against cell preparations containing the parent signaling protein, e.g., cell lines over-expressing the parent protein, to confirm reactivity with the desired phosphorylated epitope/target.


Specificity against the desired phosphorylated epitope may also be examined by constructing mutants lacking phosphorylatable residues at positions outside the desired epitope that are known to be phosphorylated, or by mutating the desired phospho-epitope and confirming lack of reactivity. Phosphorylation site-specific antibodies of the invention may exhibit some limited cross-reactivity to related epitopes in non-target proteins. This is not unexpected as most antibodies exhibit some degree of cross-reactivity, and anti-peptide antibodies will often cross-react with epitopes having high homology to the immunizing peptide. See, e.g., Czernik, supra. Cross-reactivity with non-target proteins is readily characterized by Western blotting alongside markers of known molecular weight. Amino acid sequences of cross-reacting proteins may be examined to identify phosphorylation sites with flanking sequences that are highly homologous to that of a phosphorylation site of the invention.


In certain cases, polyclonal antisera may exhibit some undesirable general cross-reactivity to phosphotyrosine itself, which may be removed by further purification of antisera, e.g., over a phosphotyramine column. Antibodies of the invention specifically bind their target protein (i.e. a protein listed in Column A of Table 1) only when phosphorylated (or only when not phosphorylated, as the case may be) at the site disclosed in corresponding Columns D/E, and do not (substantially) bind to the other form (as compared to the form for which the antibody is specific).


Antibodies may be further characterized via immunohistochemical (IHC) staining using normal and diseased tissues to examine phosphorylation and activation state and level of a phosphorylation site in diseased tissue. IHC may be carried out according to well-known techniques. See, e.g., Antibodies: A Laboratory Manual, Chapter 10, Harlow & Lane Eds., Cold Spring Harbor Laboratory (1988). Briefly, paraffin-embedded tissue (e.g., tumor tissue) is prepared for immunohistochemical staining by deparaffinizing tissue sections with xylene followed by ethanol; hydrating in water then PBS; unmasking antigen by heating slide in sodium citrate buffer; incubating sections in hydrogen peroxide; blocking in blocking solution; incubating slide in primary antibody and secondary antibody; and finally detecting using ABC avidin/biotin method according to manufacturer's instructions.


Antibodies may be further characterized by flow cytometry carried out according to standard methods. See Chow et al., Cytometry (Communications in Clinical Cytometry) 46: 72-78 (2001). Briefly and by way of example, the following protocol for cytometric analysis may be employed: samples may be centrifuged on Ficoll gradients to remove lysed erythrocytes and cell debris. Adherring cells may be scrapped off plates and washed with PBS. Cells may then be fixed with 2% paraformaldehyde for 10 minutes at 37° C. followed by permeabilization in 90% methanol for 30 minutes on ice. Cells may then be stained with the primary phosphorylation site-specific antibody of the invention (which detects a parent signaling protein enumerated in Table 1), washed and labeled with a fluorescent-labeled secondary antibody. Additional fluorochrome-conjugated marker antibodies (e.g., CD45, CD34) may also be added at this time to aid in the subsequent identification of specific hematopoietic cell types. The cells would then be analyzed on a flow cytometer (e.g. a Beckman Coulter FC500) according to the specific protocols of the instrument used.


Antibodies of the invention may also be advantageously conjugated to fluorescent dyes (e.g. Alexa488, PE) for use in multi-parametric analyses along with other signal transduction (phospho-CrkL, phospho-Erk 1/2) and/or cell marker (CD34) antibodies.


Phosphorylation site-specific antibodies of the invention may specifically bind to a signaling protein or polypeptide listed in Table 1 only when phosphorylated at the specified tyrosine residue, but are not limited only to binding to the listed signaling proteins of human species, per se. The invention includes antibodies that also bind conserved and highly homologous or identical phosphorylation sites in respective signaling proteins from other species (e.g., mouse, rat, monkey, yeast), in addition to binding the phosphorylation site of the human homologue. The term “homologous” refers to two or more sequences or subsequences that have at least about 85%, at least 90%, at least 95%, or higher nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using sequence comparison method (e.g., BLAST) and/or by visual inspection. Highly homologous or identical sites conserved in other species can readily be identified by standard sequence comparisons (such as BLAST).


Methods for making bispecific antibodies are within the purview of those skilled in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. In certain embodiments, the fusion is with an immunoglobulin heavy-chain constant domain, including at least part of the hinge, CH2, and CH3 regions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of illustrative currently known methods for generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986); WO 96/27011; Brennan et al., Science 229:81 (1985); Shalaby et al., J. Exp. Med. 175:217-225 (1992); Kostelny et al., J. Immunol. 148(5):1547-1553 (1992); Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993); Gruber et al., J. Immunol. 152:5368 (1994); and Tutt et al., J. Immunol. 147:60 (1991). Bispecific antibodies also include cross-linked or heteroconjugate antibodies. Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.


Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins may be linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers may be reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. A strategy for making bispecific antibody fragments by the use of single-chain Fv (scFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994). Alternatively, the antibodies can be “linear antibodies” as described in Zapata et al. Protein Eng. 8(10):1057-1062 (1995). Briefly, these antibodies comprise a pair of tandem Fd segments (VH-CH1-VH-CH1) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.


To produce the chimeric antibodies, the portions derived from two different species (e.g., human constant region and murine variable or binding region) can be joined together chemically by conventional techniques or can be prepared as single contiguous proteins using genetic engineering techniques. The DNA molecules encoding the proteins of both the light chain and heavy chain portions of the chimeric antibody can be expressed as contiguous proteins. The method of making chimeric antibodies is disclosed in U.S. Pat. No. 5,677,427; U.S. Pat. No. 6,120,767; and U.S. Pat. No. 6,329,508, each of which is incorporated by reference in its entirety.


Fully human antibodies may be produced by a variety of techniques. One example is trioma methodology. The basic approach and an exemplary cell fusion partner, SPAZ-4, for use in this approach have been described by Oestberg et al., Hybridoma 2:361-367 (1983); Oestberg, U.S. Pat. No. 4,634,664; and Engleman et al., U.S. Pat. No. 4,634,666 (each of which is incorporated by reference in its entirety).


Human antibodies can also be produced from non-human transgenic animals having transgenes encoding at least a segment of the human immunoglobulin locus. The production and properties of animals having these properties are described in detail by, see, e.g., Lonberg et al., WO93/12227; U.S. Pat. No. 5,545,806; and Kucherlapati, et al., WO91/10741; U.S. Pat. No. 6,150,584, which are herein incorporated by reference in their entirety.


Various recombinant antibody library technologies may also be utilized to produce fully human antibodies. For example, one approach is to screen a DNA library from human B cells according to the general protocol outlined by Huse et al., Science 246:1275-1281 (1989). The protocol described by Huse is rendered more efficient in combination with phage-display technology. See, e.g., Dower et al., WO 91/17271 and McCafferty et al., WO 92/01047; U.S. Pat. No. 5,969,108, (each of which is incorporated by reference in its entirety).


Eukaryotic ribosome can also be used as means to display a library of antibodies and isolate the binding human antibodies by screening against the target antigen, as described in Coia G, et al., J. Immunol. Methods 1: 254 (1-2):191-7 (2001); Hanes J. et al., Nat. Biotechnol. 18(12):1287-92 (2000); Proc. Natl. Acad. Sci. U.S.A. 95(24):14130-5 (1998); Proc. Natl. Acad. Sci. U.S.A. 94(10):4937-42 (1997), each which is incorporated by reference in its entirety.


The yeast system is also suitable for screening mammalian cell-surface or secreted proteins, such as antibodies. Antibody libraries may be displayed on the surface of yeast cells for the purpose of obtaining the human antibodies against a target antigen. This approach is described by Yeung, et al., Biotechnol. Prog. 18(2):212-20 (2002); Boeder, E. T., et al., Nat. Biotechnol. 15(6):553-7 (1997), each of which is herein incorporated by reference in its entirety. Alternatively, human antibody libraries may be expressed intracellularly and screened via the yeast two-hybrid system (WO0200729A2, which is incorporated by reference in its entirety).


Recombinant DNA techniques can be used to produce the recombinant phosphorylation site-specific antibodies described herein, as well as the chimeric or humanized phosphorylation site-specific antibodies, or any other genetically-altered antibodies and the fragments or conjugate thereof in any expression systems including both prokaryotic and eukaryotic expression systems, such as bacteria, yeast, insect cells, plant cells, mammalian cells (for example, NSO cells).


Once produced, the whole antibodies, their dimers, individual light and heavy chains, or other immunoglobulin forms of the present application can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, Scopes, R., Protein Purification (Springer-Verlag, N.Y., 1982)). Once purified, partially or to homogeneity as desired, the polypeptides may then be used therapeutically (including extracorporeally) or in developing and performing assay procedures, immunofluorescent staining, and the like. (See, generally, Immunological Methods, Vols. I and II (Lefkovits and Pernis, eds., Academic Press, NY, 1979 and 1981).


6. Therapeutic Uses

In a further aspect, the invention provides methods and compositions for therapeutic uses of the peptides or proteins comprising a phosphorylation site of the invention, and phosphorylation site-specific antibodies of the invention.


In one embodiment, the invention provides for a method of treating or preventing carcinoma in a subject, wherein the carcinoma is associated with the phosphorylation state of a novel phosphorylation site in Table 1, whether phosphorylated or dephosphorylated, comprising: administering to a subject in need thereof a therapeutically effective amount of a peptide comprising a novel phosphorylation site (Table 1) and/or an antibody or antigen-binding fragment thereof that specifically bind a novel phosphorylation site of the invention (Table 1). The antibodies maybe full-length antibodies, genetically engineered antibodies, antibody fragments, and antibody conjugates of the invention.


The term “subject” refers to a vertebrate, such as for example, a mammal, or a human. Although present application are primarily concerned with the treatment of human subjects, the disclosed methods may also be used for the treatment of other mammalian subjects such as dogs and cats for veterinary purposes.


In one aspect, the disclosure provides a method of treating carcinoma in which a peptide or an antibody that reduces at least one biological activity of a targeted signaling protein is administered to a subject. . For example, the peptide or the antibody administered may disrupt or modulate the interaction of the target signaling protein with its ligand. Alternatively, the peptide or the antibody may interfere with, thereby reducing, the down-stream signal transduction of the parent signaling protein. An antibody that specifically binds the novel tyrosine phosphorylation site only when the tyrosine is phosphorylated, and that does not substantially bind to the same sequence when the tyrosine is not phosphorylated, thereby prevents downstream signal transduction triggered by a phospho-tyrosine. Alternatively, an antibody that specifically binds the unphosphorylated target phosphorylation site reduces the phosphorylation at that site and thus reduces activation of the protein mediated by phosphorylation of that site. Similarly, an unphosphorylated peptide may compete with an endogenous phosphorylation site for same kinases, thereby preventing or reducing the phosphorylation of the endogenous target protein. Alternatively, a peptide comprising a phosphorylated novel tyrosine site of the invention but lacking the ability to trigger signal transduction may competitively inhibit interaction of the endogenous protein with the same down-stream ligand(s).


The antibodies of the invention may also be used to target cancer cells for effector-mediated cell death. The antibody disclosed herein may be administered as a fusion molecule that includes a phosphorylation site-targeting portion joined to a cytotoxic moiety to directly kill cancer cells. Alternatively, the antibody may directly kill the cancer cells through complement-mediated or antibody-dependent cellular cytotoxicity.


Accordingly in one embodiment, the antibodies of the present disclosure may be used to deliver a variety of cytotoxic compounds. Any cytotoxic compound can be fused to the present antibodies. The fusion can be achieved chemically or genetically (e.g., via expression as a single, fused molecule). The cytotoxic compound can be a biological, such as a polypeptide, or a small molecule. As those skilled in the art will appreciate, for small molecules, chemical fusion is used, while for biological compounds, either chemical or genetic fusion can be used.


Non-limiting examples of cytotoxic compounds include therapeutic drugs, radiotherapeutic agents, ribosome-inactivating proteins (RIPs), chemotherapeutic agents, toxic peptides, toxic proteins, and mixtures thereof The cytotoxic drugs can be intracellularly acting cytotoxic drugs, such as short-range radiation emitters, including, for example, short-range, high-energy α-emitters. Enzymatically active toxins and fragments thereof, including ribosome-inactivating proteins, are exemplified by saporin, luffin, momordins, ricin, trichosanthin, gelonin, abrin, etc. Procedures for preparing enzymatically active polypeptides of the immunotoxins are described in WO84/03508 and WO85/03508, which are hereby incorporated by reference. Certain cytotoxic moieties are derived from adriamycin, chlorambucil, daunomycin, methotrexate, neocarzinostatin, and platinum, for example.


Exemplary chemotherapeutic agents that may be attached to an antibody or antigen-binding fragment thereof include taxol, doxorubicin, verapamil, podophyllotoxin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, transplatinum, 5-fluorouracil, vincristin, vinblastin, or methotrexate.


Procedures for conjugating the antibodies with the cytotoxic agents have been previously described and are within the purview of one skilled in the art.


Alternatively, the antibody can be coupled to high energy radiation emitters, for example, a radioisotope, such as 131I, a γ-emitter, which, when localized at the tumor site, results in a killing of several cell diameters. See, e.g., S. E. Order, “Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody in Cancer Therapy”, Monoclonal Antibodies for Cancer Detection and Therapy, Baldwin et al. (eds.), pp. 303-316 (Academic Press 1985), which is hereby incorporated by reference. Other suitable radioisotopes include a-emitters, such as 212Bi, 213Bi, and 211At, and β-emitters, such as 186Re and 90Y.


Because many of the signaling proteins in which novel tyrosine phosphorylation sites of the invention occur also are expressed in normal cells and tissues, it may also be advantageous to administer a phosphorylation site-specific antibody with a constant region modified to reduce or eliminate ADCC or CDC to limit damage to normal cells. For example, effector function of an antibodies may be reduced or eliminated by utilizing an IgG1 constant domain instead of an IgG2/4 fusion domain. Other ways of eliminating effector function can be envisioned such as, e.g., mutation of the sites known to interact with FcR or insertion of a peptide in the hinge region, thereby eliminating critical sites required for FcR interaction. Variant antibodies with reduced or no effector function also include variants as described previously herein.


The peptides and antibodies of the invention may be used in combination with other therapies or with other agents. Other agents include but are not limited to polypeptides, small molecules, chemicals, metals, organometallic compounds, inorganic compounds, nucleic acid molecules, oligonucleotides, aptamers, spiegelmers, antisense nucleic acids, locked nucleic acid (LNA) inhibitors, peptide nucleic acid (PNA) inhibitors, immunomodulatory agents, antigen-binding fragments, prodrugs, and peptidomimetic compounds. In certain embodiments, the antibodies and peptides of the invention may be used in combination with cancer therapies known to one of skill in the art.


In certain aspects, the present disclosure relates to combination treatments comprising a phosphorylation site-specific antibody described herein and immunomodulatory compounds, vaccines or chemotherapy. Illustrative examples of suitable immunomodulatory agents that may be used in such combination therapies include agents that block negative regulation of T cells or antigen presenting cells (e.g., anti-CTLA4 antibodies, anti-PD-L1 antibodies, anti-PDL-2 antibodies, anti-PD-1 antibodies and the like) or agents that enhance positive co-stimulation of T cells (e.g., anti-CD40 antibodies or anti 4-1BB antibodies) or agents that increase NK cell number or T-cell activity (e.g., inhibitors such as IMiDs, thalidomide, or thalidomide analogs). Furthermore, immunomodulatory therapy could include cancer vaccines such as dendritic cells loaded with tumor cells, proteins, peptides, RNA, or DNA derived from such cells, patient derived heat-shock proteins (hsp's) or general adjuvants stimulating the immune system at various levels such as CpG, Luivac®, Biostim®, Ribomunyl®, Imudon®, Bronchovaxom® or any other compound or other adjuvant activating receptors of the innate immune system (e.g., toll like receptor agonist, anti-CTLA-4 antibodies, etc.). Also, immunomodulatory therapy could include treatment with cytokines such as IL-2, GM-CSF and IFN-gamma.


Furthermore, combination of antibody therapy with chemotherapeutics could be particularly useful to reduce overall tumor burden, to limit angiogenesis, to enhance tumor accessibility, to enhance susceptibility to ADCC, to result in increased immune function by providing more tumor antigen, or to increase the expression of the T cell attractant LIGHT.


Pharmaceutical compounds that may be used for combinatory anti-tumor therapy include, merely to illustrate: aminoglutethimide, amsacrine, anastrozole, asparaginase, bcg, bicalutamide, bleomycin, buserelin, busulfan, camptothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramustine, etoposide, exemestane, filgrastim, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutamide, gemcitabine, genistein, goserelin, hydroxyurea, idarubicin, ifosfamide, imatinib, interferon, irinotecan, letrozole, leucovorin, leuprolide, levamisole, lomustine, mechlorethamine, medroxyprogesterone, megestrol, melphalan, mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, nocodazole, octreotide, oxaliplatin, paclitaxel, pamidronate, pentostatin, plicamycin, porfimer, procarbazine, raltitrexed, rituximab, streptozocin, suramin, tamoxifen, temozolomide, teniposide, testosterone, thioguanine, thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, and vinorelbine.


These chemotherapeutic anti-tumor compounds may be categorized by their mechanism of action into groups, including, for example, the following classes of agents: anti-metabolites/anti-cancer agents, such as pyrimidine analogs (5-fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogs, folate inhibitors and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine (cladribine)); antiproliferative/antimitotic agents including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disruptors such as taxane (paclitaxel, docetaxel), vincristine, vinblastine, nocodazole, epothilones and navelbine, epidipodophyllotoxins (etoposide, teniposide), DNA damaging agents (actinomycin, amsacrine, anthracyclines, bleomycin, busulfan, camptothecin, carboplatin, chlorambucil, cisplatin, cyclophosphamide, cytoxan, dactinomycin, daunorubicin, doxorubicin, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, melphalan, mechlorethamine, mitomycin, mitoxantrone, nitrosourea, plicamycin, procarbazine, taxol, taxotere, teniposide, triethylenethiophosphoramide and etoposide (VP16)); antibiotics such as dactinomycin (actinomycin D), daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin; enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents; antiproliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nitrosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes-dacarbazinine (DTIC); antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, nilutamide) and aromatase inhibitors (letrozole, anastrozole); anticoagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory agents; antisecretory agents (breveldin); immunosuppressives (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); immunomodulatory agents (thalidomide and analogs thereof such as lenalidomide (Revlimid, CC-5013) and CC-4047 (Actimid)), cyclophosphamide; anti-angiogenic compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor (VEGF) inhibitors, fibroblast growth factor (FGF) inhibitors); angiotensin receptor blocker; nitric oxide donors; anti-sense oligonucleotides; antibodies (trastuzumab); cell cycle inhibitors and differentiation inducers (tretinoin); mTOR inhibitors, topoisomerase inhibitors (doxorubicin (adriamycin), amsacrine, camptothecin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin and mitoxantrone, topotecan, irinotecan), corticosteroids (cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prenisolone); growth factor signal transduction kinase inhibitors; mitochondrial dysfunction inducers and caspase activators; and chromatin disruptors.


In certain embodiments, pharmaceutical compounds that may be used for combinatory anti-angiogenesis therapy include: (1) inhibitors of release of “angiogenic molecules,” such as bFGF (basic fibroblast growth factor); (2) neutralizers of angiogenic molecules, such as anti-βbFGF antibodies; and (3) inhibitors of endothelial cell response to angiogenic stimuli, including collagenase inhibitor, basement membrane turnover inhibitors, angiostatic steroids, fungal-derived angiogenesis inhibitors, platelet factor 4, thrombospondin, arthritis drugs such as D-penicillamine and gold thiomalate, vitamin D3 analogs, alpha-interferon, and the like. For additional proposed inhibitors of angiogenesis, see Blood et al., Biochim. Biophys. Acta, 1032:89-118 (1990), Moses et al., Science, 248:1408-1410 (1990), Ingber et al., Lab. Invest., 59:44-51 (1988), and U.S. Pat. Nos. 5,092,885, 5,112,946, 5,192,744, 5,202,352, and 6,573,256. In addition, there are a wide variety of compounds that can be used to inhibit angiogenesis, for example, peptides or agents that block the VEGF-mediated angiogenesis pathway, endostatin protein or derivatives, lysine binding fragments of angiostatin, melanin or melanin-promoting compounds, plasminogen fragments (e.g., Kringles 1-3 of plasminogen), troponin subunits, inhibitors of vitronectin αvβ3, peptides derived from Saposin B, antibiotics or analogs (e.g., tetracycline or neomycin), dienogest-containing compositions, compounds comprising a MetAP-2 inhibitory core coupled to a peptide, the compound EM-138, chalcone and its analogs, and naaladase inhibitors. See, for example, U.S. Pat. Nos. 6,395,718, 6,462,075, 6,465,431, 6,475,784, 6,482,802, 6,482,810, 6,500,431, 6,500,924, 6,518,298, 6,521,439, 6,525,019, 6,538,103, 6,544,758, 6,544,947, 6,548,477, 6,559,126, and 6,569,845.


7. Diagnostic Uses

In a further aspect, the invention provides methods for detecting and quantitating phosphoyrlation at a novel tyrosine phosphorylation site of the invention. For example, peptides, including AQUA peptides of the invention, and antibodies of the invention are useful in diagnostic and prognostic evaluation of carcinomas, wherein the carcinoma is associated with the phosphorylation state of a novel phosphorylation site in Table 1, whether phosphorylated or dephosphorylated.


Methods of diagnosis can be performed in vitro using a biological sample (e.g., blood sample, lymph node biopsy or tissue) from a subject, or in vivo. The phosphorylation state or level at the tyrosine residue identified in the corresponding row in Column D of Table 1 may be assessed. A change in the phosphorylation state or level at the phosphorylation site, as compared to a control, indicates that the subject is suffering from, or susceptible to, carcinoma.


In one embodiment, the phosphorylation state or level at a novel phosphorylation site is determined by an AQUA peptide comprising the phosphorylation site. The AQUA peptide may be phosphorylated or unphosphorylated at the specified tyrosine position.


In another embodiment, the phosphorylation state or level at a phosphorylation site is determined by an antibody or antigen-binding fragment thereof, wherein the antibody specifically binds the phosphorylation site. The antibody may be one that only binds to the phosphorylation site when the tyrosine residue is phosphorylated, but does not bind to the same sequence when the tyrosine is not phosphorylated; or vice versa.


In particular embodiments, the antibodies of the present application are attached to labeling moieties, such as a detectable marker. One or more detectable labels can be attached to the antibodies. Exemplary labeling moieties include radiopaque dyes, radiocontrast agents, fluorescent molecules, spin-labeled molecules, enzymes, or other labeling moieties of diagnostic value, particularly in radiologic or magnetic resonance imaging techniques.


A radiolabeled antibody in accordance with this disclosure can be used for in vitro diagnostic tests. The specific activity of an antibody, binding portion thereof, probe, or ligand, depends upon the half-life, the isotopic purity of the radioactive label, and how the label is incorporated into the biological agent. In immunoassay tests, the higher the specific activity, in general, the better the sensitivity. Radioisotopes useful as labels, e.g., for use in diagnostics, include iodine (131I or 125I), indium (111In), technetium (99Tc), phosphorus (32P), carbon (14C), and tritium (3H), or one of the therapeutic isotopes listed above.


Fluorophore and chromophore labeled biological agents can be prepared from standard moieties known in the art. Since antibodies and other proteins absorb light having wavelengths up to about 310 nm, the fluorescent moieties may be selected to have substantial absorption at wavelengths above 310 nm, such as for example, above 400 nm. A variety of suitable fluorescers and chromophores are described by Stryer, Science, 162:526 (1968) and Brand et al., Annual Review of Biochemistry, 41:843-868 (1972), which are hereby incorporated by reference. The antibodies can be labeled with fluorescent chromophore groups by conventional procedures such as those disclosed in U.S. Pat. Nos. 3,940,475, 4,289,747, and 4,376,110, which are hereby incorporated by reference.


The control may be parallel samples providing a basis for comparison, for example, biological samples drawn from a healthy subject, or biological samples drawn from healthy tissues of the same subject. Alternatively, the control may be a pre-determined reference or threshold amount. If the subject is being treated with a therapeutic agent, and the progress of the treatment is monitored by detecting the tyrosine phosphorylation state level at a phosphorylation site of the invention, a control may be derived from biological samples drawn from the subject prior to, or during the course of the treatment.


In certain embodiments, antibody conjugates for diagnostic use in the present application are intended for use in vitro, where the antibody is linked to a secondary binding ligand or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate. Examples of suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase and glucose oxidase. In certain embodiments, secondary binding ligands are biotin and avidin or streptavidin compounds.


Antibodies of the invention may also be optimized for use in a flow cytometry (FC) assay to determine the activation/phosphorylation status of a target signaling protein in subjects before, during, and after treatment with a therapeutic agent targeted at inhibiting tyrosine phosphorylation at the phosphorylation site disclosed herein. For example, bone marrow cells or peripheral blood cells from patients may be analyzed by flow cytometry for target signaling protein phosphorylation, as well as for markers identifying various hematopoietic cell types. In this manner, activation status of the malignant cells may be specifically characterized. Flow cytometry may be carried out according to standard methods. See, e.g., Chow et al., Cytometry (Communications in Clinical Cytometry) 46: 72-78 (2001).


Alternatively, antibodies of the invention may be used in immunohistochemical (IHC) staining to detect differences in signal transduction or protein activity using normal and diseased tissues. IHC may be carried out according to well-known techniques. See, e.g., Antibodies: A Laboratory Manual, supra.


Peptides and antibodies of the invention may be also be optimized for use in other clinically-suitable applications, for example bead-based multiplex-type assays, such as IGEN, Luminex™ and/or Bioplex™ assay formats, or otherwise optimized for antibody arrays formats, such as reversed-phase array applications (see, e.g. Paweletz et al., Oncogene 20(16): 1981-89 (2001)). Accordingly, in another embodiment, the invention provides a method for the multiplex detection of the phosphorylation state or level at two or more phosphorylation sites of the invention (Table 1) in a biological sample, the method comprising utilizing two or more antibodies or AQUA peptides of the invention. In one preferred embodiment, two to five antibodies or AQUA peptides of the invention are used. In another preferred embodiment, six to ten antibodies or AQUA peptides of the invention are used, while in another preferred embodiment eleven to twenty antibodies or AQUA peptides of the invention are used.


In certain embodiments the diagnostic methods of the application may be used in combination with other cancer diagnostic tests.


The biological sample analyzed may be any sample that is suspected of having abnormal tyrosine phosphorylation at a novel phosphorylation site of the invention, such as a homogenized neoplastic tissue sample.


8. Screening Assays

In another aspect, the invention provides a method for identifying an agent that modulates tyrosine phosphorylation at a novel phosphorylation site of the invention, comprising: a) contacting a candidate agent with a peptide or protein comprising a novel phosphorylation site of the invention; and b) determining the phosphorylation state or level at the novel phosphorylation site. A change in the phosphorylation level of the specified tyrosine in the presence of the test agent, as compared to a control, indicates that the candidate agent potentially modulates tyrosine phosphorylation at a novel phosphorylation site of the invention.


In one embodiment, the phosphorylation state or level at a novel phosphorylation site is determined by an AQUA peptide comprising the phosphorylation site. The AQUA peptide may be phosphorylated or unphosphorylated at the specified tyrosine position.


In another embodiment, the phosphorylation state or level at a phosphorylation site is determined by an antibody or antigen-binding fragment thereof, wherein the antibody specifically binds the phosphorylation site. The antibody may be one that only binds to the phosphorylation site when the tyrosine residue is phosphorylated, but does not bind to the same sequence when the tyrosine is not phosphorylated; or vice versa.


In particular embodiments, the antibodies of the present application are attached to labeling moieties, such as a detectable marker.


The control may be parallel samples providing a basis for comparison, for example, the phosphorylation level of the target protein or peptide in absence of the testing agent. Alternatively, the control may be a pre-determined reference or threshold amount.


9. Immunoassays

In another aspect, the present application concerns immunoassays for binding, purifying, quantifying and otherwise generally detecting the phosphorylation state or level at a novel phosphorylation site of the invention.


Assays may be homogeneous assays or heterogeneous assays. In a homogeneous assay the immunological reaction usually involves a phosphorylation site-specific antibody of the invention, a labeled analyte, and the sample of interest. The signal arising from the label is modified, directly or indirectly, upon the binding of the antibody to the labeled analyte. Both the immunological reaction and detection of the extent thereof are carried out in a homogeneous solution. Immunochemical labels that may be used include free radicals, radioisotopes, fluorescent dyes, enzymes, bacteriophages, coenzymes, and so forth.


In a heterogeneous assay approach, the reagents are usually the specimen, a phosphorylation site-specific antibody of the invention, and suitable means for producing a detectable signal. Similar specimens as described above may be used. The antibody is generally immobilized on a support, such as a bead, plate or slide, and contacted with the specimen suspected of containing the antigen in a liquid phase. The support is then separated from the liquid phase and either the support phase or the liquid phase is examined for a detectable signal using means for producing such signal. The signal is related to the presence of the analyte in the specimen. Means for producing a detectable signal include the use of radioactive labels, fluorescent labels, enzyme labels, and so forth.


Phosphorylation site-specific antibodies disclosed herein may be conjugated to a solid support suitable for a diagnostic assay (e.g., beads, plates, slides or wells formed from materials such as latex or polystyrene) in accordance with known techniques, such as precipitation.


In certain embodiments, immunoassays are the various types of enzyme linked immunoadsorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and Western blotting, dot and slot blotting, FACS analyses, and the like may also be used. The steps of various useful immunoassays have been described in the scientific literature, such as, e.g., Nakamura et al., in Enzyme Immunoassays: Heterogeneous and Homogeneous Systems, Chapter 27 (1987), incorporated herein by reference.


In general, the detection of immunocomplex formation is well known in the art and may be achieved through the application of numerous approaches. These methods are based upon the detection of radioactive, fluorescent, biological or enzymatic tags. Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.


The antibody used in the detection may itself be conjugated to a detectable label, wherein one would then simply detect this label. The amount of the primary immune complexes in the composition would, thereby, be determined.


Alternatively, the first antibody that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the antibody. In these cases, the second binding ligand may be linked to a detectable label. The second binding ligand is itself often an antibody, which may thus be termed a “secondary” antibody. The primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under conditions effective and for a period of time sufficient to allow the formation of secondary immune complexes. The secondary immune complexes are washed extensively to remove any non-specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complex is detected.


An enzyme linked immunoadsorbent assay (ELISA) is a type of binding assay. In one type of ELISA, phosphorylation site-specific antibodies disclosed herein are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a suspected neoplastic tissue sample is added to the wells. After binding and washing to remove non-specifically bound immune complexes, the bound target signaling protein may be detected.


In another type of ELISA, the neoplastic tissue samples are immobilized onto the well surface and then contacted with the phosphorylation site-specific antibodies disclosed herein. After binding and washing to remove non-specifically bound immune complexes, the bound phosphorylation site-specific antibodies are detected.


Irrespective of the format used, ELISAs have certain features in common, such as coating, incubating or binding, washing to remove non-specifically bound species, and detecting the bound immune complexes.


The radioimmunoassay (RIA) is an analytical technique which depends on the competition (affinity) of an antigen for antigen-binding sites on antibody molecules. Standard curves are constructed from data gathered from a series of samples each containing the same known concentration of labeled antigen, and various, but known, concentrations of unlabeled antigen. Antigens are labeled with a radioactive isotope tracer. The mixture is incubated in contact with an antibody. Then the free antigen is separated from the antibody and the antigen bound thereto. Then, by use of a suitable detector, such as a gamma or beta radiation detector, the percent of either the bound or free labeled antigen or both is determined. This procedure is repeated for a number of samples containing various known concentrations of unlabeled antigens and the results are plotted as a standard graph. The percent of bound tracer antigens is plotted as a function of the antigen concentration. Typically, as the total antigen concentration increases the relative amount of the tracer antigen bound to the antibody decreases. After the standard graph is prepared, it is thereafter used to determine the concentration of antigen in samples undergoing analysis.


In an analysis, the sample in which the concentration of antigen is to be determined is mixed with a known amount of tracer antigen. Tracer antigen is the same antigen known to be in the sample but which has been labeled with a suitable radioactive isotope. The sample with tracer is then incubated in contact with the antibody. Then it can be counted in a suitable detector which counts the free antigen remaining in the sample. The antigen bound to the antibody or immunoadsorbent may also be similarly counted. Then, from the standard curve, the concentration of antigen in the original sample is determined.


10. Pharmaceutical Formulations and Methods of Administration

Methods of administration of therapeutic agents, particularly peptide and antibody therapeutics, are well-known to those of skill in the art.


Peptides of the invention can be administered in the same manner as conventional peptide type pharmaceuticals. Preferably, peptides are administered parenterally, for example, intravenously, intramuscularly, intraperitoneally, or subcutaneously. When administered orally, peptides may be proteolytically hydrolyzed. Therefore, oral application may not be usually effective. However, peptides can be administered orally as a formulation wherein peptides are not easily hydrolyzed in a digestive tract, such as liposome-microcapsules. Peptides may be also administered in suppositories, sublingual tablets, or intranasal spray.


If administered parenterally, a preferred pharmaceutical composition is an aqueous solution that, in addition to a peptide of the invention as an active ingredient, may contain for example, buffers such as phosphate, acetate, etc., osmotic pressure-adjusting agents such as sodium chloride, sucrose, and sorbitol, etc., antioxidative or antioxygenic agents, such as ascorbic acid or tocopherol and preservatives, such as antibiotics. The parenterally administered composition also may be a solution readily usable or in a lyophilized form which is dissolved in sterile water before administration.


The pharmaceutical formulations, dosage forms, and uses described below generally apply to antibody-based therapeutic agents, but are also useful and can be modified, where necessary, for making and using therapeutic agents of the disclosure that are not antibodies.


To achieve the desired therapeutic effect, the phosphorylation site-specific antibodies or antigen-binding fragments thereof can be administered in a variety of unit dosage forms. The dose will vary according to the particular antibody. For example, different antibodies may have different masses and/or affinities, and thus require different dosage levels. Antibodies prepared as Fab or other fragments will also require differing dosages than the equivalent intact immunoglobulins, as they are of considerably smaller mass than intact immunoglobulins, and thus require lower dosages to reach the same molar levels in the patient's blood. The dose will also vary depending on the manner of administration, the particular symptoms of the patient being treated, the overall health, condition, size, and age of the patient, and the judgment of the prescribing physician. Dosage levels of the antibodies for human subjects are generally between about 1 mg per kg and about 100 mg per kg per patient per treatment, such as for example, between about 5 mg per kg and about 50 mg per kg per patient per treatment. In terms of plasma concentrations, the antibody concentrations may be in the range from about 25 μg/mL to about 500 μg/mL. However, greater amounts may be required for extreme cases and smaller amounts may be sufficient for milder cases.


Administration of an antibody will generally be performed by a parenteral route, typically via injection such as intra-articular or intravascular injection (e.g., intravenous infusion) or intramuscular injection. Other routes of administration, e.g., oral (p.o.), may be used if desired and practicable for the particular antibody to be administered. An antibody can also be administered in a variety of unit dosage forms and their dosages will also vary with the size, potency, and in vivo half-life of the particular antibody being administered. Doses of a phosphorylation site-specific antibody will also vary depending on the manner of administration, the particular symptoms of the patient being treated, the overall health, condition, size, and age of the patient, and the judgment of the prescribing physician.


The frequency of administration may also be adjusted according to various parameters. These include the clinical response, the plasma half-life of the antibody, and the levels of the antibody in a body fluid, such as, blood, plasma, serum, or synovial fluid. To guide adjustment of the frequency of administration, levels of the antibody in the body fluid may be monitored during the course of treatment.


Formulations particularly useful for antibody-based therapeutic agents are also described in U.S. Patent App. Publication Nos. 20030202972, 20040091490 and 20050158316. In certain embodiments, the liquid formulations of the application are substantially free of surfactant and/or inorganic salts. In another specific embodiment, the liquid formulations have a pH ranging from about 5.0 to about 7.0. In yet another specific embodiment, the liquid formulations comprise histidine at a concentration ranging from about 1 mM to about 100 mM. In still another specific embodiment, the liquid formulations comprise histidine at a concentration ranging from 1 mM to 100 mM. It is also contemplated that the liquid formulations may further comprise one or more excipients such as a saccharide, an amino acid (e.g., arginine, lysine, and methionine) and a polyol. Additional descriptions and methods of preparing and analyzing liquid formulations can be found, for example, in PCT publications WO 03/106644, WO 04/066957, and WO 04/091658.


Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the pharmaceutical compositions of the application.


In certain embodiments, formulations of the subject antibodies are pyrogen-free formulations which are substantially free of endotoxins and/or related pyrogenic substances. Endotoxins include toxins that are confined inside microorganisms and are released when the microorganisms are broken down or die. Pyrogenic substances also include fever-inducing, thermostable substances (glycoproteins) from the outer membrane of bacteria and other microorganisms. Both of these substances can cause fever, hypotension and shock if administered to humans. Due to the potential harmful effects, it is advantageous to remove even low amounts of endotoxins from intravenously administered pharmaceutical drug solutions. The Food & Drug Administration (“FDA”) has set an upper limit of 5 endotoxin units (EU) per dose per kilogram body weight in a single one hour period for intravenous drug applications (The United States Pharmacopeial Convention, Pharmacopeial Forum 26 (1):223 (2000)). When therapeutic proteins are administered in amounts of several hundred or thousand milligrams per kilogram body weight, as can be the case with monoclonal antibodies, it is advantageous to remove even trace amounts of endotoxin.


The amount of the formulation which will be therapeutically effective can be determined by standard clinical techniques. In addition, in vitro assays may optionally be used to help identify optimal dosage ranges. The precise dose to be used in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. The dosage of the compositions to be administered can be determined by the skilled artisan without undue experimentation in conjunction with standard dose-response studies. Relevant circumstances to be considered in making those determinations include the condition or conditions to be treated, the choice of composition to be administered, the age, weight, and response of the individual patient, and the severity of the patient's symptoms. For example, the actual patient body weight may be used to calculate the dose of the formulations in milliliters (mL) to be administered. There may be no downward adjustment to “ideal” weight. In such a situation, an appropriate dose may be calculated by the following formula:





Dose (mL)=[patient weight (kg)×dose level (mg/kg)/drug concentration (mg/mL)]


For the purpose of treatment of disease, the appropriate dosage of the compounds (for example, antibodies) will depend on the severity and course of disease, the patient's clinical history and response, the toxicity of the antibodies, and the discretion of the attending physician. The initial candidate dosage may be administered to a patient. The proper dosage and treatment regimen can be established by monitoring the progress of therapy using conventional techniques known to those of skill in the art.


The formulations of the application can be distributed as articles of manufacture comprising packaging material and a pharmaceutical agent which comprises, e.g., the antibody and a pharmaceutically acceptable carrier as appropriate to the mode of administration. The packaging material will include a label which indicates that the formulation is for use in the treatment of prostate cancer.


11. Kits

Antibodies and peptides (including AQUA peptides) of the invention may also be used within a kit for detecting the phosphorylation state or level at a novel phosphorylation site of the invention, comprising at least one of the following: an AQUA peptide comprising the phosphorylation site, or an antibody or an antigen-binding fragment thereof that binds to an amino acid sequence comprising the phosphorylation site. Such a kit may further comprise a packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the antibody is labeled with an enzyme, the kit will include substrates and co-factors required by the enzyme. In addition, other additives may be included such as stabilizers, buffers and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents that substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients that, on dissolution, will provide a reagent solution having the appropriate concentration.


The following Examples are provided only to further illustrate the invention, and are not intended to limit its scope, except as provided in the claims appended hereto. The invention encompasses modifications and variations of the methods taught herein which would be obvious to one of ordinary skill in the art.


Example 1
Isolation of Phosphotyrosine-Containing Peptides from Extracts of Carcinoma Cell Lines and Identification of Novel Phosphorylation Sites

In order to discover novel tyrosine phosphorylation sites in carcinoma, IAP isolation techniques were used to identify phosphotyrosine-containing peptides in cell extracts from human carcinoma cell lines and patient cell lines identified in Column G of Table 1 including i293T, 3T3-EGFR(L858R), 3T3-EGFR(del), 3T3-EGFRwt, 8-MG-BA, 831/13, A 431, A172, A549, AML-6735, AML-7676, BaF3-10ZF, BaF3-PRTK, BaF3-Tel/FGFR3, Baf3, Baf3/E255K, Baf3/M351T, Baf3/T315I, Baf3/Y253F, Baf3/p210wt, BxPC-3, CCF-STTG1, CHRF, CI-1, CTV-1, Calu-3, DBTRG-05MG, DMS 153, DMS 53, DMS 79, DND41, DU145, ELF-153, GAMG, GDM-1, GMS-10, H1299, H1373, H1437, H1563, H1648, H1650, H1650 XG, H1666, H1693, H1703, H1734, H1793, H1869, H1915, H1944, H1975, H1993, H2023, H2030, H2170, H2172, H2286, H2347, H3255, H358, H441, H520, H524, H661, H69, H810, H82, H838, HCC1143, HCC1395, HCC1428, HCC1435, HCC1806, HCC1937, HCC366, HCC44, HCC78, HCC827, HCT116, HL107A, HL107B, HL 116A, HL 116B, HL 117A, HL 117B, HL 129A, HL130A, HL131A, HL131B, HL132A, HL132B, HL133A, HL1881, HL25A, HL41A, HL53B, HL55A, HL55B, HL57, HL59A, HL59b, HL61a, HL61b, HL66A, HL66B, HL68A, HL75A, HL79A, HL79B, HL83A, HL84A, HL84B, HL87A, HL92A, HL92B, HL97A, HL97B, HL98A, HT29, HeLa, Hs766T, Human lung tumor, Jurkat, K562, KG-1, KG1-A, KMS18, KMS27, KOPT-K1, Karpas 299, Karpas-1106p, LN18, LN229, LNCaP, LOU-NH91, LUC-c11 patient, M-07e, M059J, M059K, MCF-10A (Y561F), MCF-10A(Y969F), MCF7, MDA-MB-453, MDA-MB-468, MIAPaCa-2, MKPL-1, ML-1, MO-91, MOLT15, MV4-11, Me-F2, Molm 14, NCI-N87, NKM-1, Nomo-1, OCI-1y12, OPM-1, PC-3, PL21, PT5-inflammatory pancreas, Pfeiffer, RC-K8, RI-1, RKO, SCLC T1, SCLC T2, SH-SY5Y, SK-N-AS, SK-N-MC, SK-N-SH, SKBR3, SNB-19, SUPT-13, SW1088, SW1783, SW620, SuDHL5, SuDHL8, T17, T47D, T98G, TS, U118 MG, U87 MG, VAC0432, VAL, Verona 4, Verona 5, WSU-NHL, XG2, cs001, cs015, cs018, cs019, cs024, cs025, cs026, cs029, cs041, cs042, cs048, cs057, cs068, cs069, gz21, gz30, gz33, gz41, gz42, gz47, gz56, gz58, gz61, gz62, gz63, gz68, gz7, gz73, gz74, gz75, gzB1, h2228, h1144a, h1144b, h1145b, h1146a, h1146b, h1148a, h1148b, h1152a, h1152b, lung tumor T26, lung tumor T57, normal human lung, pancreatic xenograft, rat brain, sw480.


Tryptic phosphotyrosine-containing peptides were purified and analyzed from extracts of each of the cell lines mentioned above, as follows. Cells were cultured in DMEM medium or RPMI 1640 medium supplemented with 10% fetal bovine serum and penicillin/streptomycin.


Suspension cells were harvested by low speed centrifugation. After complete aspiration of medium, cells were resuspended in 1 mL lysis buffer per 1.25×108 cells (20 mM HEPES pH 8.0, 9 M urea, 1 mM sodium vanadate, supplemented or not with 2.5 mM sodium pyro-phosphate, 1 mM B-glycerol-phosphate) and sonicated.


Adherent cells at about 80% confluency were starved in medium without serum overnight and stimulated, with ligand depending on the cell type or not stimulated. After complete aspiration of medium from the plates, cells were scraped off the plate in 10 ml lysis buffer per 2×108 cells (20 mM HEPES pH 8.0, 9 M urea, 1 mM sodium vanadate, supplemented with 2.5 mM sodium pyrophosphate, 1 mM β-glycerol-phosphate) and sonicated.


Frozen tissue samples were cut to small pieces, homogenize in lysis buffer (20 mM HEPES pH 8.0, 9 M Urea, 1 mN sodium vanadate, supplemented with 2.5 mM sodium pyrophosphate, 1 mM b-glycerol-phosphate, 1 ml lysis buffer for 100 mg of frozen tissue) using a polytron for 2 times of 20 sec. each time. Homogenate is then briefly sonicated.


Sonicated cell lysates were cleared by centrifugation at 20,000×g, and proteins were reduced with DTT at a final concentration of 4.1 mM and alkylated with iodoacetamide at 8.3 mM. For digestion with trypsin, protein extracts were diluted in 20 mM HEPES pH 8.0 to a final concentration of 2 M urea and soluble TLCK-trypsin (Worthington) was added at 10-20 μg/mL. Digestion was performed for 1-2 days at room temperature.


Trifluoroacetic acid (TFA) was added to protein digests to a final concentration of 1%, precipitate was removed by centrifugation, and digests were loaded onto Sep-Pak C18 columns (Waters) equilibrated with 0.1% TFA. A column volume of 0.7-1.0 ml was used per 2×108 cells. Columns were washed with 15 volumes of 0.1% TFA, followed by 4 volumes of 5% acetonitrile (MeCN) in 0.1% TFA. Peptide fraction I was obtained by eluting columns with 2 volumes each of 8, 12, and 15% MeCN in 0.1% TFA and combining the eluates. Fractions II and III were a combination of eluates after eluting columns with 18, 22, 25% MeCN in 0.1% TFA and with 30, 35, 40% MeCN in 0.1% TFA, respectively. All peptide fractions were lyophilized.


Peptides from each fraction corresponding to 2×108 cells were dissolved in 1 ml of IAP buffer (20 mM Tris/HCl or 50 mM MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NaCl) and insoluble matter (mainly in peptide fractions III) was removed by centrifugation. IAP was performed on each peptide fraction separately. The phosphotyrosine monoclonal antibody P-Tyr-100 (Cell Signaling Technology, Inc., catalog number 9411) was coupled at 4 mg/ml beads to protein G (Roche), respectively. Immobilized antibody (15 μl, 60 μg) was added as 1:1 slurry in IAP buffer to 1 ml of each peptide fraction, and the mixture was incubated overnight at 4° C. with gentle rotation. The immobilized antibody beads were washed three times with 1 ml IAP buffer and twice with 1 ml water, all at 4° C. Peptides were eluted from beads by incubation with 75 μl of 0.1% TFA at room temperature for 10 minutes.


Alternatively, one single peptide fraction was obtained from Sep-Pak C18 columns by elution with 2 volumes each of 10%, 15%, 20%, 25%, 30%, 35% and 40% acetonitirile in 0.1% TFA and combination of all eluates. IAP on this peptide fraction was performed as follows: After


lyophilization, peptide was dissolved in 1.4 ml IAP buffer (MOPS pH 7.2,


10 mM sodium phosphate, 50 mM NaCl) and insoluble matter was removed by centrifugation. Immobilized antibody (40 μl, 160 μg) was added as 1:1 slurry in IAP buffer, and the mixture was incubated overnight at 4° C. with gentle shaking. The immobilized antibody beads were washed three times with 1 ml IAP buffer and twice with 1 ml water, all at 4° C. Peptides were eluted from beads by incubation with 55 μl of 0.15% TFA at room temperature for 10 min (eluate 1), followed by a wash of the beads (eluate 2) with 45 μl of 0.15% TFA. Both eluates were combined.


Analysis by LC-MS/MS Mass Spectrometry.

40 μl or more of IAP eluate were purified by 0.2 μl StageTips or ZipTips. Peptides were eluted from the microcolumns with 1 μl of 40% MeCN, 0.1% TFA (fractions I and II) or 1 μl of 60% MeCN, 0.1% TFA (fraction III) into 7.6-9.0 μl of 0.4% acetic acid/0.005% heptafluorobutyric acid. For single fraction analysis, 1 μl of 60% MeCN, 0.1% TFA, was used for elution from the microcolumns. This sample was loaded onto a 10 cm×75 μm PicoFrit capillary column (New Objective) packed with Magic C18 AQ reversed-phase resin (Michrom Bioresources) using a Famos autosampler with an inert sample injection valve (Dionex). The column was then developed with a 45-min linear gradient of acetonitrile delivered at 200 nl/min (Ultimate, Dionex), and tandem mass spectra were collected in a data-dependent manner with an LTQ ion trap mass spectrometer essentially as described by Gygi et al., supra.


Database Analysis & Assignments.

MS/MS spectra were evaluated using TurboSequest in the Sequest Browser package (v. 27, rev. 12) supplied as part of BioWorks 3.0 (ThermoFinnigan). Individual MS/MS spectra were extracted from the raw data file using the Sequest Browser program CreateDta, with the following settings: bottom MW, 700; top MW, 4,500; minimum number of ions, 20 (40 for LTQ); minimum TIC, 4×105(2×103 for LTQ); and precursor charge state, unspecified. Spectra were extracted from the beginning of the raw data file before sample injection to the end of the eluting gradient. The IonQuest and VuDta programs were not used to further select MS/MS spectra for Sequest analysis. MS/MS spectra were evaluated with the following TurboSequest parameters: peptide mass tolerance, 2.5; fragment ion tolerance, 0.0 (1.0 for LTQ); maximum number of differential amino acids per modification, 4; mass type parent, average; mass type fragment, average; maximum number of internal cleavage sites, 10; neutral losses of water and ammonia from b and y ions were considered in the correlation analysis. Proteolytic enzyme was specified except for spectra collected from elastase digests.


Searches were performed against the NCBI human protein database (NCBI RefSeq protein release #11; 8 May 2005; 1,826,611 proteins, including 47,859 human proteins. Peptides that did not match RefSeq were compared to NCBI GenPept release #148; 15 Jun. 2005 release date; 2,479,172 proteins, including 196,054 human proteins.). Cysteine carboxamidomethylation was specified as a static modification, and phosphorylation was allowed as a variable modification on serine, threonine, and tyrosine residues or on tyrosine residues alone. It was determined that restricting phosphorylation to tyrosine residues had little effect on the number of phosphorylation sites assigned.


In proteomics research, it is desirable to validate protein identifications based solely on the observation of a single peptide in one experimental result, in order to indicate that the protein is, in fact, present in a sample. This has led to the development of statistical methods for validating peptide assignments, which are not yet universally accepted, and guidelines for the publication of protein and peptide identification results (see Can et al., Mol. Cell Proteomics 3: 531-533 (2004)), which were followed in this Example. However, because the immunoaffinity strategy separates phosphorylated peptides from unphosphorylated peptides, observing just one phosphopeptide from a protein is a common result, since many phosphorylated proteins have only one tyrosine-phosphorylated site. For this reason, it is appropriate to use additional criteria to validate phosphopeptide assignments. Assignments are likely to be correct if any of these additional criteria are met: (i) the same phosphopeptide sequence is assigned to co-eluting ions with different charge states, since the MS/MS spectrum changes markedly with charge state; (ii) the phosphorylation site is found in more than one peptide sequence context due to sequence overlaps from incomplete proteolysis or use of proteases other than trypsin; (iii) the phosphorylation site is found in more than one peptide sequence context due to homologous but not identical protein isoforms; (iv) the phosphorylation site is found in more than one peptide sequence context due to homologous but not identical proteins among species; and (v) phosphorylation sites validated by MS/MS analysis of synthetic phosphopeptides corresponding to assigned sequences, since the ion trap mass spectrometer produces highly reproducible MS/MS spectra. The last criterion is routinely used to confirm novel site assignments of particular interest.


All spectra and all sequence assignments made by Sequest were imported into a relational database. The following Sequest scoring thresholds were used to select phosphopeptide assignments that are likely to be correct: RSp<6, XCorr≧2.2, and DeltaCN>0.099. Further, the sequence assignments could be accepted or rejected with respect to accuracy by using the following conservative, two-step process.


In the first step, a subset of high-scoring sequence assignments should be selected by filtering for XCorr values of at least 1.5 for a charge state of +1, 2.2 for +2, and 3.3 for +3, allowing a maximum RSp value of 10. Assignments in this subset should be rejected if any of the following criteria are satisfied: (i) the spectrum contains at least one major peak (at least 10% as intense as the most intense ion in the spectrum) that can not be mapped to the assigned sequence as an a, b, or y ion, as an ion arising from neutral-loss of water or ammonia from a b or y ion, or as a multiply protonated ion; (ii) the spectrum does not contain a series of b or y ions equivalent to at least six uninterrupted residues; or (iii) the sequence is not observed at least five times in all the studies conducted (except for overlapping sequences due to incomplete proteolysis or use of proteases other than trypsin).


In the second step, assignments with below-threshold scores should be accepted if the low-scoring spectrum shows a high degree of similarity to a high-scoring spectrum collected in another study, which simulates a true reference library-searching strategy.


Example 2
Production of Phosphorylation Site-Specific Polyclonal Antibodies

Polyclonal antibodies that specifically bind a novel phosphorylation site of the invention (Table 1/FIG. 2) only when the tyrosine residue is phosphorylated (and does not bind to the same sequence when the tyrosine is not phosphorylated), and vice versa, are produced according to standard methods by first constructing a synthetic peptide antigen comprising the phosphorylation site and then immunizing an animal to raise antibodies against the antigen, as further described below. Production of exemplary polyclonal antibodies is provided below.


A. VANGL1 (Tyrosine 345).

A 16 amino acid phospho-peptide antigen, DSSHNELYy*EEAEHER (SEQ NO: 30; y*=phosphotyrosine), which comprises the phosphorylation site derived from human VANGL I (an adaptor/scaffold protein, Tyr 345 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phosphorylation site-specific polyclonal antibodies as described in Immunization/Screening below.


B. Plakophilin 1 (Tyrosine 80).

An 18 amino acid phospho-peptide antigen, GSMTDGLADNYNy*GTTSR (SEQ ID NO: 36; y*=phosphotyrosine), which comprises the phosphorylation site derived from human Plakophilin 1(an ahesion or extracellular matrix protein, Tyr 80 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phosphorylation site-specific polyclonal antibodies as described in Immunization/Screening below.


C. PVRL3 (Tyrosine 511).

A 12 amino acid phospho-peptide antigen, FERPMDYy*EDLK (SEQ ID NO: 45; y*=phosphotyrosine, which comprises the phosphorylation site derived from human PVRL3 (an adhesion or extracelluar matrix protein, Tyr 511 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phosphorylation site-specific polyclonal antibodies as described in Immunization/Screening below.


Immunization/Screening.

A synthetic phospho-peptide antigen as described in A-C above is coupled to KLH, and rabbits are injected intradermally (ID) on the back with antigen in complete Freunds adjuvant (500 μg antigen per rabbit). The rabbits are boosted with same antigen in incomplete Freund adjuvant (250 μg antigen per rabbit) every three weeks. After the fifth boost, bleeds are collected. The sera are purified by Protein A-affinity chromatography by standard methods (see ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor, supra.). The eluted immunoglobulins are further loaded onto an unphosphorylated synthetic peptide antigen-resin Knotes column to pull out antibodies that bind the unphosphorylated form of the phosphorylation sites. The flow through fraction is collected and applied onto a phospho-synthetic peptide antigen-resin column to isolate antibodies that bind the phosphorylated form of the phosphorylation sites. After washing the column extensively, the bound antibodies (i.e. antibodies that bind the phosphorylated peptides described in A-C above, but do not bind the unphosphorylated form of the peptides) are eluted and kept in antibody storage buffer.


The isolated antibody is then tested for phospho-specificity using Western blot assay using an appropriate cell line that expresses (or overexpresses) target phospho-protein (i.e. phosphorylated VANGL1, Plakophilin 1 or PVRL3), for example, MDA-MB-453, gz47 or DU145. Cells are cultured in DMEM or RPMI supplemented with 10% FCS. Cell are collected, washed with PBS and directly lysed in cell lysis buffer. The protein concentration of cell lysates is then measured. The loading buffer is added into cell lysate and the mixture is boiled at 100° C. for 5 minutes. 20 μl (10 μg protein) of sample is then added onto 7.5% SDS-PAGE gel.


A standard Western blot may be performed according to the Immunoblotting Protocol set out in the CELL SIGNALING TECHNOLOGY, INC. 2003-04 Catalogue, p. 390. The isolated phosphorylation site-specific antibody is used at dilution 1:1000. Phospho-specificity of the antibody will be shown by binding of only the phosphorylated form of the target amino acid sequence. Isolated phosphorylation site-specific polyclonal antibody does not (substantially) recognize the same target sequence when not phosphorylated at the specified tyrosine position (e.g., the antibody does not bind to PVRL3 in the non-stimulated cells, when tyrosine 511 is not phosphorylated).


In order to confirm the specificity of the isolated antibody, different cell lysates containing various phosphorylated signaling proteins other than the target protein are prepared. The Western blot assay is performed again using these cell lysates. The phosphorylation site-specific polyclonal antibody isolated as described above is used (1:1000 dilution) to test reactivity with the different phosphorylated non-target proteins. The phosphorylation site-specific antibody does not significantly cross-react with other phosphorylated signaling proteins that do not have the described phosphorylation site, although occasionally slight binding to a highly homologous sequence on another protein may be observed. In such case the antibody may be further purified using affinity chromatography, or the specific immunoreactivity cloned by rabbit hybridoma technology.


Example 3
Production of Phosphorylation Site-Specific Monoclonal Antibodies

Monoclonal antibodies that specifically bind a novel phosphorylation site of the invention (Table 1) only when the tyrosine residue is phosphorylated (and does not bind to the same sequence when the tyrosine is not phosphorylated) are produced according to standard methods by first constructing a synthetic peptide antigen comprising the phosphorylation site and then immunizing an animal to raise antibodies against the antigen, and harvesting spleen cells from such animals to produce fusion hybridomas, as further described below. Production of exemplary monoclonal antibodies is provided below.


A. S100A10 (Tyrosine 25).

A 14 amino acid phospho-peptide antigen, FAGDKGy*LTKEDLR (SEQ ID NO: 50; y*=phosphotyrosine), which comprises the phosphorylation site derived from human S100A10 (a calcium binding protein, Tyr 25 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phosphorylation site-specific monoclonal antibodies as described in Immunization/Fusion/Screening below.


B. SKB1 (Tyrosine 280).

A 16 amino acid phospho-peptide antigen, EFCSy*LQYLEYLSQNR (SEQ ID NO: 52; y*=phosphotyrosine), which comprises the phosphorylation site derived from human SKB 1 (a cell cycle regulation protein, Tyr 280 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phosphorylation site-specific monoclonal antibodies as described in Immunization/Fusion/Screening below.


C. SMC2L1 (Tyrosine 938).

A 12 amino acid phospho-peptide antigen, MLKDy*DWINAER (SEQ ID NO: 54; y*=phosphotyrosines), which comprises the phosphorylation site derived from human SMC2L1 (a cell cycle regulation protein, Tyr 938 being the phosphorylatable residue), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phosphorylation site-specific monoclonal antibodies as described in Immunization/Fusion/Screening below.


Immunization/Fusion/Screening.

A synthetic phospho-peptide antigen as described in A-C above is coupled to KLH, and BALB/C mice are injected intradermally (ID) on the back with antigen in complete Freunds adjuvant (e.g., 50 μg antigen per mouse). The mice are boosted with same antigen in incomplete Freund adjuvant (e.g. 25 μg antigen per mouse) every three weeks. After the fifth boost, the animals are sacrificed and spleens are harvested.


Harvested spleen cells are fused to SP2/0 mouse myeloma fusion partner cells according to the standard protocol of Kohler and Milstein (1975). Colonies originating from the fusion are screened by ELISA for reactivity to the phospho-peptide and non-phospho-peptide forms of the antigen and by Western blot analysis (as described in Example 1 above). Colonies found to be positive by ELISA to the phospho-peptide while negative to the non-phospho-peptide are further characterized by Western blot analysis. Colonies found to be positive by Western blot analysis are subcloned by limited dilution. Mouse ascites are produced from a single clone obtained from subcloning, and tested for phospho-specificity (against the S100A10, SKB1 or SMC2L1) phospho-peptide antigen, as the case may be) on ELISA. Clones identified as positive on Western blot analysis using cell culture supernatant as having phospho-specificity, as indicated by a strong band in the induced lane and a weak band in the uninduced lane of the blot, are isolated and subcloned as clones producing monoclonal antibodies with the desired specificity.


Ascites fluid from isolated clones may be further tested by Western blot analysis. The ascites fluid should produce similar results on Western blot analysis as observed previously with the cell culture supernatant, indicating phospho-specificity against the phosphorylated target.


Example 4
Production and Use of AQUA Peptides for Detecting and Quantitating Phosphorylation at a Novel Phosphorylation Site

Heavy-isotope labeled peptides (AQUA peptides (internal standards)) for the detecting and quantitating a novel phosphorylation site of the invention (Table 1) only when the tyrosine residue is phosphorylated are produced according to the standard AQUA methodology (see Gygi et al., Gerber et al., supra.) methods by first constructing a synthetic peptide standard corresponding to the phosphorylation site sequence and incorporating a heavy-isotope label. Subsequently, the MSn and LC-SRM signature of the peptide standard is validated, and the AQUA peptide is used to quantify native peptide in a biological sample, such as a digested cell extract. Production and use of exemplary AQUA peptides is provided below.


A. Plectin 1 (Tyrosine 4045).

An AQUA peptide comprising the sequence, AVTGYKDPy*SGK (SEQ ID NO: 67; y*=phosphotyrosine; Valine being 14C/15N-labeled, as indicated in bold), which comprises the phosphorylation site derived from human plectin 1 (a cytoskeletal protein, Tyr 4045 being the phosphorylatable residue), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The plectin 1 (tyr 4045) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated plectin 1 (tyr 4045) in the sample, as further described below in Analysis & Quantification.


B. Profilin 2 (Tyrosine 99).

An AQUA peptide comprising the sequence SQGGEPTy*NVAVGR (SEQ ID NO: 70 y*=phosphotyrosine; Proline being 14C/15N-labeled, as indicated in bold), which comprises the phosphorylation site derived from human profilin 2 (Tyr 99) being the phosphorylatable residue), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The profilin 2(tyr 99) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated profilin 2 (tyr 99) in the sample, as further described below in Analysis & Quantification.


C. Talin 2 (Tyrosine 72).

An AQUA peptide comprising the sequence TLDy*YMLR (SEQ ID NO: 81; y*=phosphotyrosine; Leucine being 14C/15N-labeled, as indicated in bold), which comprises the phosphorylation site derived from human talin 2 (a cytoskeletal protein, Tyr 72 being the phosphorylatable residue), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The talin 2 (tyr 72) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated talin 2 (tyr 72) in the sample, as further described below in Analysis & Quantification.


D. PIK3CA (Tyrosine 317).

An AQUA peptide comprising the sequence ISTATPy*MNGETSTK (SEQ ID NO: 126; y*=phosphotyrosine; proline being 14C/15N-labeled, as indicated in bold), which comprises the phosphorylation site derived from human PIK3CA (a non-protein kinase, Tyr 317 being the phosphorylatable residue), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The PIK3CA (tyr 317) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated PIK3CA (tyr 317) in the sample, as further described below in Analysis & Quantification.


Synthesis & MS/MS Spectra.

Fluorenylmethoxycarbonyl (Fmoc)-derivatized amino acid monomers may be obtained from AnaSpec (San Jose, Calif.). Fmoc-derivatized stable-isotope monomers containing one 15N and five to nine 13C atoms may be obtained from Cambridge Isotope Laboratories (Andover, Mass.). Preloaded Wang resins may be obtained from Applied Biosystems. Synthesis scales may vary from 5 to 25 μmol. Amino acids are activated in situ with 1-H-benzotriazolium, 1-bis(dimethylamino)methylene]-hexafluorophosphate (1-),3-oxide:1-hydroxybenzotriazole hydrate and coupled at a 5-fold molar excess over peptide. Each coupling cycle is followed by capping with acetic anhydride to avoid accumulation of one-residue deletion peptide by-products. After synthesis peptide-resins are treated with a standard scavenger-containing trifluoroacetic acid (TFA)-water cleavage solution, and the peptides are precipitated by addition to cold ether. Peptides (i.e. a desired AQUA peptide described in A-D above) are purified by reversed-phase C18 HPLC using standard TFA/acetonitrile gradients and characterized by matrix-assisted laser desorption ionization-time of flight (Biflex III, Bruker Daltonics, Billerica, Mass.) and ion-trap (ThermoFinnigan, LCQ DecaXP or LTQ) MS.


MS/MS spectra for each AQUA peptide should exhibit a strong y-type ion peak as the most intense fragment ion that is suitable for use in an SRM monitoring/analysis. Reverse-phase microcapillary columns (0.1 Ř 150-220 mm) are prepared according to standard methods. An Agilent 1100 liquid chromatograph may be used to develop and deliver a solvent gradient [0.4% acetic acid/0.005% heptafluorobutyric acid (HFBA)/7% methanol and 0.4% acetic acid/0.005% HFBA/65% methanol/35% acetonitrile] to the microcapillary column by means of a flow splitter. Samples are then directly loaded onto the microcapillary column by using a FAMOS inert capillary autosampler (LC Packings, San Francisco) after the flow split. Peptides are reconstituted in 6% acetic acid/0.01% TFA before injection.


Analysis & Quantification.

Target protein (e.g. a phosphorylated proteins of A-D above) in a biological sample is quantified using a validated AQUA peptide (as described above). The IAP method is then applied to the complex mixture of peptides derived from proteolytic cleavage of crude cell extracts to which the AQUA peptides have been spiked in.


LC-SRM of the entire sample is then carried out. MS/MS may be performed by using a ThermoFinnigan (San Jose, Calif.) mass spectrometer (LCQ DecaXP ion trap or TSQ Quantum triple quadrupole or LTQ). On the DecaXP, parent ions are isolated at 1.6 m/z width, the ion injection time being limited to 150 ms per microscan, with two microscans per peptide averaged, and with an AGC setting of 1×108; on the Quantum, Q1 is kept at 0.4 and Q3 at 0.8 m/z with a scan time of 200 ms per peptide. On both instruments, analyte and internal standard are analyzed in alternation within a previously known reverse-phase retention window; well-resolved pairs of internal standard and analyte are analyzed in separate retention segments to improve duty cycle. Data are processed by integrating the appropriate peaks in an extracted ion chromatogram (60.15 m/z from the fragment monitored) for the native and internal standard, followed by calculation of the ratio of peak areas multiplied by the absolute amount of internal standard (e.g., 500 fmol).

Claims
  • 1. (canceled)
  • 2. (canceled)
  • 3. (canceled)
  • 4. (canceled)
  • 4. (canceled)
  • 5. (canceled)
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. (canceled)
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
  • 20. (canceled)
  • 21. (canceled)
  • 22. (canceled)
  • 23. (canceled)
  • 24. (canceled)
  • 25. (canceled)
  • 26. (canceled)
  • 27. (canceled)
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
  • 31. (canceled)
  • 32. (canceled)
  • 33. (canceled)
  • 34. (canceled)
  • 35. (canceled)
  • 36. (canceled)
  • 37. (canceled)
  • 38. (canceled)
  • 39. (canceled)
  • 40. (canceled)
  • 41. (canceled)
  • 42. (canceled)
  • 43. (canceled)
  • 44. (canceled)
  • 45. (canceled)
  • 46. (canceled)
  • 47. (canceled)
  • 49. An isolated phosphorylation site-specific antibody that specifically binds a human signaling protein selected from Column A of Table 1, Rows 166, 170, 167, 114 and 195 only when phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 165, 169, 166, 113 and 195), wherein said antibody does not bind said signaling protein when not phosphorylated at said tyrosine.
  • 50. An isolated phosphorylation site-specific antibody that specifically binds a human signaling protein selected from Column A of Table 1, Rows 166, 170, 167, 114 and 195 only when not phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 165, 169, 166, 113 and 195), wherein said antibody does not bind said signaling protein when phosphorylated at said tyrosine.
  • 51. A method selected from the group consisting of: (a) a method for detecting a human signaling protein selected from Column A of Table 1, Rows 166, 170, 167, 114 and 195 wherein said human signaling protein is phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 165, 169, 166, 113 and 195), comprising the step of adding an isolated phosphorylation-specific antibody according to claim 49, to a sample comprising said human signaling protein under conditions that permit the binding of said antibody to said human signaling protein, and detecting bound antibody;(b) a method for quantifying the amount of a human signaling protein listed in Column A of Table 1, Rows 166, 170, 167, 114 and 195 that is phosphorylated at the corresponding tyrosine listed in Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 166, 170, 167, 114 and 195), in a sample using a heavy-isotope labeled peptide (AQUA TM peptide), said labeled peptide comprising a phosphorylated tyrosine at said corresponding lysine listed Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 as an internal standard; and(c) a method comprising step (a) followed by step (b).
  • 52. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Src only when phosphorylated at Y 187, comprised within the phosphorylatable peptide sequence listed in Column E, Row 166, of Table 1 (SEQ ID NO: 165), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 53. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Src only when not phosphorylated at Y187, comprised within the phosphorylatable peptide sequence listed in Column E, Row 170, of Table 1 (SEQ ID NO: 169), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 54. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Yes only when phosphorylated at Y194, comprised within the phosphorylatable peptide sequence listed in Column E, Row 170, of Table 1 (SEQ ID NO: 169), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 55. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Yes only when not phosphorylated at Y194, comprised within the phosphorylatable peptide sequence listed in Column E, Row 170, of Table 1 (SEQ ID NO: 169), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 56. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Syk only when phosphorylated at Y203, comprised within the phosphorylatable peptide sequence listed in Column E, Row 167, of Table 1 (SEQ ID NO: 166), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 57. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Syk only when not phosphorylated at Y203, comprised within the phosphorylatable peptide sequence listed in Column E, Row 167, of Table 1 (SEQ ID NO: 166), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 58. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Ran only when phosphorylated at Y146, comprised within the phosphorylatable peptide sequence listed in Column E, Row 114, of Table 1 (SEQ ID NO: 113), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 59. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding Ran only when not phosphorylated at Y146, comprised within the phosphorylatable peptide sequence listed in Column E, Row 114, of Table 1 (SEQ ID NO: 113), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 60. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding SLC25A4 only when phosphorylated at Y191, comprised within the phosphorylatable peptide sequence listed in Column E, Row 195, of Table 1 (SEQ ID NO: 195), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 61. The method of claim 51, wherein said isolated phosphorylation-specific antibody is capable of specifically binding SLC25A4 only when not phosphorylated at Y191, comprised within the phosphorylatable peptide sequence listed in Column E, Row 195, of Table 1 (SEQ ID NO: 195), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
RELATED APPLICATIONS

Pursuant to 35 U.S.C. §119(e) this application claims the benefit of, and priority to, provisional application U.S. Ser. No. 60/833,752, filed Jul. 27, 2006, the disclosure of which is incorporated herein, in its entirety, by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/016889 7/27/2007 WO 00 2/13/2010
Provisional Applications (1)
Number Date Country
60833752 Jul 2006 US