UE Assisted Mobility Management

Information

  • Patent Application
  • 20230008399
  • Publication Number
    20230008399
  • Date Filed
    July 07, 2021
    3 years ago
  • Date Published
    January 12, 2023
    2 years ago
Abstract
Apparatuses, systems, and methods for UE assisted mobility management. A UE may receive, from a network, an initial list of measurement cells, filter the initial list of measurement cells based on criteria to generate an optimized cell list, perform cell measurements based on the optimized cell list, and report, to the network, cell measurements based on the optimized cell list. The criteria may be based, at least in part, on at least one of UE location, UE mobility pattern, and/or UE privacy preservation. The UE may use a geolocation and/or a mobility pattern of the UE and geolocations of cells to filter out cells. The UE may use a privacy preservation algorithm on a previously filtered list of measurement cells to filter out cells to avoid allowing the network to estimate a geolocation of the UE based on the reported measurements.
Description
FIELD

The invention relates to wireless communications, and more particularly to apparatuses, systems, and methods for UE assisted mobility management, e.g., in 5G NR systems and beyond.


DESCRIPTION OF THE RELATED ART

Wireless communication systems are rapidly growing in usage. In recent years, wireless devices such as smart phones and tablet computers have become increasingly sophisticated. In addition to supporting telephone calls, many mobile devices now provide access to the internet, email, text messaging, and navigation using the global positioning system (GPS), and are capable of operating sophisticated applications that utilize these functionalities.


Long Term Evolution (LTE) is currently the technology of choice for the majority of wireless network operators worldwide, providing mobile broadband data and high-speed Internet access to their subscriber base. LTE was first proposed in 2004 and was first standardized in 2008. Since then, as usage of wireless communication systems has expanded exponentially, demand has risen for wireless network operators to support a higher capacity for a higher density of mobile broadband users. Thus, in 2015 study of a new radio access technology began and, in 2017, a first release of Fifth Generation New Radio (5G NR) was standardized.


5G-NR, also simply referred to as NR, provides, as compared to LTE, a higher capacity for a higher density of mobile broadband users, while also supporting device-to-device, ultra-reliable, and massive machine type communications with lower latency and/or lower battery consumption. Further, NR may allow for more flexible UE scheduling as compared to current LTE. Consequently, efforts are being made in ongoing developments of 5G-NR to take advantage of higher throughputs possible at higher frequencies.


SUMMARY

Embodiments relate to wireless communications, and more particularly to apparatuses, systems, and methods for UE assisted mobility management, e.g., in 5G NR systems and beyond.


For example, in some embodiments, a user equipment device (UE) may be configured to receive, from a network, an initial list of measurement cells and filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list. Further, the UE may be configured to perform cell measurements based on the optimized cell list and report, to the network, cell measurements based on the optimized cell list. The initial list of measurement cells may be based, at least in part, on an estimated location of a UE and/or a serving cell of the UE. Additionally, the one or more criteria may be based, at least in part, on at least one of UE location, UE mobility pattern, and/or UE privacy preservation.


For example, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may be configured use a geolocation of the UE and geolocations of one or more cells of the initial list of measurement cells and/or of a filtered list of measurement cells to filter out at least one cell not within a specified distance of the geolocation of the UE. As another example, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may be configured to use an estimated mobility pattern of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell that is not within a specified distance of the estimated mobility pattern of the UE or further away from the estimated mobility patter of the UE than at least one other cell. As a further example, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may be configured to use a privacy preservation algorithm on the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell to avoid allowing the network to estimate a geolocation of the UE based on the reported measurements. Additionally, in some embodiments, to report, to the network, cell measurements based on the optimized cell list, the UE may be configured to adjust a measurement value of a least one cell of the optimized cell list to mask a location of the UE.


The techniques described herein may be implemented in and/or used with a number of different types of devices, including but not limited to unmanned aerial vehicles (UAVs), unmanned aerial controllers (UACs), a UTM server, base stations, access points, cellular phones, tablet computers, wearable computing devices, portable media players, and any of various other computing devices.


This Summary is intended to provide a brief overview of some of the subject matter described in this document. Accordingly, it will be appreciated that the above-described features are merely examples and should not be construed to narrow the scope or spirit of the subject matter described herein in any way. Other features, aspects, and advantages of the subject matter described herein will become apparent from the following Detailed Description, Figures, and Claims.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present subject matter can be obtained when the following detailed description of various embodiments is considered in conjunction with the following drawings, in which:



FIG. 1A illustrates an example wireless communication system according to some embodiments.



FIG. 1B illustrates an example of a base station and an access point in communication with a user equipment (UE) device, according to some embodiments.



FIG. 2 illustrates an example block diagram of a base station, according to some embodiments.



FIG. 3 illustrates an example block diagram of a server according to some embodiments.



FIG. 4 illustrates an example block diagram of a UE according to some embodiments.



FIG. 5 illustrates an example block diagram of cellular communication circuitry, according to some embodiments.



FIG. 6A illustrates an example of a 5G network architecture that incorporates both 3GPP (e.g., cellular) and non-3GPP (e.g., non-cellular) access to the 5G CN, according to some embodiments.



FIG. 6B illustrates an example of a 5G network architecture that incorporates both dual 3GPP (e.g., LTE and 5G NR) access and non-3GPP access to the 5G CN, according to some embodiments.



FIG. 7 illustrates an example of a baseband processor architecture for a UE, according to some embodiments.



FIG. 8 illustrates an example of a UE's mobility path over time through a dense deployment of network cells, according to some embodiments.



FIG. 9 illustrates an example of a block diagram of a method for filtering a list of measurement cells, according to some embodiments.



FIG. 10 illustrates an example of UE mobility pattern estimation, according to some embodiments.



FIG. 11 illustrates a block diagram of an example of a method for filtering a network configured list of measurement cells, according to some embodiments.





While the features described herein may be susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to be limiting to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the subject matter as defined by the appended claims.


DETAILED DESCRIPTION

Acronyms


Various acronyms are used throughout the present disclosure. Definitions of the most prominently used acronyms that may appear throughout the present disclosure are provided below:

    • 3GPP: Third Generation Partnership Project
    • UE: User Equipment
    • RF: Radio Frequency
    • BS: Base Station
    • DL: Downlink
    • UL: Uplink
    • LTE: Long Term Evolution
    • NR: New Radio
    • 5GS: 5G System
    • 5GMM: 5GS Mobility Management
    • 5GC/5GCN: 5G Core Network
    • IE: Information Element
    • CE: Control Element
    • MAC: Medium Access Control
    • SSB: Synchronization Signal Block
    • CSI-RS: Channel State Information Reference Signal
    • PDCCH: Physical Downlink Control Channel
    • PDSCH: Physical Downlink Shared Channel
    • RRC: Radio Resource Control
    • RRM: Radio Resource Management
    • CORESET: Control Resource Set
    • TCI: Transmission Configuration Indicator
    • DCI: Downlink Control Indicator


Terms

The following is a glossary of terms used in this disclosure:


Memory Medium—Any of various types of non-transitory memory devices or storage devices. The term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random-access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc.; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc. The memory medium may include other types of non-transitory memory as well or combinations thereof. In addition, the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer for execution. The term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network. The memory medium may store program instructions (e.g., embodied as computer programs) that may be executed by one or more processors.


Carrier Medium—a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.


Programmable Hardware Element—includes various hardware devices comprising multiple programmable function blocks connected via a programmable interconnect. Examples include FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), FPOAs (Field Programmable Object Arrays), and CPLDs (Complex PLDs). The programmable function blocks may range from fine grained (combinatorial logic or look up tables) to coarse grained (arithmetic logic units or processor cores). A programmable hardware element may also be referred to as “reconfigurable logic”.


Computer System (or Computer)—any of various types of computing or processing systems, including a personal computer system (PC), mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA), television system, grid computing system, or other device or combinations of devices. In general, the term “computer system” can be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.


User Equipment (UE) (or “UE Device”)—any of various types of computer systems devices which are mobile or portable and which performs wireless communications. Examples of UE devices include mobile telephones or smart phones (e.g., iPhone™, Android™-based phones), portable gaming devices (e.g., Nintendo DS™, PlayStation Portable™, Gameboy Advance™, iPhone™), laptops, wearable devices (e.g., smart watch, smart glasses), PDAs, portable Internet devices, music players, data storage devices, other handheld devices, unmanned aerial vehicles (UAVs) (e.g., drones), UAV controllers (UACs), and so forth. In general, the term “UE” or “UE device” can be broadly defined to encompass any electronic, computing, and/or telecommunications device (or combination of devices) which is easily transported by a user and capable of wireless communication.


Base Station—The term “Base Station” has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.


Processing Element (or Processor)—refers to various elements or combinations of elements that are capable of performing a function in a device, such as a user equipment or a cellular network device. Processing elements may include, for example: processors and associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit), programmable hardware elements such as a field programmable gate array (FPGA), as well any of various combinations of the above.


Channel—a medium used to convey information from a sender (transmitter) to a receiver. It should be noted that since characteristics of the term “channel” may differ according to different wireless protocols, the term “channel” as used herein may be considered as being used in a manner that is consistent with the standard of the type of device with reference to which the term is used. In some standards, channel widths may be variable (e.g., depending on device capability, band conditions, etc.). For example, LTE may support scalable channel bandwidths from 1.4 MHz to 20 MHz. In contrast, WLAN channels may be 22 MHz wide while Bluetooth channels may be 1Mhz wide. Other protocols and standards may include different definitions of channels. Furthermore, some standards may define and use multiple types of channels, e.g., different channels for uplink or downlink and/or different channels for different uses such as data, control information, etc.


Band—The term “band” has the full breadth of its ordinary meaning, and at least includes a section of spectrum (e.g., radio frequency spectrum) in which channels are used or set aside for the same purpose.


Wi-Fi—The term “Wi-Fi” (or WiFi) has the full breadth of its ordinary meaning, and at least includes a wireless communication network or RAT that is serviced by wireless LAN (WLAN) access points and which provides connectivity through these access points to the Internet. Most modern Wi-Fi networks (or WLAN networks) are based on IEEE 802.11 standards and are marketed under the name “Wi-Fi”. A Wi-Fi (WLAN) network is different from a cellular network.


3GPP Access—refers to accesses (e.g., radio access technologies) that are specified by 3GPP standards. These accesses include, but are not limited to, GSM/GPRS, LTE, LTE-A, and/or 5G NR. In general, 3GPP access refers to various types of cellular access technologies.


Non-3GPP Access—refers any accesses (e.g., radio access technologies) that are not specified by 3GPP standards. These accesses include, but are not limited to, WiMAX, CDMA2000, Wi-Fi, WLAN, and/or fixed networks. Non-3GPP accesses may be split into two categories, “trusted” and “untrusted”: Trusted non-3GPP accesses can interact directly with an evolved packet core (EPC) and/or a 5G core (5GC) whereas untrusted non-3GPP accesses interwork with the EPC/5GC via a network entity, such as an Evolved Packet Data Gateway and/or a 5G NR gateway. In general, non-3GPP access refers to various types on non-cellular access technologies.


Automatically—refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware elements, ASICs, etc.), without user input directly specifying or performing the action or operation. Thus, the term “automatically” is in contrast to an operation being manually performed or specified by the user, where the user provides input to directly perform the operation. An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually”, where the user specifies each action to perform. For example, a user filling out an electronic form by selecting each field and providing input specifying information (e.g., by typing information, selecting check boxes, radio selections, etc.) is filling out the form manually, even though the computer system must update the form in response to the user actions. The form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields. As indicated above, the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed). The present specification provides various examples of operations being automatically performed in response to actions the user has taken.


Approximately—refers to a value that is almost correct or exact. For example, approximately may refer to a value that is within 1 to 10 percent of the exact (or desired) value. It should be noted, however, that the actual threshold value (or tolerance) may be application dependent. For example, in some embodiments, “approximately” may mean within 0.1% of some specified or desired value, while in various other embodiments, the threshold may be, for example, 2%, 3%, 5%, and so forth, as desired or as required by the particular application.


Concurrent—refers to parallel execution or performance, where tasks, processes, or programs are performed in an at least partially overlapping manner. For example, concurrency may be implemented using “strong” or strict parallelism, where tasks are performed (at least partially) in parallel on respective computational elements, or using “weak parallelism”, where the tasks are performed in an interleaved manner, e.g., by time multiplexing of execution threads.


Various components may be described as “configured to” perform a task or tasks. In such contexts, “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected). In some contexts, “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.


Various components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to.” Reciting a component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112(f) interpretation for that component.


FIGS. 1A and 1B: Communication Systems


FIG. 1A illustrates a simplified example wireless communication system, according to some embodiments. It is noted that the system of FIG. 1A is merely one example of a possible system, and that features of this disclosure may be implemented in any of various systems, as desired.


As shown, the example wireless communication system includes a base station 102A which communicates over a transmission medium with one or more user devices 106A, 106B, etc., through 106N. Each of the user devices may be referred to herein as a “user equipment” (UE). Thus, the user devices 106 are referred to as UEs or UE devices.


The base station (BS) 102A may be a base transceiver station (BTS) or cell site (a “cellular base station”) and may include hardware that enables wireless communication with the UEs 106A through 106N.


The communication area (or coverage area) of the base station may be referred to as a “cell.” The base station 102A and the UEs 106 may be configured to communicate over the transmission medium using any of various radio access technologies (RATs), also referred to as wireless communication technologies, or telecommunication standards, such as GSM, UMTS (associated with, for example, WCDMA or TD-SCDMA air interfaces), LTE, LTE-Advanced (LTE-A), 5G new radio (5G NR), HSPA, 3GPP2 CDMA2000 (e.g., 1×RTT, 1×EV-DO, HRPD, eHRPD), etc. Note that if the base station 102A is implemented in the context of LTE, it may alternately be referred to as an ‘eNodeB’ or ‘eNB’. Note that if the base station 102A is implemented in the context of 5G NR, it may alternately be referred to as ‘gNodeB’ or ‘gNB’.


As shown, the base station 102A may also be equipped to communicate with a network 100 (e.g., a core network of a cellular service provider, a telecommunication network such as a public switched telephone network (PSTN), and/or the Internet, among various possibilities). Thus, the base station 102A may facilitate communication between the user devices and/or between the user devices and the network 100. In particular, the cellular base station 102A may provide UEs 106 with various telecommunication capabilities, such as voice, SMS and/or data services.


Base station 102A and other similar base stations (such as base stations 102B . . . 102N) operating according to the same or a different cellular communication standard may thus be provided as a network of cells, which may provide continuous or nearly continuous overlapping service to UEs 106A-N and similar devices over a geographic area via one or more cellular communication standards.


Thus, while base station 102A may act as a “serving cell” for UEs 106A-N as illustrated in FIG. 1, each UE 106 may also be capable of receiving signals from (and possibly within communication range of) one or more other cells (which might be provided by base stations 102B-N and/or any other base stations), which may be referred to as “neighboring cells”. Such cells may also be capable of facilitating communication between


user devices and/or between user devices and the network 100. Such cells may include “macro” cells, “micro” cells, “pico” cells, and/or cells which provide any of various other granularities of service area size. For example, base stations 102A-B illustrated in FIG. 1 might be macro cells, while base station 102N might be a micro cell. Other configurations are also possible.


In some embodiments, base station 102A may be a next generation base station, e.g., a 5G New Radio (5G NR) base station, or “gNB”. In some embodiments, a gNB may be connected to a legacy evolved packet core (EPC) network and/or to a NR core (NRC) network. In addition, a gNB cell may include one or more transition and reception points (TRPs). In addition, a UE capable of operating according to 5G NR may be connected to one or more TRPs within one or more gNBs.


Note that a UE 106 may be capable of communicating using multiple wireless communication standards. For example, the UE 106 may be configured to communicate using a wireless networking (e.g., Wi-Fi) and/or peer-to-peer wireless communication protocol (e.g., Bluetooth, Wi-Fi peer-to-peer, etc.) in addition to at least one cellular communication protocol (e.g., GSM, UMTS (associated with, for example, WCDMA or TD-SCDMA air interfaces), LTE, LTE-A, 5G NR, HSPA, 3GPP2 CDMA2000 (e.g., 1×RTT, 1×EV-DO, HRPD, eHRPD), etc.). The UE 106 may also or alternatively be configured to communicate using one or more global navigational satellite systems (GNSS, e.g., GPS or GLONASS), one or more mobile television broadcasting standards (e.g., ATSC-M/H or DVB-H), and/or any other wireless communication protocol, if desired. Other combinations of wireless communication standards (including more than two wireless communication standards) are also possible.



FIG. 1B illustrates user equipment 106 (e.g., one of the devices 106A through 106N) in communication with a base station 102 and an access point 112, according to some embodiments. The UE 106 may be a device with both cellular communication capability and non-cellular communication capability (e.g., Bluetooth, Wi-Fi, and so forth) such as a mobile phone, a hand-held device, a computer or a tablet, or virtually any type of wireless device.


The UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions. Alternatively, or in addition, the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.


The UE 106 may include one or more antennas for communicating using one or more wireless communication protocols or technologies. In some embodiments, the UE 106 may be configured to communicate using, for example, CDMA2000 (1×RTT/1×EV-DO/HRPD/eHRPD), LTE/LTE-Advanced, or 5G NR using a single shared radio and/or GSM, LTE, LTE-Advanced, or 5G NR using the single shared radio. The shared radio may couple to a single antenna, or may couple to multiple antennas (e.g., for MIMO) for performing wireless communications. In general, a radio may include any combination of a baseband processor, analog RF signal processing circuitry (e.g., including filters, mixers, oscillators, amplifiers, etc.), or digital processing circuitry (e.g., for digital modulation as well as other digital processing). Similarly, the radio may implement one or more receive and transmit chains using the aforementioned hardware. For example, the UE 106 may share one or more parts of a receive and/or transmit chain between multiple wireless communication technologies, such as those discussed above.


In some embodiments, the UE 106 may include separate transmit and/or receive chains (e.g., including separate antennas and other radio components) for each wireless communication protocol with which it is configured to communicate. As a further possibility, the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol. For example, the UE 106 might include a shared radio for communicating using either of LTE or 5G NR (or LTE or 1xRTTor LTE or GSM), and separate radios for communicating using each of Wi-Fi and Bluetooth. Other configurations are also possible.


FIG. 2: Block Diagram of a Base Station


FIG. 2 illustrates an example block diagram of a base station 102, according to some embodiments. It is noted that the base station of FIG. 3 is merely one example of a possible base station. As shown, the base station 102 may include processor(s) 204 which may execute program instructions for the base station 102. The processor(s) 204 may also be coupled to memory management unit (MMU) 240, which may be configured to receive addresses from the processor(s) 204 and translate those addresses to locations in memory (e.g., memory 260 and read only memory (ROM) 250) or to other circuits or devices.


The base station 102 may include at least one network port 270. The network port 270 may be configured to couple to a telephone network and provide a plurality of devices, such as UE devices 106, access to the telephone network as described above in FIGS. 1 and 2.


The network port 270 (or an additional network port) may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider. The core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106. In some cases, the network port 270 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider).


In some embodiments, base station 102 may be a next generation base station, e.g., a 5G New Radio (5G NR) base station, or “gNB”. In such embodiments, base station 102 may be connected to a legacy evolved packet core (EPC) network and/or to a NR core (NRC) network. In addition, base station 102 may be considered a 5G NR cell and may include one or more transition and reception points (TRPs). In addition, a UE capable of operating according to 5G NR may be connected to one or more TRPs within one or more gNB s.


The base station 102 may include at least one antenna 234, and possibly multiple antennas. The at least one antenna 234 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 230. The antenna 234 communicates with the radio 230 via communication chain 232. Communication chain 232 may be a receive chain, a transmit chain or both. The radio 230 may be configured to communicate via various wireless communication standards, including, but not limited to, 5G NR, LTE, LTE-A, GSM, UMTS, CDMA2000, Wi-Fi, etc.


The base station 102 may be configured to communicate wirelessly using multiple wireless communication standards. In some instances, the base station 102 may include multiple radios, which may enable the base station 102 to communicate according to multiple wireless communication technologies. For example, as one possibility, the base station 102 may include an LTE radio for performing communication according to LTE as well as a 5G NR radio for performing communication according to 5G NR. In such a case, the base station 102 may be capable of operating as both an LTE base station and a 5G NR base station. As another possibility, the base station 102 may include a multi-mode radio which is capable of performing communications according to any of multiple wireless communication technologies (e.g., 5G NR and Wi-Fi, LTE and Wi-Fi, LTE and UMTS, LTE and CDMA2000, UMTS and GSM, etc.).


As described further subsequently herein, the BS 102 may include hardware and software components for implementing or supporting implementation of features described herein. The processor 204 of the base station 102 may be configured to implement or support implementation of part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium). Alternatively, the processor 204 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array), or as an ASIC (Application Specific Integrated Circuit), or a combination thereof. Alternatively (or in addition) the processor 204 of the BS 102, in conjunction with one or more of the other components 230, 232, 234, 240, 250, 260, 270 may be configured to implement or support implementation of part or all of the features described herein.


In addition, as described herein, processor(s) 204 may be comprised of one or more processing elements. In other words, one or more processing elements may be included in processor(s) 204. Thus, processor(s) 204 may include one or more integrated circuits (ICs) that are configured to perform the functions of processor(s) 204. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of processor(s) 204.


Further, as described herein, radio 230 may be comprised of one or more processing elements. In other words, one or more processing elements may be included in radio 230. Thus, radio 230 may include one or more integrated circuits (ICs) that are configured to perform the functions of radio 230. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of radio 230.


FIG. 3: Block Diagram of a Server


FIG. 3 illustrates an example block diagram of a server 104, according to some embodiments. It is noted that the server of FIG. 3 is merely one example of a possible server. As shown, the server 104 may include processor(s) 344 which may execute program instructions for the server 104. The processor(s) 344 may also be coupled to memory management unit (MMU) 374, which may be configured to receive addresses from the processor(s) 344 and translate those addresses to locations in memory (e.g., memory 364 and read only memory (ROM) 354) or to other circuits or devices.


The server 104 may be configured to provide a plurality of devices, such as base station 102, UE devices 106, and/or UTM 108, access to network functions, e.g., as further described herein.


In some embodiments, the server 104 may be part of a radio access network, such as a 5G New Radio (5G NR) radio access network. In some embodiments, the server 104 may be connected to a legacy evolved packet core (EPC) network and/or to a NR core (NRC) network.


As described further subsequently herein, the server 104 may include hardware and software components for implementing or supporting implementation of features described herein. The processor 344 of the server 104 may be configured to implement or support implementation of part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium). Alternatively, the processor 344 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array), or as an ASIC (Application Specific Integrated Circuit), or a combination thereof. Alternatively (or in addition) the processor 344 of the server 104, in conjunction with one or more of the other components 354, 364, and/or 374 may be configured to implement or support implementation of part or all of the features described herein.


In addition, as described herein, processor(s) 344 may be comprised of one or more processing elements. In other words, one or more processing elements may be included in processor(s) 344. Thus, processor(s) 344 may include one or more integrated circuits (ICs) that are configured to perform the functions of processor(s) 344. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of processor(s) 344.


FIG. 4: Block Diagram of a UE


FIG. 4 illustrates an example simplified block diagram of a communication device 106, according to some embodiments. It is noted that the block diagram of the communication device of FIG. 4 is only one example of a possible communication device. According to embodiments, communication device 106 may be a user equipment (UE) device, a mobile device or mobile station, a wireless device or wireless station, a desktop computer or computing device, a mobile computing device (e.g., a laptop, notebook, or portable computing device), a tablet, an unmanned aerial vehicle (UAV), a UAV controller (UAC) and/or a combination of devices, among other devices. As shown, the communication device 106 may include a set of components 400 configured to perform core functions. For example, this set of components may be implemented as a system on chip (SOC), which may include portions for various purposes. Alternatively, this set of components 400 may be implemented as separate components or groups of components for the various purposes. The set of components 400 may be coupled (e.g., communicatively; directly or indirectly) to various other circuits of the communication device 106.


For example, the communication device 106 may include various types of memory (e.g., including NAND flash 410), an input/output interface such as connector I/F 420 (e.g., for connecting to a computer system; dock; charging station; input devices, such as a microphone, camera, keyboard; output devices, such as speakers; etc.), the display 460, which may be integrated with or external to the communication device 106, and cellular communication circuitry 430 such as for 5G NR, LTE, GSM, etc., and short to medium range wireless communication circuitry 429 (e.g., BluetoothTM and WLAN circuitry). In some embodiments, communication device 106 may include wired communication circuitry (not shown), such as a network interface card, e.g., for Ethernet.


The cellular communication circuitry 430 may couple (e.g., communicatively; directly or indirectly) to one or more antennas, such as antennas 435 and 436 as shown. The short to medium range wireless communication circuitry 429 may also couple (e.g., communicatively; directly or indirectly) to one or more antennas, such as antennas 437 and 438 as shown. Alternatively, the short to medium range wireless communication circuitry 429 may couple (e.g., communicatively; directly or indirectly) to the antennas 435 and 436 in addition to, or instead of, coupling (e.g., communicatively; directly or indirectly) to the antennas 437 and 438. The short to medium range wireless communication circuitry 429 and/or cellular communication circuitry 430 may include multiple receive chains and/or multiple transmit chains for receiving and/or transmitting multiple spatial streams, such as in a multiple-input multiple output (MIMO) configuration.


In some embodiments, as further described below, cellular communication circuitry 430 may include dedicated receive chains (including and/or coupled to, e.g., communicatively; directly or indirectly. dedicated processors and/or radios) for multiple RATs (e.g., a first receive chain for LTE and a second receive chain for 5G NR). In addition, in some embodiments, cellular communication circuitry 430 may include a single transmit chain that may be switched between radios dedicated to specific RATs. For example, a first radio may be dedicated to a first RAT, e.g., LTE, and may be in communication with a dedicated receive chain and a transmit chain shared with an additional radio, e.g., a second radio that may be dedicated to a second RAT, e.g., 5G NR, and may be in communication with a dedicated receive chain and the shared transmit chain.


The communication device 106 may also include and/or be configured for use with one or more user interface elements. The user interface elements may include any of various elements, such as display 460 (which may be a touchscreen display), a keyboard (which may be a discrete keyboard or may be implemented as part of a touchscreen display), a mouse, a microphone and/or speakers, one or more cameras, one or more buttons, and/or any of various other elements capable of providing information to a user and/or receiving or interpreting user input.


The communication device 106 may further include one or more smart cards 445 that include SIM (Subscriber Identity Module) functionality, such as one or more UICC(s) (Universal Integrated Circuit Card(s)) cards 445. Note that the term “SIM” or “SIM entity” is intended to include any of various types of SIM implementations or SIM functionality, such as the one or more UICC(s) cards 445, one or more eUICCs, one or more eSIMs, either removable or embedded, etc. In some embodiments, the UE 106 may include at least two SIMs. Each SIM may execute one or more SIM applications and/or otherwise implement SIM functionality. Thus, each SIM may be a single smart card that may be embedded, e.g., may be soldered onto a circuit board in the UE 106, or each SIM 410 may be implemented as a removable smart card. Thus, the SIM(s) may be one or more removable smart cards (such as UICC cards, which are sometimes referred to as “SIM cards”), and/or the SIMs 410 may be one or more embedded cards (such as embedded UICCs (eUICCs), which are sometimes referred to as “eSIMs” or “eSIM cards”). In some embodiments (such as when the SIM(s) include an eUICC), one or more of the SIM(s) may implement embedded SIM (eSIM) functionality; in such an embodiment, a single one of the SIM(s) may execute multiple SIM applications. Each of the SIMS may include components such as a processor and/or a memory; instructions for performing SIM/eSIM functionality may be stored in the memory and executed by the processor. In some embodiments, the UE 106 may include a combination of removable smart cards and fixed/non-removable smart cards (such as one or more eUICC cards that implement eSIM functionality), as desired. For example, the UE 106 may comprise two embedded SIMs, two removable SIMS, or a combination of one embedded SIMs and one removable SIMS. Various other SIM configurations are also contemplated.


As noted above, in some embodiments, the UE 106 may include two or more SIMs. The inclusion of two or more SIMs in the UE 106 may allow the UE 106 to support two different telephone numbers and may allow the UE 106 to communicate on corresponding two or more respective networks. For example, a first SIM may support a first RAT such as LTE, and a second SIM 410 support a second RAT such as 5G NR. Other implementations and RATs are of course possible. In some embodiments, when the UE 106 comprises two SIMs, the UE 106 may support Dual SIM Dual Active (DSDA) functionality. The DSDA functionality may allow the UE 106 to be simultaneously connected to two networks (and use two different RATs) at the same time, or to simultaneously maintain two connections supported by two different SIMs using the same or different RATs on the same or different networks. The DSDA functionality may also allow the UE 106 to simultaneously receive voice calls or data traffic on either phone number. In certain embodiments the voice call may be a packet switched communication. In other words, the voice call may be received using voice over LTE (VoLTE) technology and/or voice over NR (VoNR) technology. In some embodiments, the UE 106 may support Dual SIM Dual Standby (DSDS) functionality. The DSDS functionality may allow either of the two SIMS in the UE 106 to be on standby waiting for a voice call and/or data connection. In DSDS, when a call/data is established on one SIM, the other SIM is no longer active. In some embodiments, DSDx functionality (either DSDA or DSDS functionality) may be implemented with a single SIM (e.g., a eUICC) that executes multiple SIM applications for different carriers and/or RATs.


As shown, the SOC 400 may include processor(s) 402, which may execute program instructions for the communication device 106 and display circuitry 404, which may perform graphics processing and provide display signals to the display 460. The processor(s) 402 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor(s) 402 and translate those addresses to locations in memory (e.g., memory 406, read only memory (ROM) 450, NAND flash memory 410) and/or to other circuits or devices, such as the display circuitry 404, short to medium range wireless communication circuitry 429, cellular communication circuitry 430, connector I/F 420, and/or display 460. The MMU 440 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 440 may be included as a portion of the processor(s) 402.


As noted above, the communication device 106 may be configured to communicate using wireless and/or wired communication circuitry. The communication device 106 may be configured to perform methods for revocation and/or modification of user consent in MEC, e.g., in 5G NR systems and beyond, as further described herein.


As described herein, the communication device 106 may include hardware and software components for implementing the above features for a communication device 106 to communicate a scheduling profile for power savings to a network. The processor 402 of the communication device 106 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium). Alternatively (or in addition), processor 402 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array), or as an ASIC (Application Specific Integrated Circuit). Alternatively (or in addition) the processor 402 of the communication device 106, in conjunction with one or more of the other components 400, 404, 406, 410, 420, 429, 430, 440, 445, 450, 460 may be configured to implement part or all of the features described herein.


In addition, as described herein, processor 402 may include one or more processing elements. Thus, processor 402 may include one or more integrated circuits (ICs) that are configured to perform the functions of processor 402. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of processor(s) 402.


Further, as described herein, cellular communication circuitry 430 and short to medium range wireless communication circuitry 429 may each include one or more processing elements. In other words, one or more processing elements may be included in cellular communication circuitry 430 and, similarly, one or more processing elements may be included in short to medium range wireless communication circuitry 429. Thus, cellular communication circuitry 430 may include one or more integrated circuits (ICs) that are configured to perform the functions of cellular communication circuitry 430. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of cellular communication circuitry 430. Similarly, the short to medium range wireless communication circuitry 429 may include one or more ICs that are configured to perform the functions of short to medium range wireless communication circuitry 429. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of short to medium range wireless communication circuitry 429.


FIG. 5: Block Diagram of Cellular Communication Circuitry


FIG. 5 illustrates an example simplified block diagram of cellular communication circuitry, according to some embodiments. It is noted that the block diagram of the cellular communication circuitry of FIG. 5 is only one example of a possible cellular communication circuit. According to embodiments, cellular communication circuitry 530, which may be cellular communication circuitry 430, may be included in a communication device, such as communication device 106 described above. As noted above, communication device 106 may be a user equipment (UE) device, a mobile device or mobile station, a wireless device or wireless station, a desktop computer or computing device, a mobile computing device (e.g., a laptop, notebook, or portable computing device), a tablet and/or a combination of devices, among other devices.


The cellular communication circuitry 530 may couple (e.g., communicatively; directly or indirectly) to one or more antennas, such as antennas 435a-b and 436 as shown (in FIG. 4). In some embodiments, cellular communication circuitry 530 may include dedicated receive chains (including and/or coupled to, e.g., communicatively; directly or indirectly. dedicated processors and/or radios) for multiple RATs (e.g., a first receive chain for LTE and a second receive chain for 5G NR). For example, as shown in FIG. 5, cellular communication circuitry 530 may include a modem 510 and a modem 520. Modem 510 may be configured for communications according to a first RAT, e.g., such as LTE or LTE-A, and modem 520 may be configured for communications according to a second RAT, e.g., such as 5G NR.


As shown, modem 510 may include one or more processors 512 and a memory 516 in communication with processors 512. Modem 510 may be in communication with a radio frequency (RF) front end 530. RF front end 530 may include circuitry for transmitting and receiving radio signals. For example, RF front end 530 may include receive circuitry (RX) 532 and transmit circuitry (TX) 534. In some embodiments, receive circuitry 532 may be in communication with downlink (DL) front end 550, which may include circuitry for receiving radio signals via antenna 335a.


Similarly, modem 520 may include one or more processors 522 and a memory 526 in communication with processors 522. Modem 520 may be in communication with an RF front end 540. RF front end 540 may include circuitry for transmitting and receiving radio signals. For example, RF front end 540 may include receive circuitry 542 and transmit circuitry 544. In some embodiments, receive circuitry 542 may be in communication with DL front end 560, which may include circuitry for receiving radio signals via antenna 335b.


In some embodiments, a switch 570 may couple transmit circuitry 534 to uplink (UL) front end 572. In addition, switch 570 may couple transmit circuitry 544 to UL front end 572. UL front end 572 may include circuitry for transmitting radio signals via antenna 336. Thus, when cellular communication circuitry 530 receives instructions to transmit according to the first RAT (e.g., as supported via modem 510), switch 570 may be switched to a first state that allows modem 510 to transmit signals according to the first RAT (e.g., via a transmit chain that includes transmit circuitry 534 and UL front end 572). Similarly, when cellular communication circuitry 530 receives instructions to transmit according to the second RAT (e.g., as supported via modem 520), switch 570 may be switched to a second state that allows modem 520 to transmit signals according to the second RAT (e.g., via a transmit chain that includes transmit circuitry 544 and UL front end 572).


In some embodiments, the cellular communication circuitry 530 may be configured to perform methods for UE assisted mobility management, e.g., in 5G NR systems and beyond, as further described herein.


As described herein, the modem 510 may include hardware and software components for implementing the above features or for time division multiplexing UL data for NSA NR operations, as well as the various other techniques described herein. The processors 512 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium). Alternatively (or in addition), processor 512 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array), or as an ASIC (Application Specific Integrated Circuit). Alternatively (or in addition) the processor 512, in conjunction with one or more of the other components 530, 532, 534, 550, 570, 572, 335 and 336 may be configured to implement part or all of the features described herein.


In addition, as described herein, processors 512 may include one or more processing elements. Thus, processors 512 may include one or more integrated circuits (ICs) that are configured to perform the functions of processors 512. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of processors 512.


As described herein, the modem 520 may include hardware and software components for implementing the above features for communicating a scheduling profile for power savings to a network, as well as the various other techniques described herein. The processors 522 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium). Alternatively (or in addition), processor 522 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array), or as an ASIC (Application Specific Integrated Circuit). Alternatively (or in addition) the processor 522, in conjunction with one or more of the other components 540, 542, 544, 550, 570, 572, 335 and 336 may be configured to implement part or all of the features described herein.


In addition, as described herein, processors 522 may include one or more processing elements. Thus, processors 522 may include one or more integrated circuits (ICs) that are configured to perform the functions of processors 522. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc.) configured to perform the functions of processors 522.



FIGS. 6A, 6B and 7: 5G Core Network Architecture—Interworking with Wi-Fi


In some embodiments, the 5G core network (CN) may be accessed via (or through) a cellular connection/interface (e.g., via a 3GPP communication architecture/protocol) and a non-cellular connection/interface (e.g., a non-3GPP access architecture/protocol such as Wi-Fi connection). FIG. 6A illustrates an example of a 5G network architecture that incorporates both 3GPP (e.g., cellular) and non-3GPP (e.g., non-cellular) access to the 5G CN, according to some embodiments. As shown, a user equipment device (e.g., such as UE 106) may access the 5G CN through both a radio access network (RAN, e.g., such as gNB 604, which may be a base station 102) and an access point, such as AP 612. The AP 612 may include a connection to the Internet 600 as well as a connection to a non-3GPP inter-working function (N3IWF) 603 network entity. The N3IWF may include a connection to a core access and mobility management function (AMF) 605 of the 5G CN. The AMF 605 may include an instance of a 5G mobility management (5G MM) function associated with the UE 106. In addition, the RAN (e.g., gNB 604) may also have a connection to the AMF 605. Thus, the 5G CN may support unified authentication over both connections as well as allow simultaneous registration for UE 106 access via both gNB 604 and AP 612. As shown, the AMF 605 may include one or more functional entities associated with the 5G CN (e.g., network slice selection function (NSSF) 620, short message service function (SMSF) 622, application function (AF) 624, unified data management (UDM) 626, policy control function (PCF) 628, and/or authentication server function (AUSF) 630). Note that these functional entities may also be supported by a session management function (SMF) 606a and an SMF 606b of the 5G CN. The AMF 605 may be connected to (or in communication with) the SMF 606a. Further, the gNB 604 may in communication with (or connected to) a user plane function (UPF) 608a that may also be communication with the SMF 606a. Similarly, the N3IWF 603 may be communicating with a UPF 608b that may also be communicating with the SMF 606b. Both UPFs may be communicating with the data network (e.g., DN 610a and 610b) and/or the Internet 600 and Internet Protocol (IP) Multimedia Subsystem/IP Multimedia Core Network Subsystem (IMS) core network 610.



FIG. 6B illustrates an example of a 5G network architecture that incorporates both dual 3GPP (e.g., LTE and 5G NR) access and non-3GPP access to the 5G CN, according to some embodiments. As shown, a user equipment device (e.g., such as UE 106) may access the 5G CN through both a radio access network (RAN, e.g., such as gNB 604 or eNB 602, which may be a base station 102) and an access point, such as AP 612. The AP 612 may include a connection to the Internet 600 as well as a connection to the N3IWF 603 network entity. The N3IWF may include a connection to the AMF 605 of the 5G CN. The AMF 605 may include an instance of the 5G MM function associated with the UE 106. In addition, the RAN (e.g., gNB 604) may also have a connection to the AMF 605. Thus, the 5G CN may support unified authentication over both connections as well as allow simultaneous registration for UE 106 access via both gNB 604 and AP 612. In addition, the 5G CN may support dual-registration of the UE on both a legacy network (e.g., LTE via eNB 602) and a 5G network (e.g., via gNB 604). As shown, the eNB 602 may have connections to a mobility management entity (MME) 642 and a serving gateway (SGW) 644. The MME 642 may have connections to both the SGW 644 and the AMF 605. In addition, the SGW 644 may have connections to both the SMF 606a and the UPF 608a. As shown, the AMF 605 may include one or more functional entities associated with the 5G CN (e.g., NSSF 620, SMSF 622, AF 624, UDM 626, PCF 628, and/or AUSF 630). Note that UDM 626 may also include a home subscriber server (HSS) function and the PCF may also include a policy and charging rules function (PCRF). Note further that these functional entities may also be supported by the SMF606a and the SMF 606b of the 5G CN. The AMF 606 may be connected to (or in communication with) the SMF 606a. Further, the gNB 604 may in communication with (or connected to) the UPF 608a that may also be communication with the SMF 606a. Similarly, the N3IWF 603 may be communicating with a UPF 608b that may also be communicating with the SMF 606b. Both UPFs may be communicating with the data network (e.g., DN 610a and 610b) and/or the Internet 600 and IMS core network 610.


Note that in various embodiments, one or more of the above-described network entities may be configured to perform methods to improve security checks in a 5G NR network, including mechanisms for UE assisted mobility management, e.g., in 5G NR systems and beyond, e.g., as further described herein.



FIG. 7 illustrates an example of a baseband processor architecture for a UE (e.g., such as UE 106), according to some embodiments. The baseband processor architecture 700 described in FIG. 7 may be implemented on one or more radios (e.g., radios 429 and/or 430 described above) or modems (e.g., modems 510 and/or 520) as described above. As shown, the non-access stratum (NAS) 710 may include a 5G NAS 720 and a legacy NAS 750. The legacy NAS 750 may include a communication connection with a legacy access stratum (AS) 770. The 5G NAS 720 may include communication connections with both a 5G AS 740 and a non-3GPP AS 730 and Wi-Fi AS 732. The 5G NAS 720 may include functional entities associated with both access stratums. Thus, the 5G NAS 720 may include multiple 5G MM entities 726 and 728 and 5G session management (SM) entities 722 and 724. The legacy NAS 750 may include functional entities such as short message service (SMS) entity 752, evolved packet system (EPS) session management (ESM) entity 754, session management (SM) entity 756, EPS mobility management (EMM) entity 758, and mobility management (MM)/GPRS mobility management (GMM) entity 760. In addition, the legacy AS 770 may include functional entities such as LTE AS 772, UMTS AS 774, and/or GSM/GPRS AS 776.


Thus, the baseband processor architecture 700 allows for a common 5G-NAS for both 5G cellular and non-cellular (e.g., non-3GPP access). Note that as shown, the 5G MM may maintain individual connection management and registration management state machines for each connection. Additionally, a device (e.g., UE 106) may register to a single PLMN (e.g., 5G CN) using 5G cellular access as well as non-cellular access. Further, it may be possible for the device to be in a connected state in one access and an idle state in another access and vice versa. Finally, there may be common 5G-MM procedures (e.g., registration, de-registration, identification, authentication, as so forth) for both accesses.


Note that in various embodiments, one or more of the above-described functional entities of the 5G NAS and/or 5G AS may be configured to perform methods for UE assisted mobility management, e.g., in 5G NR systems and beyond, e.g., as further described herein.


UE Assisted Mobility Management

In current implementations, e.g., such as 5G and beyond cellular networks which are being deployed on higher frequency bands thus making related cell coverage smaller due to higher path loss and sensitivity to blockage on these high frequencies, there is a need for more cells and denser deployment of these cells. Hence, network carriers are attempting to quasi-collocate cells and/or deploy cells with overlapping cellular coverage to serve as many users as possible in dense areas (e.g., such as malls, stadiums, and so forth) which causes the deployments to get even denser. From a UE's perspective, as the UE is moving in a 5G or beyond dense cellular environment, the UE may have a serving cell which might have geographically many neighboring cells, sometimes with spatially overlapping cellular coverage while Mobility Management Configuration in current cellular networks is completely network (NW) controlled. Thus, the network is typically not aware of the UE's geolocation, thus, to ensure the UE's cellular link does not break, the network may request the UE to measure all potential neighboring cells and all cell beams (SSB or CSI-RS beams for 5G) for cells which employ directional transmission and reception (e.g., FR2 beamforming for 5G NR FR2) in order to get prepared for a potential handover or re-selection. Note that such measurement configurations may be performed via radio resource control (RRC) signaling for connected mode and via SIBs for idle mode. Note further, that in many instances, networks may configure UEs to perform and report measurements on many cells so that the network can use these measurement reports to estimate the UE's location (e.g., via triangularization). However, such a practice may pose a serious user's privacy breach that is against standard privacy preserving practices. For example, the UE's estimated location may be used then for various (and sometimes malicious) purposes, such as user online tracking for spying purpose or user's behavior inference (behavior related to user's daily usual mobility patterns). Thus, such a practice may cause the UE to perform many unnecessary measurements that waste time and energy and may even be privacy breaching.


Embodiments described herein provide systems, methods, and mechanisms to support UE assisted mobility management, including systems, methods, and mechanisms for a UE, such as UE 106, to prioritize cells that are configured by a network to be measured based on one or more of a UE's geolocation and/or a UE's mobility pattern as wells as systems, methods, and mechanisms for a UE, such as UE 106, to report only cells that are essential for the UE's mobility. For example, using on device geolocation and/or crowdsource based GeoServices, a UE may determine a precise estimate of its own location and as well as that of its surrounding cells (e.g., within a diameter of X meters). Then, based on these two location estimates (e.g., the UE's location as well as locations of surrounding cells), the UE may decide to measure, e.g., out of all network configured cells to be measured, only those cells that are geographically close to it (e.g., within the diameter of X meters). Note that in the case of directional NR FR2 enabled network nodes (e.g., gNBs), an on-device beam-ID (Beam-ID=SSB ID or CSI RS ID for 5G) to link level quality fingerprinting database can be used to decide which beam-ID(s) to measure. Additionally, on-device mobility pattern estimation may be used to further reduce a number of cells that need to be measured. As an example, if a navigation mode is on with a pre-defined (e.g., based on user's input) route, the UE can use the pre-defined route to determine a user's itinerary and mobility pattern. Such a scheme may allow the UE to save measurement time and energy resources and to manage its mobility in a smoother and more robust way, thereby reducing handover and re-selection failures. Further, such reduction in handover and re-selection failures may be especially important when the UE is busy performing a long voice call and/or a heavy data call and has little time and resources to spend on other tasks. As another example, when measurement reporting is required from the network side, the UE may report only cells that are essential for the UE's mobility, thus reducing a likelihood of having the network use such measurements for malicious tracking and/or user behavior inference purposes. As an example, when a UE, such as UE 106, is mandatorily (e.g., based on 3GPP specification requirements) required to report more measurements than is actually needed, then non-important measurements from the UE's perspective can be tweaked (e.g., modified) and sent with signal level values (e.g., RSRP values for NR) that are lower than actually measured values which will make such measurements not usable for location estimation purposes.



FIG. 8 illustrates an example of a UE's mobility path over time through a dense deployment of network cells, according to some embodiments. The example illustrated in FIG. 8 may be used in conjunction with any of the systems, methods, and mechanisms disclosed herein. As shown, a UE, such as UE 106, at a first time (e.g., t=1) may be served by cell 810. In other words, at time t=1, cell 810 may be the serving cell of UE 106. The UE may receive a network configuration to perform measurements on the serving cell, e.g., cell 810, as well as neighboring cells/beams such as beams 812a, 812b, and 812c as well as cell 814. Additionally, the UE may maintain an optimized neighbor cell list, e.g., based on usage of on-device geolocation and/or crowdsource based GeoServices as well as on a UE mobility pattern estimation. The optimized neighbor cell list may include the serving cell, e.g., cell 810, as well as beam 812a. As shown, the path 800 of the UE may be towards beam 812a and cell 814 may not be on the UE's estimated mobility pattern. Then, at a second time (e.g., t=2), the UE may be served beam 812b. In other words, at time t=2, beam 812b may be the serving beam of UE 106. The UE may again receive a network configuration to perform measurements. This configuration (e.g., at time t=2) may include cell 810, beams 812a, 812b, and 812c, as well as neighboring cells 814, 816, and 818. In contrast, the UE maintained optimized neighbor cell list may include the serving beam, e.g., beam 812b, as well as cell 814. At this point, the path 800 of the UE may include the UE moving away from cell 810 and beam 812a and towards beam 812c. Further, based on the path 800, the UE may remove cell 814 from consideration for the UE maintained optimized neighbor cell list because cell 814 in not on the UE's estimated mobility pattern. Further, at a third time (e.g., t=3), the UE may be served by cell 816. In other words, at time t=3, cell 816 may be the serving cell of UE 106. The UE may again receive a network configuration to perform measurements. This configuration (e.g., at time t=3) may include serving cell 816 and beams 812a, 812b, and 812c, as well as neighboring cells 814, 818, and 820. In contrast, the UE maintained optimized neighbor cell list may include the serving cell, e.g., cell 816, as well as cell 818. At this point, the path 800 of the UE may include the UE moving away from beam 812c and towards cell 816. Finally, at a fourth time (e.g., t=4), the UE may still be served by cell 816. In other words, at time t=4, cell 816 may continue to be the serving cell of UE 106. The UE may again receive a network configuration to perform measurements. This configuration (e.g., at time t=4) may include serving cell 816 and beams 812a, 812b, and 812c, as well as neighboring cells 814, 818, and 820. In contrast, the UE maintained optimized neighbor cell list may include the serving cell, e.g., cell 816, as well as cell 820 and potentially cell 818. At this point, the path 800 of the UE may include the UE moving away from cell 816 and towards cell 820. Note that even if cell 818 is still covering areas where the UE is estimated to move towards, it may be removed from the UE maintained optimized neighbor cell list because the corresponding measurement report could potentially be used by the network to estimate UE location through triangularization. Note further that UE is still guaranteed to have enough coverage with its current serving cell (cell 816) and cell 820 (e.g., coverage that UE could lose when removing cell 818 can be replaced by coverage from these two cells). Additionally, if cell 818 measurements are essential and have to be reported to the network, then the UE may, at least in some embodiments, tweak (e.g., adjust) its signal level measurements (e.g., such as RSRP and/or SINR among other signal level measurements) and report to the network lower values than what is actually measured for cell 818. Such a scheme may render such measurements of cell 818 unusable for location estimation purposes.



FIG. 9 illustrates an example of a block diagram of a method for filtering a list of measurement cells, according to some embodiments. The method shown in FIG. 9 may be used in conjunction with any of the systems, methods, or devices shown in the Figures, among other devices. In various embodiments, some of the method elements shown may be performed concurrently, in a different order than shown, or may be omitted. Additional method elements may also be performed as desired. As shown, this method may operate as follows.


At 902, a UE, such as UE 106, may receive an initial network configured cell list for measurements. As shown, the initial network configured cell list may include cells A, B (including beam IDs 1, 2, 3, 4), C, D, E, F, and G.


At 904, the UE may filter the initial network configured cell list based on geolocation. In other words, based on geolocation information from crowdsourced data and/or from on-device geolocation services, the UE may perform geolocation based cell search space shrinking.


At 906, a UE geolocation optimized cell list may now include cells A, B (including beam ID 2), C, D, E, and G. In other words, beams 1, 3, and 4 of cell B as well as cell F may be filtered out of the initial network configured cell list based on geolocation of the UE.


At 908, the UE may filter the geolocation optimized cell list based on on-device mobility pattern estimation. In other words, based on on-device mobility pattern information from an on-device mobility pattern estimator, the UE may perform mobility pattern estimation based cell search space shrinking.


At 910, a UE mobility pattern optimized cell list may now include cells A, B (including beam ID 2), D, and G. In other words, cells C and E may be filtered out of the geolocation optimized cell list based on on-device mobility pattern estimation.


At 912, the UE may filter the on-device mobility pattern estimation optimized cell list based on-device privacy preservation. In other words, based on-device privacy preservation, the UE may perform privacy preserving cell search space shrinking.


At 914, a UE privacy preservation optimized cell list may now include cell B (including beam ID 2), cell D (with adjusted measurements as needed to avoid network triangularization of UE location), and cell G. In other words, cell A may be filtered out of the on-device mobility pattern estimation optimized cell list and measurements for cell D may be adjusted based on-device privacy preservation.


Note that the above method may be performed periodically. In some embodiments, the periodicity may depend on UE motion speed and/or location change. Note additionally, that a cell that is removed from the optimized cell list due to one of the criteria described above may be added again at any time if any of the criteria changes for that cell (e.g., if a UE changes motion direction to the opposite sense).



FIG. 10 illustrates an example of UE mobility pattern estimation, according to some embodiments. The example illustrated in FIG. 10 may be used in conjunction with any of the systems, methods, and mechanisms disclosed herein. As shown, a UE, such as UE 106, at a time, t, may be at a first location and traveling along a path 1000. Further, at a later time, e.g., at a time t+dt, the UE may be at a second location along the path 1000. Note that the path 1000 may be estimated using a location of the UE at time t and a location of the UE at time t+dt. Alternatively and/or in addition, the path 1000 may be estimated based on a pre-defined route inputted by a user while in a navigation mode (and/or navigation application). The UE may determine a distance between the UE (e.g., along path 1000) and cells 1010 and 1012. Then, based on the determined distances, the UE may filter a cell search space. For example, if a distance 1020, between the path 1000 and cell 1010 is greater than a distance 1022 between the path 1000 and cell 1012, the UE may remove cell 1010 from the cell search space.



FIG. 11 illustrates a block diagram of an example of a method for filtering a network configured list of measurement cells, according to some embodiments. The method shown in FIG. 11 may be used in conjunction with any of the systems, methods, or devices shown in the Figures, among other devices. In various embodiments, some of the method elements shown may be performed concurrently, in a different order than shown, or may be omitted. Additional method elements may also be performed as desired. As shown, this method may operate as follows.


At 1102, a UE, such as UE 106, may receive, from a network, an initial list of measurement cells. The initial list of measurement cells may be based, at least in part, on an estimated location of a UE and/or a serving cell of the UE. The initial list of measurement cells may include the serving cell as well as neighboring cells.


At 1104, the UE may filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list. The one or more criteria may be based, at least in part, on at least one of UE location, UE mobility pattern, and/or UE privacy preservation.


In some embodiments, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may use a geolocation of the UE and geolocations of one or more cells of the initial list of measurement cells and/or of a filtered list of measurement cells to filter out at least one cell not within a specified distance of the geolocation of the UE. In other words, the UE may filter out cells from either the initial list or a filter list (e.g., the initial list filtered using one or more other criteria) based on a distance of a cell from a geolocation of the UE. The specified distance is a diameter centered at the geolocation of the UE. In some embodiments, the specified distance may be two kilometers, four kilometers, or five kilometers. In other words, the specified distance may be less than five kilometers. Note that in other embodiments, the specified distance may be more than five kilometers. Additionally, in some embodiments, the specified distance may be dependent upon a deployment density of the cells. Thus, a smaller specified distance may be used for more dense deployments of cells and a larger specified distance may be used for less dense deployments of cells. In some embodiments, the geolocations of the one or more cells of the initial list of measurement cells may be based on one or more of on-device geolocation estimations or crowdsource based geolocation services.


In some embodiments, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may use an estimated mobility pattern of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell that is not within a specified distance of the estimated mobility pattern of the UE or further away from the estimated mobility patter of the UE than at least one other cell. In some embodiments, the specified distance may be two kilometers, four kilometers, or five kilometers. In other words, the specified distance may be less than five kilometers. Note that in other embodiments, the specified distance may be more than five kilometers. Additionally, in some embodiments, the specified distance may be dependent upon a deployment density of the cells. Thus, a smaller specified distance may be used for more dense deployments of cells and a larger specified distance may be used for less dense deployments of cells. In some embodiments, the geolocations of the one or more cells of the initial list of measurement cells may be based on one or more of on-device geolocation estimations or crowdsource based geolocation services.


In some embodiments, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the UE may use a privacy preservation algorithm on the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell to avoid allowing the network to estimate a geolocation of the UE based on the reported measurements.


At 1106, the UE may perform cell measurements based on the optimized cell list. In other words, the UE may only perform cell measurements for cells in the optimized cell list and not for cell filtered from the initial list of measurement cells.


At 1108, the UE may report, to the network, cell measurements based on the optimized cell list. Thus, the UE may report measurements for a reduced number of cells as compared to the initial list of measurement cells. In some embodiments, to report, to the network, cell measurements based on the optimized cell list, the UE may adjust a measurement value of a least one cell of the optimized cell list to mask a location of the UE. In other words, the UE may tweak a measurement value in order to ensure the network cannot estimate a geolocation of the UE based on triangularization using reported cell measurements.


In some embodiments, the method may be performed periodically, e.g., at a first periodicity. For example, the first periodicity may be based, at least in part, on a velocity of the UE and/or a velocity associated with the UE. As another example, the first periodicity may be based on a geolocation change of the UE. In other words, the first periodicity may be event based and the method may be triggered by the geolocation change of the UE.


It is well understood that the use of personally identifiable information should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users. In particular, personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.


Embodiments of the present disclosure may be realized in any of various forms. For example, some embodiments may be realized as a computer-implemented method, a computer-readable memory medium, or a computer system. Other embodiments may be realized using one or more custom-designed hardware devices such as ASICs. Still other embodiments may be realized using one or more programmable hardware elements such as FPGAs.


In some embodiments, a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of the method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.


In some embodiments, a device (e.g., a UE 106) may be configured to include a processor (or a set of processors) and a memory medium, where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets). The device may be realized in any of various forms.


Any of the methods described herein for operating a user equipment (UE) may be the basis of a corresponding method for operating a base station, by interpreting each message/signal X received by the UE in the downlink as message/signal X transmitted by the base station, and each message/signal Y transmitted in the uplink by the UE as a message/signal Y received by the base station.


Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims
  • 1. A user equipment device (UE), comprising: at least one antenna;at least one radio, wherein the at least one radio is configured to perform cellular communication using at least one radio access technology (RAT);one or more processors coupled to the at least one radio, wherein the one or more processors and the at least one radio are configured to perform communications;wherein the one or more processors are configured to cause the UE to: receive, from a network, an initial list of measurement cells;filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, wherein the one or more criteria are based, at least in part, on at least one of UE location, UE mobility pattern, or UE privacy preservation;perform cell measurements based on the optimized cell list; andreport, to the network, cell measurements based on the optimized cell list.
  • 2. The UE of claim 1, wherein, to report, to the network, cell measurements based on the optimized cell list, the one or more processors are further configured to cause the UE to adjust a measurement value of a least one cell of the optimized cell list to mask a location of the UE.
  • 3. The UE of claim 1, wherein, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the one or more processors are configured to cause the UE to use a geolocation of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell not within a specified distance of the geolocation of the UE.
  • 4. The UE of claim 3, wherein the specified distance is a diameter centered at the geolocation of the UE.
  • 5. The UE of claim 3, wherein the specified distance is five kilometers or less.
  • 6. The UE of claim 3, wherein the geolocations of the one or more cells of the initial list of measurement cells is based on one or more of on-device geolocation estimations or crowdsource based geolocation services.
  • 7. The UE of claim 1, wherein, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the one or more processors are configured to cause the UE to use an estimated mobility pattern of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell that is not within a specified distance of the estimated mobility pattern of the UE or further away from the estimated mobility patter of the UE than at least one other cell.
  • 8. The UE of claim 7, wherein the specified distance is two and a half kilometers or less.
  • 9. The UE of claim 1, wherein, to filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list, the one or more processors are configured to cause the UE to use a privacy preservation algorithm on the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell to avoid allowing the network to estimate a geolocation of the UE based on the reported measurements.
  • 10. A non-transitory computer readable memory medium storing program instructions executable by processing circuitry to cause a user equipment device (UE) to: filter an initial list of measurements cells received from a network based to generate an optimized cell list based on at least one of a UE location, a UE mobility pattern, or a UE privacy preservation algorithm;perform cell measurements based on the optimized cell list: andreport, to the network, cell measurements based on the optimized cell list.
  • 11. The non-transitory computer readable memory medium of claim 10, wherein, to report, to the network, cell measurements based on the optimized cell list, the program instructions are further executable by the processing circuitry to cause the UE to adjust a measurement value of a least one cell of the optimized cell list to mask a location of the UE.
  • 12. The non-transitory computer readable memory medium of claim 10, wherein, to filter the initial list of measurement cells to generate an optimized cell list, the program instructions are further executable by the processing circuitry to cause the UE to use a geolocation of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell not within a specified distance of the geolocation of the UE.
  • 13. The non-transitory computer readable memory medium of claim 12, wherein the specified distance is a diameter centered at the geolocation of the UE, wherein the specified distance is five kilometers or less; and wherein the geolocations of the one or more cells of the initial list of measurement cells is based on one or more of on-device geolocation estimations or crowdsource based geolocation services.
  • 14. The non-transitory computer readable memory medium of claim 10, wherein, to filter the initial list of measurement cells to generate an optimized cell list, the program instructions are further executable by the processing circuitry to cause the UE to use an estimated mobility pattern of the UE and geolocations of one or more cells of the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell that is not within a specified distance of the estimated mobility pattern of the UE or further away from the estimated mobility patter of the UE than at least one other cell.
  • 15. The non-transitory computer readable memory medium of claim 14, wherein the specified distance is two and a half kilometers or less.
  • 16. The non-transitory computer readable memory medium of claim 10, wherein, to filter the initial list of measurement cells to generate an optimized cell list, the program instructions are further executable by the processing circuitry to cause the UE to use a privacy preservation algorithm on the initial list of measurement cells or of a filtered list of measurement cells to filter out at least one cell to avoid allowing the network to estimate a geolocation of the UE based on the reported measurements.
  • 17. An apparatus, comprising: a memory; anda processor in communication with the memory, wherein the processor is configured to: receive, from a network, an initial list of measurement cells;filter the initial list of measurement cells based on one or more criteria to generate an optimized cell list;perform cell measurements based on the optimized cell list; andreport, to the network, cell measurements based on the optimized cell list.
  • 18. The apparatus of claim 17, wherein, to report, to the network, cell measurements based on the optimized cell list, the processor is further configured to adjust a measurement value of a least one cell of the optimized cell list to mask a location of the apparatus.
  • 19. The apparatus of claim 17, wherein the processor is further configured to perform the receiving and the filtering periodically at a first periodicity.
  • 20. The apparatus of claim 19, wherein the first periodicity is based on a velocity associated with the apparatus.