The present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus related to transmission of a physical sidelink feedback channel (PSFCH) and a physical uplink control channel (PUCCH) in sidelink when the PUCCH transmission is dropped.
Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency division multiple access (SC-FDMA) system, and a multi carrier frequency division multiple access (MC-FDMA) system.
A wireless communication system uses various radio access technologies (RATs) such as long term evolution (LTE), LTE-advanced (LTE-A), and wireless fidelity (WiFi). 5th generation (5G) is such a wireless communication system. Three key requirement areas of 5G include (1) enhanced mobile broadband (eMBB), (2) massive machine type communication (mMTC), and (3) ultra-reliable and low latency communications (URLLC). Some use cases may require multiple dimensions for optimization, while others may focus only on one key performance indicator (KPI). 5G supports such diverse use cases in a flexible and reliable way.
eMBB goes far beyond basic mobile Internet access and covers rich interactive work, media and entertainment applications in the cloud or augmented reality (AR). Data is one of the key drivers for 5G and in the 5G era, we may for the first time see no dedicated voice service. In 5G, voice is expected to be handled as an application program, simply using data connectivity provided by a communication system. The main drivers for an increased traffic volume are the increase in the size of content and the number of applications requiring high data rates. Streaming services (audio and video), interactive video, and mobile Internet connectivity will continue to be used more broadly as more devices connect to the Internet. Many of these applications require always-on connectivity to push real time information and notifications to users. Cloud storage and applications are rapidly increasing for mobile communication platforms. This is applicable for both work and entertainment. Cloud storage is one particular use case driving the growth of uplink data rates. 5G will also be used for remote work in the cloud which, when done with tactile interfaces, requires much lower end-to-end latencies in order to maintain a good user experience. Entertainment, for example, cloud gaming and video streaming, is another key driver for the increasing need for mobile broadband capacity. Entertainment will be very essential on smart phones and tablets everywhere, including high mobility environments such as trains, cars and airplanes. Another use case is augmented reality (AR) for entertainment and information search, which requires very low latencies and significant instant data volumes.
One of the most expected 5G use cases is the functionality of actively connecting embedded sensors in every field, that is, mMTC. It is expected that there will be 20.4 billion potential Internet of things (IoT) devices by 2020. In industrial IoT, 5G is one of areas that play key roles in enabling smart city, asset tracking, smart utility, agriculture, and security infrastructure.
URLLC includes services which will transform industries with ultra-reliable/available, low latency links such as remote control of critical infrastructure and self-driving vehicles. The level of reliability and latency are vital to smart-grid control, industrial automation, robotics, drone control and coordination, and so on.
Now, multiple use cases will be described in detail.
5G may complement fiber-to-the home (FTTH) and cable-based broadband (or data-over-cable service interface specifications (DOCSIS)) as a means of providing streams at data rates of hundreds of megabits per second to giga bits per second. Such a high speed is required for TV broadcasts at or above a resolution of 4K (6K, 8K, and higher) as well as virtual reality (VR) and AR. VR and AR applications mostly include immersive sport games. A special network configuration may be required for a specific application program. For VR games, for example, game companies may have to integrate a core server with an edge network server of a network operator in order to minimize latency.
The automotive sector is expected to be a very important new driver for 5G, with many use cases for mobile communications for vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband, because future users will expect to continue their good quality connection independent of their location and speed. Other use cases for the automotive sector are AR dashboards. These display overlay information on top of what a driver is seeing through the front window, identifying objects in the dark and telling the driver about the distances and movements of the objects. In the future, wireless modules will enable communication between vehicles themselves, information exchange between vehicles and supporting infrastructure and between vehicles and other connected devices (e.g., those carried by pedestrians). Safety systems may guide drivers on alternative courses of action to allow them to drive more safely and lower the risks of accidents. The next stage will be remote-controlled or self-driving vehicles. These require very reliable, very fast communication between different self-driving vehicles and between vehicles and infrastructure. In the future, self-driving vehicles will execute all driving activities, while drivers are focusing on traffic abnormality elusive to the vehicles themselves. The technical requirements for self-driving vehicles call for ultra-low latencies and ultra-high reliability, increasing traffic safety to levels humans cannot achieve.
Smart cities and smart homes, often referred to as smart society, will be embedded with dense wireless sensor networks. Distributed networks of intelligent sensors will identify conditions for cost- and energy-efficient maintenance of the city or home. A similar setup can be done for each home, where temperature sensors, window and heating controllers, burglar alarms, and home appliances are all connected wirelessly. Many of these sensors are typically characterized by low data rate, low power, and low cost, but for example, real time high definition (HD) video may be required in some types of devices for surveillance.
The consumption and distribution of energy, including heat or gas, is becoming highly decentralized, creating the need for automated control of a very distributed sensor network. A smart grid interconnects such sensors, using digital information and communications technology to gather and act on information. This information may include information about the behaviors of suppliers and consumers, allowing the smart grid to improve the efficiency, reliability, economics and sustainability of the production and distribution of fuels such as electricity in an automated fashion. A smart grid may be seen as another sensor network with low delays.
The health sector has many applications that may benefit from mobile communications. Communications systems enable telemedicine, which provides clinical health care at a distance. It helps eliminate distance barriers and may improve access to medical services that would often not be consistently available in distant rural communities. It is also used to save lives in critical care and emergency situations. Wireless sensor networks based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
Wireless and mobile communications are becoming increasingly important for industrial applications. Wires are expensive to install and maintain, and the possibility of replacing cables with reconfigurable wireless links is a tempting opportunity for many industries. However, achieving this requires that the wireless connection works with a similar delay, reliability and capacity as cables and that its management is simplified. Low delays and very low error probabilities are new requirements that need to be addressed with 5G
Finally, logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages wherever they are by using location-based information systems. The logistics and freight tracking use cases typically require lower data rates but need wide coverage and reliable location information.
A wireless communication system is a multiple access system that supports communication of multiple users by sharing available system resources (a bandwidth, transmission power, etc.). Examples of multiple access systems include a CDMA system, an FDMA system, a TDMA system, an OFDMA system, an SC-FDMA system, and an MC-FDMA system.
Sidelink (SL) refers to a communication scheme in which a direct link is established between user equipments (UEs) and the UEs directly exchange voice or data without intervention of a base station (BS). SL is considered as a solution of relieving the BS of the constraint of rapidly growing data traffic.
Vehicle-to-everything (V2X) is a communication technology in which a vehicle exchanges information with another vehicle, a pedestrian, and infrastructure by wired/wireless communication. V2X may be categorized into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P). V2X communication may be provided via a PC5 interface and/or a Uu interface.
As more and more communication devices demand larger communication capacities, there is a need for enhanced mobile broadband communication relative to existing RATs. Accordingly, a communication system is under discussion, for which services or UEs sensitive to reliability and latency are considered. The next-generation RAT in which eMBB, MTC, and URLLC are considered is referred to as new RAT or NR. In NR, V2X communication may also be supported.
For V2X communication, a technique of providing safety service based on V2X messages such as basic safety message (BSM), cooperative awareness message (CAM), and decentralized environmental notification message (DENM) was mainly discussed in the pre-NR RAT. The V2X message may include location information, dynamic information, and attribute information. For example, a UE may transmit a CAM of a periodic message type and/or a DENM of an event-triggered type to another UE.
For example, the CAM may include basic vehicle information including dynamic state information such as a direction and a speed, vehicle static data such as dimensions, an external lighting state, path details, and so on. For example, the UE may broadcast the CAM which may have a latency less than 100 ms. For example, when an unexpected incident occurs, such as breakage or an accident of a vehicle, the UE may generate the DENM and transmit the DENM to another UE. For example, all vehicles within the transmission range of the UE may receive the CAM and/or the DENM. In this case, the DENM may have priority over the CAM.
In relation to V2X communication, various V2X scenarios are presented in NR. For example, the V2X scenarios include vehicle platooning, advanced driving, extended sensors, and remote driving.
For example, vehicles may be dynamically grouped and travel together based on vehicle platooning. For example, to perform platoon operations based on vehicle platooning, the vehicles of the group may receive periodic data from a leading vehicle. For example, the vehicles of the group may widen or narrow their gaps based on the periodic data.
For example, a vehicle may be semi-automated or full-automated based on advanced driving. For example, each vehicle may adjust a trajectory or maneuvering based on data obtained from a nearby vehicle and/or a nearby logical entity. For example, each vehicle may also share a dividing intention with nearby vehicles.
Based on extended sensors, for example, raw or processed data obtained through local sensor or live video data may be exchanged between vehicles, logical entities, terminals of pedestrians and/or V2X application servers. Accordingly, a vehicle may perceive an advanced environment relative to an environment perceivable by its sensor.
Based on remote driving, for example, a remote driver or a V2X application may operate or control a remote vehicle on behalf of a person incapable of driving or in a dangerous environment. For example, when a path may be predicted as in public transportation, cloud computing-based driving may be used in operating or controlling the remote vehicle. For example, access to a cloud-based back-end service platform may also be used for remote driving.
A scheme of specifying service requirements for various V2X scenarios including vehicle platooning, advanced driving, extended sensors, and remote driving is under discussion in NR-based V2X communication.
The object of embodiment(s) is to provide a method related to discontinuous reception (DRX) timer operation in relation to transmission of a physical sidelink feedback channel (PSFCH) and a physical uplink control channel (PUCCH) when the PUCCH transmission is dropped.
In an aspect of the present disclosure, there is provided a sidelink related operation method for a transmitting user equipment (TX UE) in a wireless communication system. The method may include: receiving, by the TX UE, configurations of a round trip time (RTT) timer and a retransmission timer from a base station; transmitting, by the TX UE, a physical sidelink shared channel (PSSCH) to a receiving user equipment (RX UE); receiving, by the TX UE, a physical sidelink feedback channel (PSFCH) related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a physical uplink control channel (PUCCH) related to the PSFCH to the base station is dropped.
In another aspect of the present disclosure, there is provided a TX UE in a wireless communication system. The TX UE may include: at least one processor; and at least one computer memory operably connected to the at least one processor and configured to store instructions that, when executed, cause the at least one processor to perform operations. The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a base station; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the base station is dropped.
In another aspect of the present disclosure, there is provided a processor configured to perform operations for a TX UE in a wireless communication system. The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a base station; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the base station is dropped.
In a further aspect of the present disclosure, there is provided a non-volatile computer-readable storage medium configured to store at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a TX UE. The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a base station; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the base station is dropped.
The PSFCH may be related to a negative acknowledgement (NACK).
The TX UE may be configured to receive a grant related to a NACK from the base station before the retransmission timer expires.
The TX UE may be configured to operate in a sleep mode from a start of the RTT timer to the expiration of the RTT timer.
The TX UE may be configured to await reception of a grant from the base station from a start of the retransmission timer to expiration of the retransmission timer.
The RTT timer may be DRX-HARQ-RTT-TimerSL, and the retransmission timer may be DRX-HARQ-RetransmissionSL.
The PUCCH may be dropped for reasons related to prioritization.
The TX UE may be configured to operate in mode 1.
The TX UE is configured to communicate with at least one of another user equipment (UE), a UE or base station related to autonomous driving vehicles, or a network.
According to an embodiment, when a base station allocates additional resources even though a transmitting user equipment (TX UE) drops transmission of a physical uplink control channel (PUCCH) to the base station for reasons related to prioritization, etc., the TX UE may receive a signal related to the resource allocation.
The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the disclosure and together with the description serve to explain the principle of the disclosure. In the drawings:
In various embodiments of the present disclosure, “I” and “,” should be interpreted as “and/or”. For example, “A/B” may mean “A and/or B”. Further, “A, B” may mean “A and/or B”. Further, “AB/C” may mean “at least one of A, B and/or C”. Further, “A, B, C” may mean “at least one of A, B and/or C”.
In various embodiments of the present disclosure, “or” should be interpreted as “and/or”. For example, “A or B” may include “only A”, “only B”, and/or “both A and B”. In other words, “or” should be interpreted as “additionally or alternatively”.
Techniques described herein may be used in various wireless access systems such as code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier-frequency division multiple access (SC-FDMA), and so on. CDMA may be implemented as a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented as a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented as a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, evolved-UTRA (E-UTRA), or the like. IEEE 802.16m is an evolution of IEEE 802.16e, offering backward compatibility with an IRRR 802.16e-based system. UTRA is a part of universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using evolved UTRA (E-UTRA). 3GPP LTE employs OFDMA for downlink (DL) and SC-FDMA for uplink (UL). LTE-advanced (LTE-A) is an evolution of 3GPP LTE.
A successor to LTE-A, 5th generation (5G) new radio access technology (NR) is a new clean-state mobile communication system characterized by high performance, low latency, and high availability. 5G NR may use all available spectral resources including a low frequency band below 1 GHz, an intermediate frequency band between 1 GHz and 10 GHz, and a high frequency (millimeter) band of 24 GHz or above.
While the following description is given mainly in the context of LTE-A or 5G NR for the clarity of description, the technical idea of an embodiment of the present disclosure is not limited thereto.
Referring to
eNBs 20 may be connected to each other via an X2 interface. An eNB 20 is connected to an evolved packet core (EPC) 39 via an S1 interface. More specifically, the eNB 20 is connected to a mobility management entity (MME) via an S1-MME interface and to a serving gateway (S-GW) via an S1-U interface.
The EPC 30 includes an MME, an S-GW, and a packet data network-gateway (P-GW). The MME has access information or capability information about UEs, which are mainly used for mobility management of the UEs. The S-GW is a gateway having the E-UTRAN as an end point, and the P-GW is a gateway having a packet data network (PDN) as an end point.
Based on the lowest three layers of the open system interconnection (OSI) reference model known in communication systems, the radio protocol stack between a UE and a network may be divided into Layer 1 (L1), Layer 2 (L2) and Layer 3 (L3). These layers are defined in pairs between a UE and an Evolved UTRAN (E-UTRAN), for data transmission via the Uu interface. The physical (PHY) layer at L1 provides an information transfer service on physical channels. The radio resource control (RRC) layer at L3 functions to control radio resources between the UE and the network. For this purpose, the RRC layer exchanges RRC messages between the UE and an eNB.
Referring to
Data is transmitted on physical channels between different PHY layers, that is, the PHY layers of a transmitter and a receiver. The physical channels may be modulated in orthogonal frequency division multiplexing (OFDM) and use time and frequencies as radio resources.
The MAC layer provides services to a higher layer, radio link control (RLC) on logical channels. The MAC layer provides a function of mapping from a plurality of logical channels to a plurality of transport channels. Further, the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel. A MAC sublayer provides a data transmission service on the logical channels.
The RLC layer performs concatenation, segmentation, and reassembly for RLC serving data units (SDUs). In order to guarantee various quality of service (QoS) requirements of each radio bearer (RB), the RLC layer provides three operation modes, transparent mode (TM), unacknowledged mode (UM), and acknowledged Mode (AM). An AM RLC provides error correction through automatic repeat request (ARQ).
The RRC layer is defined only in the control plane and controls logical channels, transport channels, and physical channels in relation to configuration, reconfiguration, and release of RB s. An RB refers to a logical path provided by L1 (the PHY layer) and L2 (the MAC layer, the RLC layer, and the packet data convergence protocol (PDCP) layer), for data transmission between the UE and the network.
The user-plane functions of the PDCP layer include user data transmission, header compression, and ciphering. The control-plane functions of the PDCP layer include control-plane data transmission and ciphering/integrity protection.
RB establishment amounts to a process of defining radio protocol layers and channel features and configuring specific parameters and operation methods in order to provide a specific service. RBs may be classified into two types, signaling radio bearer (SRB) and data radio bearer (DRB). The SRB is used as a path in which an RRC message is transmitted on the control plane, whereas the DRB is used as a path in which user data is transmitted on the user plane.
Once an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is placed in RRC_CONNECTED state, and otherwise, the UE is placed in RRC_IDLE state. In NR, RRC_INACTIVE state is additionally defined. A UE in the RRC_INACTIVE state may maintain a connection to a core network, while releasing a connection from an eNB.
DL transport channels carrying data from the network to the UE include a broadcast channel (BCH) on which system information is transmitted and a DL shared channel (DL SCH) on which user traffic or a control message is transmitted. Traffic or a control message of a DL multicast or broadcast service may be transmitted on the DL-SCH or a DL multicast channel (DL MCH). UL transport channels carrying data from the UE to the network include a random access channel (RACH) on which an initial control message is transmitted and an UL shared channel (UL SCH) on which user traffic or a control message is transmitted.
The logical channels which are above and mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic channel (MTCH).
A physical channel includes a plurality of OFDM symbol in the time domain by a plurality of subcarriers in the frequency domain. One subframe includes a plurality of OFDM symbols in the time domain. An RB is a resource allocation unit defined by a plurality of OFDM symbols by a plurality of subcarriers. Further, each subframe may use specific subcarriers of specific OFDM symbols (e.g., the first OFDM symbol) in a corresponding subframe for a physical DL control channel (PDCCH), that is, an L1/L2 control channel. A transmission time interval (TTI) is a unit time for subframe transmission.
Referring to
Referring to
Referring to
In a normal CP (NCP) case, each slot may include 14 symbols, whereas in an extended CP (ECP) case, each slot may include 12 symbols. Herein, a symbol may be an OFDM symbol (or CP-OFDM symbol) or an SC-FDMA symbol (or DFT-s-OFDM symbol).
Table 1 below lists the number of symbols per slot (Nslotsymb), the number of slots per frame (Nframe,μslot), and the number of slots per subframe (Nsubframe,μslot) according to an SCS configuration μ in the NCP case.
Table 2 below lists the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to an SCS in the ECP case.
In the NR system, different OFDM(A) numerologies (e.g., SCSs, CP lengths, and so on) may be configured for a plurality of cells aggregated for one UE. Accordingly, the (absolute time) duration of a time resource including the same number of symbols (e.g., a subframe, slot, or TTI) (collectively referred to as a time unit (TU) for convenience) may be configured to be different for the aggregated cells.
In NR, various numerologies or SCSs may be supported to support various 5G services. For example, with an SCS of 15 kHz, a wide area in traditional cellular bands may be supported, while with an SCS of 30/60 kHz, a dense urban area, a lower latency, and a wide carrier bandwidth may be supported. With an SCS of 60 kHz or higher, a bandwidth larger than 24.25 GHz may be supported to overcome phase noise.
An NR frequency band may be defined by two types of frequency ranges, FR1 and FR2. The numerals in each frequency range may be changed. For example, the two types of frequency ranges may be given in [Table 3]. In the NR system, FR1 may be a “sub 6 GHz range” and FR2 may be an “above 6 GHz range” called millimeter wave (mmW).
As mentioned above, the numerals in a frequency range may be changed in the NR system. For example, FR1 may range from 410 MHz to 7125 MHz as listed in [Table 4]. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, and 5925 MHz) or above. For example, the frequency band of 6 GHz (or 5850, 5900, and 5925 MHz) or above may include an unlicensed band. The unlicensed band may be used for various purposes, for example, vehicle communication (e.g., autonomous driving).
Referring to
A carrier includes a plurality of subcarriers in the frequency domain. An RB may be defined by a plurality of (e.g., 12) consecutive subcarriers in the frequency domain. A bandwidth part (BWP) may be defined by a plurality of consecutive (physical) RBs ((P)RBs) in the frequency domain and correspond to one numerology (e.g., SCS, CP length, or the like). A carrier may include up to N (e.g., 5) BWPs. Data communication may be conducted in an activated BWP. Each element may be referred to as a resource element (RE) in a resource grid, to which one complex symbol may be mapped.
A radio interface between UEs or a radio interface between a UE and a network may include L1, L2, and L3. In various embodiments of the present disclosure, L1 may refer to the PHY layer. For example, L2 may refer to at least one of the MAC layer, the RLC layer, the PDCH layer, or the SDAP layer. For example, L3 may refer to the RRC layer.
Now, a description will be given of sidelink (SL) communication.
For example,
For example,
Referring to
For example, the first UE may receive information related to a Dynamic Grant (DG) resource and/or information related to a Configured Grant (CG) resource from the BS. For example, the CG resource may include a CG type 1 resource or a CG type 2 resource. In the present specification, the DG resource may be a resource that the BS configures/allocates to the first UE in Downlink Control Information (DCI). In the present specification, the CG resource may be a (periodic) resource configured/allocated by the BS to the first UE in DCI and/or an RRC message. For example, for the CG type 1 resource, the BS may transmit an RRC message including information related to the CG resource to the first UE. For example, for the CG type 2 resource, the BS may transmit an RRC message including information related to the CG resource to the first UE, and the BS may transmit DCI related to activation or release of the CG resource to the first UE.
In step S8010, the first UE may transmit a physical sidelink control channel (PSCCH) (e.g., Sidelink Control Information (SCI) or 1st-stage SCI) to a second UE based on the resource scheduling. In step S8020, the first UE may transmit a physical sidelink shared channel (PSSCH) (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second UE. In step S8030, the first UE may receive a physical sidelink feedback channel (PSFCH) related to the PSCCH/PSSCH from the second UE. For example, HARQ feedback information (e.g., NACK information or ACK information) may be received from the second UE over the PSFCH. In step S8040, the first UE may transmit/report HARQ feedback information to the BS over a PUCCH or PUSCH. For example, the HARQ feedback information reported to the BS may include information generated by the first UE based on HARQ feedback information received from the second UE. For example, the HARQ feedback information reported to the BS may include information generated by the first UE according to a predetermined rule. For example, the DCI may be DCI for scheduling of SL. For example, the format of the DCI may include DCI format 3_0 or DCI format 3_1. Table 5 shows one example of DCI for scheduling of SL.
Referring to
Referring to
Table 7 shows one example of a 2nd-stage SCI format.
Referring to
Referring to
Sidelink (SL) Discontinuous Reception (DRX)
A MAC entity may be configured by an RRC as a DRX function of controlling a PDCCH monitoring activity of a UE for C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, SFI-RNTI, SP-CSI-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, TPC-SRS-RNTI, AI-RNTI, SL-RNTI, SLCS-RNTI, and SL Semi-Persistent Scheduling V-RNTI of the MAC entity. When using a DRX operation, a MAC entity should monitor PDCCH according to prescribed requirements. When DRX is configured in RRC_CONNECTED, a MAC entity may discontinuously monitor PDCCH for all activated serving cells.
RRC may control a DRX operation by configuring the following parameters.
A serving cell of a MAC entity may be configured by RRC in two DRX groups having separate DRX parameters. When the RRC does not configure a secondary DRX group, a single DRX group exists only and all serving cells belong to the single DRX group. When two DRX groups are configured, each serving cell is uniquely allocated to each of the two groups. DRX parameters separately configured for each DRX group include drx-onDurationTimer and drx-InactivityTimer. A DRX parameter common to a DRX group is as follows.
drx-onDurationTimer, drx-InactivityTimer.
DRX parameters common to a DRX group are as follows.
drx-SlotOffset, drx-RetransmissionTimerDL, drx-Retrans drx-SlotOffset, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, drx-ShortCycle (optional), drx-ShortCycleTimer (optional), drx-HARQ-RTT-TimerDL, and drx-HARQ-RTT-TimerUL.
For the Uu DRX operation, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, and drx-RetransmissionTimerUL are defined in the prior art. When the UE performs HARQ retransmission, the UE may be allowed to transition to the sleep mode during an RTT timer (drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, etc.) or maintain the active state during a retransmission timer (drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, etc.).
In addition, for details of SL DRX, SL DRX-related contents of TS 38.321, TS 38.331 and R2-2111419 may be referred to as the related art.
Release 16 NR V2X did not support the power saving (PS) operation of the UE, but Release 17 NR V2X plans to support the PS operation of the UE (e.g., PS UE). For the PS operation (e.g., SL DRX operation) of the UE, SL DRX configurations to be used by the PS UE (P-UE) (e.g., SL DRX cycle, SL DRX ON duration, SL DRX OFF duration, timers for supporting SL DRX operation, etc.) need to be defined. In addition, the operations of a transmitting UE (TX UE) and a receiving UE (RX UE) in the ON duration (i.e., a duration in which SL reception/transmission is allowed) and/or OFF Duration (i.e., a duration in which the UE operates in sleep mode) also need to be defined.
In embodiment(s) of the present disclosure, there are proposed methods in which an RX UE receives SCI (containing information on reserved transmission resources) and a PSSCH (i.e., SL data) associated with the SCI, which are transmitted from a TX UE, and performs SL PS operation based on the information on reserved transmission resource included in the SCI. Herein, the following expressions ‘when’, ‘if’, and/or ‘in case of’ may be replaced with ‘based on’.
The present disclosure relates to SL DRX operation. Specifically, the present disclosure proposes that an SL UE (e.g., mode 1 TX UE or mode 2 TX UE) performs (mode 1) DCI monitoring when SL-related PUCCH/PUSCH transmission is dropped due to prioritization issues.
To this end, the present disclosure proposes the configurations of timers for a TX UE operating in DRX mode (i.e., DRX TX UE) when the TX UE attempts to report an SL NACK or ACK to the BS but fails to transmit the SL NACK or ACK due to prioritization issues (i.e., transmission is dropped), regarding the mode 1 operation (including both the CG and DG). In this case, the dropped information may include not only PUCCH information but also PUSCH information. The reason for this is that the TX UE may piggy back the SL ACK/NACK information over a PUSCH to report the SL ACK/NACK information. In addition, this operation may be applied to both a HARQ feedback enabled MAC PDU and a HARQ feedback disabled MAC PDU. This is because even for the HARQ feedback disabled MAC PDU, the TX UE may transmit a NACK over a PUCCH/PUSCH to receive additional allocation of resources required for SL transmission. Hereinafter, details of the present disclosure will be described.
According to an embodiment, a TX UE may be configured with an RTT timer and a retransmission timer from a BS (S1201 in
Thereafter, the TX UE may transmit a PSSCH to an RX UE (S1202 in
In this case, the retransmission timer may be started based on dropping of PUCCH transmission to the BS, wherein the PUCCH transmission is related to the PSFCH. In other words, the retransmission timer may be started even though the PUCCH transmission to the BS related to the PSFCH is dropped.
Specifically, as described in
In the above operations, even if the TX UE drops the PUCCH transmission to the BS for reasons related to prioritization, etc., it may be ambiguous whether the TX UE needs to operate the RTT timer and the retransmission timer. To solve this issue, the following operations are proposed in embodiments: when the SL DRX (TX) UE transmits (or attempt to transmit) NACK information to the BS, if a PUCCH/PUSCH transmission packet is dropped, the SL DRX (TX) UE may start the RTT timer for an associated HARQ process ID. When the RTT timer expires, the SL DRX (TX) UE may start the retransmission (TX) timer.
According to the above configuration, when the BS allocates additional resources even if the TX UE drops the PUCCH transmission to the BS for reasons related to prioritization, etc., the TX UE may receive a signal related to the resource allocation.
Next, the TX UE may receive a grant related to the NACK from the BS before the retransmission timer expires.
The RTT timer may be DRX-HARQ-RTT-TimerSL, and the retransmission timer may be DRX-HARQ-RetransmissionSL. If specific timers have the same characteristics even though the timers have different names, the timers may be regarded as the timer of the present disclosure.
In relation to the above-described embodiment, an apparatus for a TX UE is provided. The TX UE may include: at least one processor; and at least one computer memory operably connected to the at least one processor and configured to store instructions that, when executed, cause the at least one processor to perform operations. The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a BS; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the BS is dropped.
In addition, there is provided a processor configured to perform operations for a TX UE. The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a BS; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the BS is dropped.
Further, there is provided a non-volatile computer-readable storage medium configured to store at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a TX UE. The operations may include: The operations may include: receiving, by the TX UE, configurations of an RTT timer and a retransmission timer from a BS; transmitting, by the TX UE, a PSSCH to an RX UE; receiving, by the TX UE, a PSFCH related to the PSSCH from the RX UE; starting, by the TX UE, the RTT timer; and starting, by the TX UE, the retransmission timer after expiration of the RTT timer. The retransmission timer may be started based on that transmission of a PUCCH related to the PSFCH to the BS is dropped.
According to one embodiment, when the TX UE drops PUCCH transmission to the BS for reasons related to prioritization, etc., the TX UE may start the RTT timer for an associated HARQ process ID. When the RTT timer expires, the TX UE may not start the retransmission (TX) timer.
In this case, the mode 1 TX UE may be configured to flush a buffer related to the corresponding HARQ process (when a PUCCH/PUSCH transmission packet and/or MAC PDU is dropped). That is, when NACK information to be transmitted to the BS is dropped, the DRX TX UE may determine that there will be no additional resource allocation and operate the RTT timer as described above. When the RTT timer expires, the DRX TX UE may not operate the retransmission (TX) timer, that is, the DRX TX UE may not switch to the ‘ON’ state.
As another example, when the TX UE drops PUCCH transmission to the BS for reasons related to prioritization, etc., the TX UE may start the retransmission (TX) timer for an associated HARQ process ID without starting the RTT timer. In this operation, it may be assumed that the BS may not determine an ACK/NACK because the BS receives no NACK information, and thus, the BS may determine a NACK and allocate additional resources to the TX UE. In other words, even though the NACK information is dropped, the TX UE may expect that the BS will allocate additional resources. However, since the TX UE does not know after what time the resources will be allocated, the TX UE may expect the resource allocation by starting the retransmission (TX) timer without operating the RTT timer.
As a further example, the TX UE may not start the RTT timer and the retransmission (TX) timer for an associated HARQ process ID. For example, the mode 1 TX UE may be configured to flush a buffer related to the corresponding HARQ process (if PUCCH transmission is dropped). That is, the TX UE may not start the RTT timer and the retransmission (TX) timer and flush the associated HARQ process, so that the TX UE may expect that there is no additional resource allocation for a NACK, which the TX UE fails to transmit.
In the above description, when the TX UE starts the retransmission (TX) timer due to dropping of NACK transmission over a PUCCH/PUSCH, the TX UE may operate (start) the retransmission (TX) timer based on information that the TX UE intends to transmit or information received from the RX UE over a PSFCH, regardless of whether or not the PUCCH is actually transmitted. This corresponds to a condition for the mode 1 TX UE to start the retransmission (TX) timer (related to mode 1 DCI monitoring), which may mean the following cases: “when the TX UE transmits (or attempts to transmit) NACK information over a PUCCH” or “when the TX UE receives NACK information from the RX UE over a PSFCH”. This condition may be different from that for starting the retransmission (TX) timer after the RTT timer expires when DL data decoding fails, which is defined in the current Uu specification.
Hereinafter, embodiments will be described for cases in which an ACK is dropped among cases in which the TX UE drops PUCCH transmission to the BS for reasons related to prioritization, etc.
When the TX UE transmits (or attempts to transmit) ACK information, if a PUCCH/PUSCH transmission packet is dropped, the TX UE may start the RTT timer for an associated HARQ process ID. When the RTT timer expires, the TX UE may start the retransmission (TX) timer.
In this case, for example, when the mode 1 TX UE receives a retransmission (TX) DG and related PUCCH/PUSCH resources from the BS, the mode 1 TX UE may be configured to not perform SL transmission on the retransmission (TX) DG (or perform SL transmission on the retransmission (TX) DG (based on preconfigured dummy information)) and report ACK information on the PUCCH/PUSCH resources. That is, the mode 1 TX UE may prevent the BS from allocating unnecessary SL resources by transmitting the dropped ACK information to the BS on the PUCCH/PUSCH resources. In other words, the mode 1 TX UE may help the BS perform resource scheduling or efficiently use resources. In this case, the mode 1 TX UE may flush an associated HARQ process buffer after reporting the ACK information.
If PUCCH transmission including SL HARQ feedback, which corresponds to ACK information, is dropped, the mode 1 UE may be configured to start a Uu DRX RTT timer and then start a Uu DRX retransmission timer (after the Uu DRX RTT timer expires). For example, when the above-described rule is applied, if the mode 1 UE receives a retransmission grant (e.g., DG) related to an associated HARQ process from the BS, the mode 1 UE may be configured to transmit ACK information over a PUCCH related to the corresponding retransmission grant. Then, the mode 1 UE may be configured to end the Uu DRX retransmission timer (related to the associated HARQ process) (for example, the Uu DRX retransmission timer may expire based on the time at which the ACK information is repeatedly transmitted). The above-described rule may be limitedly applied to the following cases: when the mode 1 UE performs Uu DRX operation (related to mode 1 DCI monitoring), when the mode 1 UE performs SL DRX operation, and/or when the mode 1 UE is a predetermined type of UE (e.g., PS UE, pedestrian UE, etc.).
When the TX UE transmits (or attempt to transmit) ACK information, if a PUCCH/PUSCH transmission packet is dropped, the TX UE may start the RTT timer for an associated HARQ process ID. When the RTT timer expires, the TX UE may not start the retransmission (TX) timer. In this case, for example, the mode 1 TX UE may be configured to flush a buffer related to the corresponding HARQ process (if PUCCH transmission is dropped).
That is, according to the above method, when the TX UE attempts to transmit an ACK but the ACK is dropped, the TX UE may operate in the same way as when the TX UE transmits the ACK to the BS. Since the TX UE no longer needs to use resources allocated by the BS, the TX UE may not start the retransmission (TX) timer, that is, the TX UE may not monitor DCI. However, compared to the above-described method where the retransmission (TX) timer starts when the RTT timer expires, the BS may continuously allocate SL resources because the BS is incapable of determining an ACK/NACK. As a result, there may be disadvantages in terms of resource management.
When the TX UE transmits (or attempt to transmit) ACK information, if a PUCCH/PUSCH transmission packet is dropped, the TX UE may start the retransmission (TX) timer for an associated HARQ process ID without starting the RTT timer. In this case, for example, when the mode 1 TX UE receives a retransmission (TX) DG and related PUCCH resources from the BS, the mode 1 TX UE may be configured not to perform SL transmission on the retransmission (TX) DG (or perform SL transmission on the retransmission (TX) DG (based on preconfigured dummy information)) and report ACK information on the PUCCH/PUSCH resources.
In this case, the mode 1 TX UE may prevent the BS from allocating SL resources that the UE does not need by transmitting the dropped ACK information on the PUCCH/PUSCH resources, which are allocated by the BS. The above method and the method of starting the retransmission (TX) timer when the RTT timer expires may have the following differences. In the above method, the retransmission (TX) timer (i.e., DCI monitoring) operates immediately from the time when the ACK is dropped without operating the RTT timer. Thus, the power consumption effect may decrease compared to the method of starting the retransmission (TX) timer when the RTT timer expires. However, the above method may have an advantage of rapidly detecting potential PUCCH/PUSCH resources.
When the TX UE transmits (or attempt to transmit) ACK information, if a PUCCH/PUSCH transmission packet is dropped, the TX UE may not start the RTT timer and the retransmission (TX) timer for an associated HARQ process ID. In this case, for example, the mode 1 TX UE may be configured to flush a buffer related to the corresponding HARQ process (if PUCCH transmission is dropped).
That is, even if the ACK is dropped, the UE may not operate the RTT timer and the retransmission (TX) timer. Thus, the UE may no longer perform an operation of monitoring DCI related to the corresponding HARQ process.
Regarding the above methods, when the TX UE starts the retransmission (TX) timer due to dropping of ACK transmission on a PUCCH/PUSCH, the TX UE may operate (and/or start) the retransmission timer only depending on whether the PUCCH is dropped, regardless of information that the TX UE attempts to transmit or information received from the RX UE over a PSFCH. Alternatively, when the TX UE does not start the retransmission (TX) timer due to dropping of ACK transmission over a PUCCH/PUSCH, the TX UE may not operate (and/or start) the retransmission (TX) timer depending on the information that the TX UE attempts to transmit or the information received from the RX UE over the PSFCH, regardless of whether the PUCCH is actually transmitted or not.
The above-described RTT timer, which is a timer for Uu DRX operation, may be replaced with HARQ-RTT-TimerSL or DRX-HARQ-RTT-TimerSL, and the retransmission (TX) timer may be replaced with DRX-HARQ-RetransmissionSL. The time at which the RTT timer or retransmission (TX) timer described above starts may be determined based on a predefined (and/or configured) reference time. In this case, the predefined (and/or configured) reference time may include the following cases as well as the time at which an ACK/NACK signal is to be transmitted over a PUCCH/PUSCH. For example, for a MAC PUD where HARQ feedback is enabled (HARQ feedback enabled MAC PUD), the timer may be started based on PSFCH resources. For a MAC PUD where HARQ feedback (and/or blind retransmission) is disabled (HARQ feedback disabled MAC PDU), the timer may be started based on first transmission. In addition, it is obvious that the above description is equally applicable to (distance-based) NACK-only feedback methods.
The embodiments may be applied when a UE receives SCI from another UE at the end of an SL active time (i.e., a duration in which the UE monitors SL channels or signals) and when a next transmission resource reserved by the SCI received within the active time is within an SL inactive time (i.e., a duration in which the UE does not need to monitor SL channels or signals, that is, a duration in which the UE is capable of operating in the PS mode). In addition, the embodiments may be equally applied to the SL active time duration and the SL inactive time duration of the UE.
The proposals of the present disclosure may be extended and applied not only to a default/common SL DRX configuration, a default/common SL DRX pattern, or parameters (and timers) included in the default/common SL DRX configuration but also to a UE-pair specific SL DRX configuration, a UE-pair specific SL DRX pattern, or parameters (and timers) included in the UE-pair specific SL DRX configuration. In addition, the term “ON duration” mentioned in the proposals of the present disclosure may be extended and interpreted as an active time duration (i.e., a duration in which the UE operates in the wake-up state (RF modules are “ON”) to receive/transmit radio signals). The term “OFF duration” may be extended and interpreted as a sleep time duration (i.e., a duration in which the UE operates in the sleep mode (RF modules are “OFF”) for power saving). (Which does not mean that the TX UE needs to operate in the sleep mode during the sleep time duration. If necessary, even during sleep time duration, the TX UE may be allowed to operate as in the active time for a while for sensing/transmission.) The application of the proposed methods/rules of the present disclosure (or some thereof) and/or related parameters (e.g., threshold) may be configured specifically (differently or independently) depending on resource pools, congestion levels, service priorities (and/or types), requirements (e.g., latency, reliability, etc.), traffic types (e.g., periodic generation, aperiodic generation, etc.), SL transmission resource allocation modes (e.g., mode 1, mode 2, etc.), and so on.
For example, the application of the proposed rules of the present disclosure (and/or related parameter configuration values) may be configured specifically (differently and/or independently) depending on at least one of the following: UE types (e.g., PS UE), resource pools, service/packet types (and/or priorities), QoS requirements (e.g., URLLC/EMBB traffic, reliability, latency, etc.), cast types (e.g., unicast, groupcast, broadcast, etc.), (resource pool) congestion levels (e.g., CBR), SL HARQ feedback methods (e.g., NACK-only feedback, ACK/NACK feedback, etc.), when a HARQ feedback enabled MAC PDU (and/or HARQ feedback disabled MAC PDU) is transmitted, whether an operation of reporting PUCCH-based SL HARQ feedback is configured, when the SL DRX operation is performed, when pre-emption (and/or re-evaluation) is performed (or when resources are reselected based thereon), (L2 or L1) (source and/or destination) identifiers, PC5 RRC connections/links, when SL DRX is performed, SL mode types (resource allocation mode 1, resource allocation mode 2, etc.), when periodic (or aperiodic) resource reservation is performed, etc.
The term “a certain period of time” mentioned in the proposals of the present disclosure may refer to a predefined period of time for which the UE operates as in the active time or a period of time for which the UE operates as in the active time based on a specific timer (e.g., an SL DRX retransmission timer, an SL DRX inactivity timer, or a timer that guarantees that the RX UE operates as in the active time during DRX operation) in order to receive SL signals or SL data from other UEs.
The application of the proposals and rules proposed in the present disclosure (and/or related parameter configuration values) may also be applied to millimeter wave (mmWave) SL operations.
The various descriptions, functions, procedures, proposals, methods, and/or operational flowcharts of the present disclosure described in this document may be applied to, without being limited to, a variety of fields requiring wireless communication/connection (e.g., 5G) between devices.
Hereinafter, a description will be given in more detail with reference to the drawings. In the following drawings/description, the same reference symbols may denote the same or corresponding hardware blocks, software blocks, or functional blocks unless described otherwise.
Referring to
The wireless devices 100a to 100f may be connected to the network 300 via the BSs 200. An AI technology may be applied to the wireless devices 100a to 100f and the wireless devices 100a to 100f may be connected to the AI server 400 via the network 300. The network 300 may be configured using a 3G network, a 4G (e.g., LTE) network, or a 5G (e.g., NR) network. Although the wireless devices 100a to 100f may communicate with each other through the BSs 200/network 300, the wireless devices 100a to 100f may perform direct communication (e.g., sidelink communication) with each other without passing through the BSs/network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. V2V/V2X communication). The IoT device (e.g., a sensor) may perform direct communication with other IoT devices (e.g., sensors) or other wireless devices 100a to 100f.
Wireless communication/connections 150a, 150b, or 150c may be established between the wireless devices 100a to 100f/BS 200, or BS 200/BS 200. Herein, the wireless communication/connections may be established through various RATs (e.g., 5G NR) such as UL/DL communication 150a, sidelink communication 150b (or, D2D communication), or inter BS communication (e.g. relay, integrated access backhaul (IAB)). The wireless devices and the BS s/the wireless devices may transmit/receive radio signals to/from each other through the wireless communication/connections 150a and 150b. For example, the wireless communication/connections 150a and 150b may transmit/receive signals through various physical channels. To this end, at least a part of various configuration information configuring processes, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, and resource mapping/demapping), and resource allocating processes, for transmitting/receiving radio signals, may be performed based on the various proposals of the present disclosure.
Referring to
The first wireless device 100 may include one or more processors 102 and one or more memories 104 and additionally further include one or more transceivers 106 and/or one or more antennas 108. The processor(s) 102 may control the memory(s) 104 and/or the transceiver(s) 106 and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. For example, the processor(s) 102 may process information within the memory(s) 104 to generate first information/signals and then transmit radio signals including the first information/signals through the transceiver(s) 106. The processor(s) 102 may receive radio signals including second information/signals through the transceiver 106 and then store information obtained by processing the second information/signals in the memory(s) 104. The memory(s) 104 may be connected to the processor(s) 102 and may store a variety of information related to operations of the processor(s) 102. For example, the memory(s) 104 may store software code including commands for performing a part or the entirety of processes controlled by the processor(s) 102 or for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Herein, the processor(s) 102 and the memory(s) 104 may be a part of a communication modem/circuit/chip designed to implement RAT (e.g., LTE or NR). The transceiver(s) 106 may be connected to the processor(s) 102 and transmit and/or receive radio signals through one or more antennas 108. Each of the transceiver(s) 106 may include a transmitter and/or a receiver. The transceiver(s) 106 may be interchangeably used with Radio Frequency (RF) unit(s). In the present disclosure, the wireless device may represent a communication modem/circuit/chip.
The second wireless device 200 may include one or more processors 202 and one or more memories 204 and additionally further include one or more transceivers 206 and/or one or more antennas 208. The processor(s) 202 may control the memory(s) 204 and/or the transceiver(s) 206 and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. For example, the processor(s) 202 may process information within the memory(s) 204 to generate third information/signals and then transmit radio signals including the third information/signals through the transceiver(s) 206. The processor(s) 202 may receive radio signals including fourth information/signals through the transceiver(s) 106 and then store information obtained by processing the fourth information/signals in the memory(s) 204. The memory(s) 204 may be connected to the processor(s) 202 and may store a variety of information related to operations of the processor(s) 202. For example, the memory(s) 204 may store software code including commands for performing a part or the entirety of processes controlled by the processor(s) 202 or for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Herein, the processor(s) 202 and the memory(s) 204 may be a part of a communication modem/circuit/chip designed to implement RAT (e.g., LTE or NR). The transceiver(s) 206 may be connected to the processor(s) 202 and transmit and/or receive radio signals through one or more antennas 208. Each of the transceiver(s) 206 may include a transmitter and/or a receiver. The transceiver(s) 206 may be interchangeably used with RF unit(s). In the present disclosure, the wireless device may represent a communication modem/circuit/chip.
Hereinafter, hardware elements of the wireless devices 100 and 200 will be described more specifically. One or more protocol layers may be implemented by, without being limited to, one or more processors 102 and 202. For example, the one or more processors 102 and 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP). The one or more processors 102 and 202 may generate one or more Protocol Data Units (PDUs) and/or one or more service data unit (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. The one or more processors 102 and 202 may generate messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. The one or more processors 102 and 202 may generate signals (e.g., baseband signals) including PDUs, SDUs, messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document and provide the generated signals to the one or more transceivers 106 and 206. The one or more processors 102 and 202 may receive the signals (e.g., baseband signals) from the one or more transceivers 106 and 206 and acquire the PDUs, SDUs, messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
The one or more processors 102 and 202 may be referred to as controllers, microcontrollers, microprocessors, or microcomputers. The one or more processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof. As an example, one or more application specific integrated circuits (ASICs), one or more digital signal processors (DSPs), one or more digital signal processing devices (DSPDs), one or more programmable logic devices (PLDs), or one or more field programmable gate arrays (FPGAs) may be included in the one or more processors 102 and 202. The descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software and the firmware or software may be configured to include the modules, procedures, or functions. Firmware or software configured to perform the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be included in the one or more processors 102 and 202 or stored in the one or more memories 104 and 204 so as to be driven by the one or more processors 102 and 202. The descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of code, commands, and/or a set of commands.
The one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 and store various types of data, signals, messages, information, programs, code, instructions, and/or commands. The one or more memories 104 and 204 may be configured by read-only memories (ROMs), random access memories (RAMs), electrically erasable programmable read-only memories (EPROMs), flash memories, hard drives, registers, cash memories, computer-readable storage media, and/or combinations thereof. The one or more memories 104 and 204 may be located at the interior and/or exterior of the one or more processors 102 and 202. The one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as wired or wireless connection.
The one or more transceivers 106 and 206 may transmit user data, control information, and/or radio signals/channels, mentioned in the methods and/or operational flowcharts of this document, to one or more other devices. The one or more transceivers 106 and 206 may receive user data, control information, and/or radio signals/channels, mentioned in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document, from one or more other devices. For example, the one or more transceivers 106 and 206 may be connected to the one or more processors 102 and 202 and transmit and receive radio signals. For example, the one or more processors 102 and 202 may perform control so that the one or more transceivers 106 and 206 may transmit user data, control information, or radio signals to one or more other devices. The one or more processors 102 and 202 may perform control so that the one or more transceivers 106 and 206 may receive user data, control information, or radio signals from one or more other devices. The one or more transceivers 106 and 206 may be connected to the one or more antennas 108 and 208 and the one or more transceivers 106 and 206 may be configured to transmit and receive user data, control information, and/or radio signals/channels, mentioned in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document, through the one or more antennas 108 and 208. In this document, the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (e.g., antenna ports). The one or more transceivers 106 and 206 may convert received radio signals/channels etc. from RF band signals into baseband signals in order to process received user data, control information, radio signals/channels, etc. using the one or more processors 102 and 202. The one or more transceivers 106 and 206 may convert the user data, control information, radio signals/channels, etc. processed using the one or more processors 102 and 202 from the base band signals into the RF band signals. To this end, the one or more transceivers 106 and 206 may include (analog) oscillators and/or filters.
Referring to
The communication unit 110 may transmit and receive signals (e.g., data and control signals) to and from external devices such as other vehicles, BSs (e.g., gNBs and road side units), and servers. The control unit 120 may perform various operations by controlling elements of the vehicle or the autonomous driving vehicle 100. The control unit 120 may include an ECU. The driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to drive on a road. The driving unit 140a may include an engine, a motor, a powertrain, a wheel, a brake, a steering device, etc. The power supply unit 140b may supply power to the vehicle or the autonomous driving vehicle 100 and include a wired/wireless charging circuit, a battery, etc. The sensor unit 140c may acquire a vehicle state, ambient environment information, user information, etc. The sensor unit 140c may include an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, a slope sensor, a weight sensor, a heading sensor, a position module, a vehicle forward/backward sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illumination sensor, a pedal position sensor, etc. The autonomous driving unit 140d may implement technology for maintaining a lane on which a vehicle is driving, technology for automatically adjusting speed, such as adaptive cruise control, technology for autonomously driving along a determined path, technology for driving by automatically setting a path if a destination is set, and the like.
For example, the communication unit 110 may receive map data, traffic information data, etc. from an external server. The autonomous driving unit 140d may generate an autonomous driving path and a driving plan from the obtained data. The control unit 120 may control the driving unit 140a such that the vehicle or the autonomous driving vehicle 100 may move along the autonomous driving path according to the driving plan (e.g., speed/direction control). In the middle of autonomous driving, the communication unit 110 may aperiodically/periodically acquire recent traffic information data from the external server and acquire surrounding traffic information data from neighboring vehicles. In the middle of autonomous driving, the sensor unit 140c may obtain a vehicle state and/or surrounding environment information. The autonomous driving unit 140d may update the autonomous driving path and the driving plan based on the newly obtained data/information. The communication unit 110 may transfer information about a vehicle position, the autonomous driving path, and/or the driving plan to the external server. The external server may predict traffic information data using AI technology, etc., based on the information collected from vehicles or autonomous driving vehicles and provide the predicted traffic information data to the vehicles or the autonomous driving vehicles.
Referring to
The communication unit 110 may transmit and receive signals (e.g., data and control signals) to and from external devices such as other vehicles or BSs. The control unit 120 may perform various operations by controlling constituent elements of the vehicle 100. The memory unit 130 may store data/parameters/programs/code/commands for supporting various functions of the vehicle 100. The I/O unit 140a may output an AR/VR object based on information within the memory unit 130. The I/O unit 140a may include an HUD. The positioning unit 140b may acquire information about the position of the vehicle 100. The position information may include information about an absolute position of the vehicle 100, information about the position of the vehicle 100 within a traveling lane, acceleration information, and information about the position of the vehicle 100 from a neighboring vehicle. The positioning unit 140b may include a GPS and various sensors.
As an example, the communication unit 110 of the vehicle 100 may receive map information and traffic information from an external server and store the received information in the memory unit 130. The positioning unit 140b may obtain the vehicle position information through the GPS and various sensors and store the obtained information in the memory unit 130. The control unit 120 may generate a virtual object based on the map information, traffic information, and vehicle position information and the I/O unit 140a may display the generated virtual object in a window in the vehicle (1410 and 1420). The control unit 120 may determine whether the vehicle 100 normally drives within a traveling lane, based on the vehicle position information. If the vehicle 100 abnormally exits from the traveling lane, the control unit 120 may display a warning on the window in the vehicle through the I/O unit 140a. In addition, the control unit 120 may broadcast a warning message regarding driving abnormity to neighboring vehicles through the communication unit 110. According to situation, the control unit 120 may transmit the vehicle position information and the information about driving/vehicle abnormality to related organizations.
Referring to
The communication unit 110 may transmit and receive signals (e.g., media data and control signals) to and from external devices such as other wireless devices, hand-held devices, or media servers. The media data may include video, images, and sound. The control unit 120 may perform various operations by controlling constituent elements of the XR device 100a. For example, the control unit 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing. The memory unit 130 may store data/parameters/programs/code/commands needed to drive the XR device 100a/generate XR object. The I/O unit 140a may obtain control information and data from the exterior and output the generated XR object. The I/O unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 140b may obtain an XR device state, surrounding environment information, user information, etc. The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone and/or a radar. The power supply unit 140c may supply power to the XR device 100a and include a wired/wireless charging circuit, a battery, etc.
For example, the memory unit 130 of the XR device 100a may include information (e.g., data) needed to generate the XR object (e.g., an AR/VR/MR object). The I/O unit 140a may receive a command for manipulating the XR device 100a from a user and the control unit 120 may drive the XR device 100a according to a driving command of a user. For example, when a user desires to watch a film or news through the XR device 100a, the control unit 120 transmits content request information to another device (e.g., a hand-held device 100b) or a media server through the communication unit 130. The communication unit 130 may download/stream content such as films or news from another device (e.g., the hand-held device 100b) or the media server to the memory unit 130. The control unit 120 may control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing with respect to the content and generate/output the XR object based on information about a surrounding space or a real object obtained through the I/O unit 140a/sensor unit 140b.
The XR device 100a may be wirelessly connected to the hand-held device 100b through the communication unit 110 and the operation of the XR device 100a may be controlled by the hand-held device 100b. For example, the hand-held device 100b may operate as a controller of the XR device 100a. To this end, the XR device 100a may obtain information about a 3D position of the hand-held device 100b and generate and output an XR object corresponding to the hand-held device 100b.
Referring to
The communication unit 110 may transmit and receive signals (e.g., driving information and control signals) to and from external devices such as other wireless devices, other robots, or control servers. The control unit 120 may perform various operations by controlling constituent elements of the robot 100. The memory unit 130 may store data/parameters/programs/code/commands for supporting various functions of the robot 100. The I/O unit 140a may obtain information from the exterior of the robot 100 and output information to the exterior of the robot 100. The I/O unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 140b may obtain internal information of the robot 100, surrounding environment information, user information, etc. The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, a radar, etc. The driving unit 140c may perform various physical operations such as movement of robot joints. In addition, the driving unit 140c may cause the robot 100 to travel on the road or to fly. The driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, etc.
Referring to
The communication unit 110 may transmit and receive wired/radio signals (e.g., sensor information, user input, learning models, or control signals) to and from external devices such as other AI devices (e.g., 100x, 200, or 400 of
The control unit 120 may determine at least one feasible operation of the AI device 100, based on information which is determined or generated using a data analysis algorithm or a machine learning algorithm. The control unit 120 may perform an operation determined by controlling constituent elements of the AI device 100. For example, the control unit 120 may request, search, receive, or use data of the learning processor unit 140c or the memory unit 130 and control the constituent elements of the AI device 100 to perform a predicted operation or an operation determined to be preferred among at least one feasible operation. The control unit 120 may collect history information including the operation contents of the AI device 100 and operation feedback by a user and store the collected information in the memory unit 130 or the learning processor unit 140c or transmit the collected information to an external device such as an AI server (400 of
The memory unit 130 may store data for supporting various functions of the AI device 100. For example, the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data of the learning processor unit 140c, and data obtained from the sensor unit 140. The memory unit 130 may store control information and/or software code needed to operate/drive the control unit 120.
The input unit 140a may acquire various types of data from the exterior of the AI device 100. For example, the input unit 140a may acquire learning data for model learning, and input data to which the learning model is to be applied. The input unit 140a may include a camera, a microphone, and/or a user input unit. The output unit 140b may generate output related to a visual, auditory, or tactile sense. The output unit 140b may include a display unit, a speaker, and/or a haptic module. The sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information, using various sensors. The sensor unit 140 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, and/or a radar.
The learning processor unit 140c may learn a model consisting of artificial neural networks, using learning data. The learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server (400 of
The above-described embodiments of the present disclosure are applicable to various mobile communication systems.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0028278 | Mar 2021 | KR | national |
10-2021-0029628 | Mar 2021 | KR | national |
10-2021-0102407 | Aug 2021 | KR | national |
This application is a continuation of International Application No. PCT/KR2022/003016, filed on Mar. 3, 2022, which claims the benefit of Korean Application Nos. 10-2021-0102407, filed on Aug. 4, 2021, 10-2021-0029628, filed on Mar. 5, 2021, and 10-2021-0028278, filed on Mar. 3, 2021. The disclosures of the prior applications are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2022/003016 | Mar 2022 | US |
Child | 18348024 | US |