This invention is directed to an ultra-fast surface treatment method that results in hard, wear, corrosion and erosion resistant, and low-friction surface layers on metallic substrates. More particularly, the present invention relates to an ultra fast electrochemical boriding technique which can lead to dramatic improvements in the mechanical and tribological properties of treated metal surfaces, ferrous and non-ferrous.
Most mechanical components used in a variety of rolling, rotating, or sliding bearing applications, as well as those that are used in metal-cutting and—forming operations, rely strongly on high hardness and low friction surface properties of base metals for high performance and durability during use. In a dusty, sandy, and corrosive environment, high resistance to erosion and corrosion becomes important. There are numerous surface treatment methods that are currently used to enhance the near-surface properties of engineering components. Some of these methods (such as nitriding, carburizing, carbonitriding, and boriding) are theremo-chemical in nature and based on thermal diffusion of carbon, nitrogen, and boron atoms into the near surface regions of these components at high temperatures. It typically takes about 8 to 10 hours to achieve case depths of 50 to 100 micrometers in the cases of nitriding and carburizing processes; and as for boriding, the case depths are much shallower (typically 10 to 15 micrometers for the same processing time). Despite its ability to produce much harder surface layers than carburizing and nitriding, boriding is not used as extensively as the other surface treatment techniques mentioned.
There are several other surface treatment methods based on the uses of laser beams such as laser shot-peening, -glazing, -cladding, as well as ion and electron beam processes such as ion-beam deposition, electron-beam cladding, and hardening that can also be used to achieve superior surface mechanical and tribological properties. Besides these methods, there are plasma-based physical and chemical vapor deposition techniques that can also produce hard surface coatings (such as TiN, TiC, etc.) on mechanical components for improved mechanical and tribological properties. Unfortunately, all of these methods require long processing times and consume large amounts of energy.
Among the many thermal diffusion-based surface treatment processes mentioned above, nitriding and carburizing are used extensively by industry to achieve greater mechanical and tribological properties on all kinds of steel components. In the case of boriding though, progress has been rather slow and at the moment, this technique has limited uses. Just like nitriding and carburizing, boriding is a surface hardening process in which boron atoms diffuse into the near surface region of a work piece and react with the metallic constituents to form hard borides. A deep diffusion layer also exists beneath the boride layers. At present, there are several kinds of boriding methods available (such as salt-bath boriding, fluidized bed boriding, pack boriding, paste boriding, gas-phase and plasma boriding) for the production of borided surface layers. These methods are based on the uses of a variety of boron-rich solid, liquid, or gaseous media. Fluidized bed-, pack-, and paste-boriding methods use solid boron containing powders (such as B4C, amorphous boron, ferro-boron, etc.) and other compounds during the boriding process, while plasma boriding uses gaseous boron compounds in a plasma environment.
All of the boriding methods mentioned above involve a high processing temperature (typically ranging from 700 to 1000° C.). These boriding methods are most appropriate for the treatment of ferrous alloys, but nonferrous and cermet-based materials can also be treated. For example, salt-bath boriding of steel substrates can be done in a complex salt bath typically consisting of 60 to 70 wt % borax, 10 to 15 wt % boric acid, and 10-20 wt % ferro-silicon or boron at temperatures ranging from 800 to 1000° C. Boriding of a low carbon steel substrate for 5 to 7 hours in such a salt-bath may result in 7 to 10 micrometer thick borided surface layers.
During boriding of steel and other metallic and alloy surfaces, boron atoms diffuse into the material and form various types of metal borides. In the case of ferrous alloys, most prominent borides are: Fe2B and FeB. (Fe3B may also form depending on the process parameters). Some of the boron atoms may dissolve in the structure interstitially without triggering any chemical reaction that can lead to boride formation. Iron borides (i.e., Fe2B and FeB) are chemically stable and mechanically hard and hence can substantially increase the resistant of base alloys to corrosion, oxidation, adhesive, erosive, or abrasive wear. Process conditions (such as duration of boriding, ambient temperature, type of substrate material and boriding media) may affect the chemistry and thickness of the borided surface layers. Due to the much harder nature of borided layers, boriding has the potential to replace some of the other surface treatment methods like carburizing, nitriding and nitrocarburizing.
Boride layers may achieve hardness values of more than 20 GPa depending on the chemical nature of the base materials. TiB2 that forms on the surface of borided titanium substrates may achieve hardness values as high as 30 GPa; ReB2 that forms on the surface of rhenium and its alloys may achieve hardness values as high as 50 GPa, while the hardness of boride layers forming on steel or iron-based alloys may vary between 14 GPa to 20 GPa. Such high hardness values provided by the boride layers are retained up to 650° C. Since there is no discrete or sharp interface between the boride layer and base material, adhesion strengths of boride layers to base metals are excellent. With the traditional methods mentioned above, boride layer thicknesses of up to 20 micrometer can be achieved after long periods of boriding time at much elevated temperatures. In addition to their excellent resistance to abrasive, erosive, and adhesive wear, the boride layers can also resist oxidation and corrosion even at fairly elevated temperatures and in highly acidic or saline aqueous media.
Materials that are most suitable for boriding include all types of ferrous metals and alloys like low- and high-carbon steels, low- and high-alloy steels, tool steels, bearing steels, stainless steels, precipitation hardening steels, carburized, nitrided, and carbonitrided steels, and cast irons. Non-ferrous metals and their alloys like aluminum, hafnium, vanadium, nickel, chromium, cobalt, titanium, tantalum, zirconium, tungsten, niobium, molybdenum, rhenium, magnesium, and their alloys in particular nickel-based and cobalt-based superalloys, cobalt-chrome alloys, tungsten and sintered carbides and/or cermets can also be borided.
Because of their impressive mechanical, tribological, chemical and corrosion properties, borided surface layers can be used in a large variety of industrial applications. In metal-forming dies, they can be used to protect the critical surface finish or profiles of all kinds of dies (such as punching dies, drawing dies, bending dies, hot forming, and injection moulding dies, forging dies, die-casting, extrusion dies, embossing dies, deep drawing and impact extrusion dies). They can also be used in insertion pins, rods, plungers, bushings, botts, nozzles, pipe bending devices, guide rings, sleeves, mandrels, swirl elements, clamping, chucks, guide box, metal casting inserts, orifices, springs, balls, rollers, discs, valve components and fittings, plugs, chain components, etc. They will be extremely well-suited for stainless steel and other metallic-based mechanical shaft seals used in pumping all kinds of fluids, pulps, powders, slurries, in chemical and mining industries. In the automotive or transportation fields, they can prevent seizure, galling and scuffing-related failures under severe operating conditions, and eliminate oxidative and corrosive degradation of a large variety of engine components. They can also be used in a variety of gear drives (such as bevel gears, screw and wheel gears, helical gear wheels), including gears, ball and roller bearings, tappets, valves and valve guides, power train components, piston pins, rings and liners, fuel injector components for liquid (gasoline and diesel) and gaseous fuels (like hydrogen, propane, natural gas) and other types of mechanical components in all classes of moving mechanical systems that experience heavy loading, high speeds, erosive, corrosive, and oxidative media and elevated temperatures. Other potential applications include cold and hot forging tools, extrusion tools, press tools, glass industry tools, metal-casting tools, cutters, razor blades and shaving machines, impellers used in pumps, mixers used in chemical and mining industries, ball joints, turbine and helicopter blades that are subject to sand erosion, compressor parts and foil bearings, invasive and implantable medical devices such as hip and knee joints made out of titanium, zirconium, cobalt-chrome, stainless steel, and other specialty metals and their alloys. Because of the high boron content of their near surfaces, borided surfaces can also provide an excellent substrate for the deposition of diamond and diamondlike carbon films on metallic substrates. In most cases, diamond is difficult to deposit on steel substrates; but after the boriding process such surfaces could be ideal for the nucleation and growth of crystalline diamond and amorphous diamondlike carbon films. Such duplex boride-diamond or diamondlike carbon treated surfaces can be ideal in many machining, metalforming, sealing, and biomedical implant applications.
Despite their abilities to produce much harder surface layers and superior components over other methods, conventional boriding methods mentioned above are not used extensively by industry at the moment. There are substantial problems that hinder their wider use. Some of these problems include: high-cost, long processing time, toxic emissions/byproducts, mechanical and structural degradations, and poor surface condition or finish after the boriding process. For all of these reasons, it would be desirable to develop a new and improved boriding method that is fast, inexpensive, safe, and applicable to a wide range of materials.
The present invention provides a method for producing metallic products with hard boride layers for a variety of mechanical and erosion resistant applications. The preferred method involves preparation of a molten electrolyte consisting of about 90 wt. % borates of alkaline and alkaline earth elements (such as borax) and about 10 wt. % carbonates of alkaline and alkaline-earth elements (such as sodium and/or calcium carbonate) or sodium chloride. Addition of small amounts (0.1 to 5 wt. %) of other halides (chlorides, fluorides, and iodides, etc.) of alkaline and/or alkaline-earth elements (like, LiCl, NaCl, CaCl2) can have positive effects as electrolyte enhancers. Oxides, hydroxides, and carbonates of such elements may also be used to control the viscosity and melting point of the electrolyte. Furthermore, using at least one of a high frequency induction furnace, external agitation, mixing of electrolyte or vibrating/shaking of the work piece holder can help overcome diffusion barriers in the electrochemical process and thus help achieve fast boriding and thick boride layers (about 100 micrometers or more in the case of low carbon steels) with desirable mechanical properties in short processing times (for example, less than an hour). Such a procedure can also result in a more uniform boride layer thickness on the surfaces of odd-shaped or intricate work pieces.
In electrochemical boriding, graphite is often used as the crucible material. The same graphite crucible can also serve as the anode of the electrochemical cell. Due to the high temperature nature of the boriding process, the graphite crucible or anode may undergo oxidation and hence thin down or wear out after repeated uses. As an alternative approach, in our process, we can also use the metallic and/or borided forms of titanium, aluminum, zirconium, hafnium, vanadium, niobium, tantalum, nickel, molybdenum, chromium, tungsten, cobalt, iron and their alloys as anodes and/or crucible materials. Specifically, we can form a thin boride layer on the surface of these metals by reverse polarization (i.e., by making the crucible a cathode) and then switch back to the regular boriding practice by changing the polarity, switching the cathode with the anode again. In particular, the boride layers that form on titanium (and its alloys) have excellent resistance to high temperature corrosion and oxidation. They are also electrically conductive, hence they can be an ideal choice for the industrial-scale boriding operations. Alternatively, iron and its alloys can also be borided first and then used as crucibles and/or anodes. Iron borides are also electrically conductive (this is why they form thick boride layers during our boriding process). In fact, reverse polarization of anodes and/or crucibles can be done as needed if the boride layer thickness on the crucible or the anode surface is reduced or there is a need for repair of a thinned down or worn area. Such a practice will ensure long durability and hence low cost.
The thickness and composition (e.g., type of boride, such as FeB or Fe2B, or Fe3B, diffusion layer) of borided surface layers can be controlled to achieve performance and durability requirements of a given application. For certain applications, Fe2B could be a preferred phase due to its superior strength and toughness. During the boriding process, the boriding temperature and/or current density may be maintained low to achieve only this phase over the other. Alternatively, one can also keep the boriding duration short but leave the work pieces in the molten electrolyte for a longer duration to allow excess boron to diffuse or distribute evenly within the structure and hence stabilize the Fe2B phase over the FeB phase. Nano-to-micro scale boride phases can also be produced in a given surface region by selectively reacting diffusing boron atoms with secondary phases and/or alloying elements within that region. This allows achieving multiple objectives, such as improved mechanical properties without degrading thermal and/or electrical properties of the base material. It is also possible to partially or selectively boride the surface or a region of a work piece by various masking methods as will be discussed in Examples.
These and other objects, advantages, and features of the invention, together with the organization and manner of operation thereof, will become more apparent from the following detailed descriptions and examples when taken in conjunction with the accompanying figures described below.
In a preferred embodiment, ultra-fast boriding is carried out in an electrochemical cell using high-temperature salt bath electrolytes that typically consist of borax and a range of inorganic sodium, potassium, lithium compounds (like Na2CO3, CaCl2, NaOH, etc.). Borax is a preferred source for boron in the electrolyte but other boron sources, such a boron oxides, boric acids, potassium borofluoride (KBF4), and the borates of alkaline and alkaline earth elements, as well as various boron minerals (including ulexite (NaCaB5O9.8H2O), colemanite (Ca2B6O11.5H2O) and kernite (Na2B4O6(OH)2.3H2O)) may also be used in the electrolyte. In a most preferred embodiment, the composition of base electrolyte includes borax as the main ingredient with a source for boron (most preferably between 30 to 95 wt. %) in combination with sodium carbonate (between about 5 to 70 wt. %) as the other ingredient. In addition, in a most preferred embodiment, electrolytes enabling ultra-fast boriding include some small amounts (0.1 to 5 wt. %) of alkaline and/or alkaline-earth halides (such as CaCl2, NaCl, etc.). Other halides (chlorides, fluorides, and iodides, etc.) of alkaline and/or alkaline-earth elements can have positive effects as electrolyte enhancers. Oxides, hydroxides, and carbonates of such elements may also be used to control the viscosity and melting point of electrolyte. The addition of these halides into molten electrolytes results in a significant increase in the boriding rates and also refines the grain size and morphology of the borided surface layers. These halides release sufficient amounts of halide ions like Cl— into the electrolyte bath and hence increase electrical conductivity and surface transport activities on metal surfaces and also increase boron intake or diffusion. While not required for operation of the invention, it is believed that Cl ions also insure uniform current distribution across the electrolyte which can be helpful for achieving uniform case depth on intricate or odd-shaped work pieces. The halide additives also make it easy to clean the work pieces after the boriding process, since they are all water soluble.
Using the system shown in
X-ray diffraction analysis of the borided steel surfaces was performed using a Phillips diffractometer (Model PW 3710). As can be seen in
As shown in
In this boriding process, the NaO/B2O3 ratio was also optimized by using additional salts (such as Na2CO3 and CaCl2) in the electrolyte bath. The reduction of Na+ and/or Ca++ ions on the cathode surface may be a key step; through this reduction, a significant amount of boron reduction in the molten salt bath is achieved and hence the diffusion of boron into the metal has been accelerated. Again, as is clear from
Increasing the boriding time further (say to 60, 90, and 120 min), the nearly linear relationship between borided layer thickness and boriding time is lost. At such longer boriding times, the boride layer thickness continues to increase, but not at a linear rate as shown in
It has also been confirmed that the distance between the anode and cathode (specimen or specimen holder) is important. Specifically, this distance has a dramatic effect on the boriding rate especially when an induction or electrical heating system is used. The results shown in
In another aspect of the method of the invention, stirring or agitation of electrolyte or vibrating and rotating the work pieces during the boriding process increased the boriding rate and insured a uniform layer thickness in intricate or odd-shaped samples.
In another feature of the invention the boriding rate was determined to be a function of the ratio of B2O3/Na2O. This ratio can be adjusted, and appropriately optimized, by introducing additional compounds such as Na2CO3 and CaCl2. Reduction of Na+ cations on the cathode surface may be a key step for the release of boron atoms. Specifically, through this reduction, a significant amount of boron is reduced to elemental form which eventually diffuses into the work piece and thus accelerates the boriding process. As shown in
It was also determined that boriding temperature has a strong influence in the rate of boriding. As shown in
The variable or high-frequency induction furnaces can also be used for achieving a faster boriding rate in steel and other alloys. Such furnaces not only heat, but also vigorously agitate or mix, the molten electrolyte and hence increase the chances for free boron atoms to reach the surface of work pieces and hence diffusing into the structure.
Another feature of the invention for improved boriding is to maintain a clean surface (particularly free of organic contaminants or oxide layers). A brief grinding with 200 to 800 grit emery papers seems to be effective in removing such contaminants and hence increasing the boriding rate. Sometimes, applying a reverse polarity to work pieces (e.g., making them the anode for a short period) also seems to be effective in cleaning the work piece surfaces. Other important parameters that can influence the rate and quality of boriding are: current density, type of anode materials and their positions in the bath, roughness and cleanliness of the work piece surfaces, and geometric shape of the work piece.
Micro hardness testing of borided surfaces in cross-section revealed a significant increase in their hardness. Specifically, the typical measured hardness values of borided top layer were in the range of 1500-1900 HV, whereas the hardness of un-borided steel was ≈100 HV as shown in
These and other objects, advantages, and features of the invention, together with the organization and manner of operation thereof, will become more apparent from the following non-limiting examples when taken in conjunction with the figures described hereinbefore.
The following Tables I and II show the relationship between total boride and FeB layer thickness and boriding time. (Electrolyte composition: % 10 NaCl+% 90 Na2B4O7; Current density: 200 mA/cm2; Temperature: 900° C.). After the electrochemical boriding treatment, by switching off the power to electrodes and leaving the borided sample in the molton electrolyte for an additional time period (e.g., as short as 10 minutes and as long as 2 hours), the top FeB layer may be eliminated.
In another example, the relationship was determined between current density and total borided and FeB layer thickness, as described in Table III below. (Electrolyte composition: % 20 NaCl+% 80 Na2B4O7; Total process time: 1 hour; Temperature: 900° C.). The graphical appearance of boride layer thickness versus current density is shown in
The relationship between cell potential and the current density (20% NaCl+80% Na2B4O7, 1 hour, 900° C.) is illustrated in
The relationships between total borided and FeB layer thickness and electrolyte process temperature and micrographs (Electrolyte: 10% NaCl+90% Na2B4O7; Process time: 1 hour, Current density: 200 mA/cm2) are shown in Table IV and
The relationship between η=B2O3/Na2O ratio and boride layer thickness (900° C., 200 mA/cm2, 1 hour) is shown in Table V and
Effect of different additives in electrolyte on thickness of borided layer (10% Additive+90% Na2B4O7, 200 mA/cm2, 900° C., 1 hour) and the results are shown in Table VI and VII and
Bonded and FeB layer thickness dependence on NaCl additive concentration in electrolyte (Electrolyte composition: X % NaCl+100-X % Na2B4O7; process time was 1 hour, and the current density was 200 mA/cm2) and results shown in Table VIII and
Effect of boriding time on borided layer thickness on a 99.7% pure titanium substrate is shown in
As shown in
As demonstrated from the Examples provided above, ultra-fast boriding can be achieved in both the ferrous and non-ferrous metals and alloys. These borided metals and alloys can be used in a variety of manufacturing, earthmoving, agricultural, aerospace, and transportation applications such as metal forming tools, fuel injectors, gears, bearings and some of the power- and drive-train applications in cars and tracks, blades and cutters used in agricultural, forestry, and earthmoving applications. Turbine and helicopter blades, impellers, mixers, and other components subject to wind, sand, and solid particle slurry erosion or abrasion can also be treated by the new method and protected. More specifically, these borided surface layers can prevent wear and scuffing between heavily loaded rolling, rotating, or sliding surfaces under lubricated sliding conditions which are typical of these mechanical components and others (like chain links used in conveyor belts and other heavy machinery such as earth-moving equipments etc). One of the most important features of these borided surfaces is their ability to function under severe loading conditions and provide low friction and wear with and without lubrication.
This new ultra-fast boriding process can also be used to boride the pre-carburized and nitrided surfaces. In the case of pre-carburized steel surfaces, a compound layer consisting of not only iron borides but also boron carbides, free boron and carbon are also formed. In the case of pre-nitrided surfaces, a compound layer consisting of not only iron borides but also boron nitride and free boron are produced. Surfaces that are ion-implanted, or laser-cladded, and alloyed with various elements may also be borided by the new technique and the borides of such elements formed during boriding can then provide greater hardness and other desirable properties such as low friction and wear and greater protection against corrosion and erosion as well a better biocompatibility and/or reactivity.
Ultra-fast boriding is environmentally benign and there are no toxic raw materials involved and by-products to discard or deal with after the boriding process. The process also does not produce any fumes or green-house gases. In the other boriding processes new baths are needed and the old ones must be discarded properly and in the case of gas-phase boriding, there are some toxic gases that need to be handled carefully. One of the other advantages of the new process is that the electrolyte can be re-used multiple times. There is no need to discard and re-supply active ingredients (except for the boron compounds). Again, the new process is environmentally benign and there are no toxic by-products to discard or deal with. In the new process, there is little deposit to clean from the borided surface, remaining deposits (mainly salts) are washed away in running water or removed by mechanical brushes or tumbling in a sand box.
While several different features and embodiments are described above, it is understood that changes and modifications can be made to the invention without departing from the invention's broader aspects. Therefore, the present invention is not limited to the described and illustrated embodiments, but only by the scope and spirit of the independent and dependent claims.
The present application is a continuation of U.S. patent application Ser. No. 12/470,360 filed May 21, 2009 which claims priority to U.S. Provisional Patent Application No. 61/059,177, filed Jun. 5, 2008. Both applications are incorporated herein by reference in their entirety.
The United States Government has certain rights in this invention pursuant to Contract No. W-31-109-ENG-38 between the United States Government and The University of Chicago and/or pursuant to Contract No. DE-AC02-06CH11357 between the United States Government and UChicago Argonne, LLC representing Argonne National Laboratory.
Number | Name | Date | Kind |
---|---|---|---|
4012238 | Scales | Mar 1977 | A |
Number | Date | Country |
---|---|---|
51-083029 | Jul 1976 | JP |
1548264 | Mar 1990 | SU |
1661245 | Jul 1991 | SU |
Entry |
---|
Kartal et al. “Investigating the morphology and corrosion behavior of electrochemically borided steel”, Surface & Coatings Technology 200 (2006), p. 3590-3593. |
Yoshitaka et al. “Boriding of Steels by Induction Heating”, Nippon Kikai Gakkai Kikai Zairyo, Zairyo Kako Gijutsu Koenkai Koen Ronbunshu, vol. 8, p. 385-386 (2000)(abstract only). |
Number | Date | Country | |
---|---|---|---|
20130056363 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61059177 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12470360 | May 2009 | US |
Child | 13666528 | US |