Many endoprosthetic joint replacements currently implanted in patients include a highly polished metal or ceramic component articulating on an ultra high molecular weight polyethylene (UHMWPE) material or blend. Wear and abrasion resistance, coefficient of friction, impact strength, toughness, density, biocompatibility and biostability are some of the properties that make UHMWPE a suitable material for such implants. Although UHMWPE has been used in implants for many years, there is continuing interest in the wear and durability characteristics of implants incorporating UHMWPE.
One method employed to improve the durability and other physical characteristics of UHMWPE implants has been to expose such implants to radiation, for example gamma radiation or electron beam radiation, to induce crosslinking in the UHMWPE. Similar radiation sources have also been used to sterilize UHMWPE implants prior to distribution.
Despite the benefits of irradiating UHMWPE implants, the irradiation process may lead to increased rates of oxidation in the UHMWPE implant. In particular, irradiation has been shown to generate free radicals, which react in the presence of oxygen to form peroxyl radicals. These free radicals and peroxyl radicals may react with the polyethylene backbone and with each other to form oxidative degradation products and additional radical species. This cycle of oxidation product and radical species formation may occur over several years (both prior to and after implantation) as oxidation levels in the implant increase.
One method that has been utilized to reduce oxidation in irradiated UHMWPE materials is the addition of a stabilizing component to the UHMWPE material to inhibit the oxidation cycle. However, the addition of a stabilizer or stabilizing components, such as vitamin E, to UHMWPE prior to irradiation has been shown to have an adverse effect on crosslinking during irradiation. See Parth et al., “Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of ct-tocopherol with respect to its application in medical implants,” Journal of Materials Science Materials In Medicine, 13 (2002), pgs. 917-921.
For this reason, the addition of stabilizers to UHMWPE materials after forming and irradiating via diffusion has been proposed. See e.g., PCT Published Application No. WO 2004/101009. However, the addition of stabilizers after irradiation has several limitations. For example, vitamin E diffusion may provide a less uniform distribution of stabilizer in UHMWPE than pre-irradiation mixing. Diffusion of the vitamin E may also require separate irradiation steps to induce crosslinking prior to adding vitamin E and then to sterilize the implant after adding vitamin E.
Therefore, it would be beneficial to provide a method of forming a crosslinked UHMWPE material for use in implanted articles that overcomes one or more of these limitations.
In one embodiment, the present invention provides an implantable article formed from a crosslinked ultrahigh molecular weight polyethylene (“UHMWPE”) blend. The crosslinked UHMWPE blend may be prepared by combining a UHMWPE material with a stabilizer, such as vitamin E, and other optional additives reported herein to form a UHMWPE blend, and then by irradiating the UHMWPE blend with a suitable radiation source, such as electron beam radiation, at a sufficient radiation dose rate to induce crosslinking. The resulting crosslinked UHMWPE blend may have a swell ratio of less than about 4, and at least about 0.02 w/w % vitamin E is uniformly dispersed within at least a surface region of an article formed from the blend. According to this invention, the vitamin E may be uniformly distributed from the surface of the article to a depth of at least about 5 mm. The crosslinked UHMWPE blend of the present invention may be incorporated into a variety of implants, and in particular, into endoprosthetic joint replacements
UHMWPE is a semicrystalline, linear homopolymer of ethylene, which may be produced by stereospecific polymerization with a Ziegler-Natta catalyst at low pressure (6-8 bar) and low temperature (66-80° C.). The synthesis of nascent UHMWPE results in a fine granular powder. The molecular weight and its distribution can be controlled by process parameters such as temperature, time and pressure. UHMWPE generally has a molecular weight of at least about 2,000,000 g/mol.
Suitable UHMWPE materials for use as raw materials in the present invention may be in the form of a powder or mixture of powders. The UHMWPE material may be prepared almost entirely from UHMWPE powder, or may be formed by combining UHMWPE powder with other suitable polymer materials. In one embodiment, the UHMWPE material may include at least about 50 w/w % UHMWPE. Examples of suitable UHMWPE materials include GUR 1020 and GUR 1050 available from Ticona Engineering Polymers. Suitable polymer materials for use in combination with the UHMWPE materials may include disentangled polyethylene, high pressure crystallized polyethylene and various other “super tough” polyethylene derivatives. In addition, biocompatible non-polyethylene polymers may also be suitable for use in certain embodiments.
Suitable additives to the UHMWPE material include radiopaque materials, antimicrobial materials such as silver ions, antibiotics, and microparticles and/or nanoparticles serving various functions. Preservatives, colorants and other conventional additives may also be used.
Suitable stabilizers for addition to the UHMWPE material generally include materials that can be added in an effective amount to the UHMWPE material in order to, at least in part, inhibit the oxidation cycle caused by irradiation of UHMWPE. Vitamin E is particularly suitable for use in embodiments of the present invention. As used herein “vitamin E” refers generally to derivatives of tocopherol including a-tocopherol. Other suitable stabilizers may include phenolic antioxidants such as butylated hydroxytoluene, and ascorbic acid.
The vitamin E stabilizer and UHMWPE material may be combined via a number of known processes to form a UHMWPE blend. Such processes include physical mixing, mmixing with the aid of a solvent, mixing with the aid of a solvent (e.g. Co2) under supercritical temperature and pressure conditions, and ultrasonic mixing. Suitable mixing processes of these types are also described, for example, in U.S. Pat. Nos. 6,448,315 and 6,277,390, the disclosures of which are hereby incorporated by reference. In one embodiment, vitamin E is dissolved in ethanol and is drop-wise added to a powdered UHMWPE material while mixing. The ethanol may then be removed via a vacuum dryer or similar apparatus.
The UHMWPE blend may first be consolidated and/or compressed into suitable form for use as (or as part of) a prosthetic device or other implant. Suitable compression and/or consolidation techniques include, for example, compression molding, direct compression molding, hot isostatic pressing, ram extrusion, high pressure crystallization, injection molding, sintering or other conventional methods of compressing and/or consolidating UHMWPE. If desired, the compressed/consolidated UHMWPE blend may be further processed or manufactured by milling, machining, drilling, cutting, assembling with other components, and/or other manufacturing or pre-manufacturing steps conventionally employed to manufacture implants from UHMWPE.
Prior to and/or after processing the implant as reported above, the UHMWPE blend may be crosslinked by exposure to radiation at a high radiation dose and/or dose rate to form a crosslinked UHMWPE blend. In one embodiment, the UHMWPE blend may be exposed to electron beam radiation at a dose of at least about 25 kiloGrey, more particularly at least about 80 kiloGrey, and even more particularly at least about 95 kiloGrey. In another embodiment, the UHMWPE blend may be exposed to radiation at a dose rate of at least 1 MegaGrey per hour, more particularly at least about 15 MegaGrey per hour, and even more particularly about 18 MegaGrey per hour. In certain embodiments, the desired radiation dose may be achieved in a single exposure step at a high dose rate. In other embodiments, a series of high dose rate irradiation steps may be employed to expose the UHMWPE blend to a desired dose of radiation.
In certain embodiments, the radiation source is electron beam radiation. Electron beam radiation exposure may be performed using conventionally available electron beam accelerators. One commercial source for such an accelerator is IBA Technologies Group, Belgium. Suitable accelerators may produce an electron beam energy between about 2 and about 50 MeV, more particularly about 10 MeV, and are generally capable of accomplishing one or more of the radiation doses and/or dosage rates reported herein. Electron beam exposure may be carried out in a generally inert atmosphere, including for example, an argon, nitrogen, vacuum, or oxygen scavenger atmosphere. Exposure may also be carried out in air under ambient conditions according to one embodiment. Gamma and x-ray radiation may also be suitable for use in alternate embodiments of the invention. The present invention need is not necessarily limited to a specific type of source of radiation.
Optionally, prior to and/or after electron beam irradiation, the UHMWPE blend may be subjected to one or more temperature treatments. In one embodiment, the UHMWPE blend may be heated above room temperature, more particularly above about 100° C., even more particularly between about 120° C. and 130° C., prior to irradiation. U.S. Pat. No. 6,641,617 to Merril et al., which is hereby incorporated by reference, reports methods of employing such temperature treatment steps in greater detail. In another embodiment, the UHMWPE blend may remain at room temperature or may even be cooled below room temperature, for example, below the glass transition temperature of the UHMWPE blend. After irradiation, the crosslinked UHMWPE blend may be annealed at a temperature of up to about 200° C. for up to about 72 hours, more particularly at about 150° C. for about 5 hours. Alternatively or additionally, the crosslinked UHMWPE blend may be subjected to the mechanical annealing processes reported in U.S. Pat. No. 6,853,772 to Muratoglu, which is hereby incorporated by reference. In one embodiment, however, no pre- or post-irradiation temperature and/or annealing treatments are performed.
As part of the implant manufacturing process, additional components may be combined with the UHMWPE blend at any time during the process reported herein. In one embodiment, tribological components such as metal and/or ceramic articulating components and/or preassembled bipolar components may be joined with the UHMWPE blend. In other embodiments, metal backing (e.g. plates or shields) may be added. In further embodiments, surface components such a trabecular metal, fiber metal, beats, Sulmesh® coating, meshes, cancellous titanium, and/or metal or polymer coatings may be added to or joined with the UHMWPE blend. Still further, radiomarkers or radiopacifiers such as tantalum, steel and/or titanium balls, wires, bolts or pegs may be added. Further yet, locking features such as rings, bolts, pegs, snaps and/or cements/adhesives may be added. These additional components may be used to form sandwich implant designs, radiomarked implants, metal-backed implants to prevent direct bone contact, functional growth surfaces, and/or implants with locking features.
A variety of implants, and in particular endoprosthetic joint replacements, may be prepared by employing the methods reported herein. Examples of such implants include artificial hips and knees, cups or liners for artificial hips and knees, spinal replacement disks, artificial shoulder, elbow, feet, ankle and finger joints, mandibles, and bearings of artificial hearts.
After manufacturing of the implant has been completed, it may be packaged and sterilized prior to distribution. Packaging is generally carried out using either gas permeable packaging or barrier packaging utilizing a reduced oxygen atmosphere. Because the presence of vitamin E in the UHMWPE blend inhibits the oxidation cycle, conventional gas permeable packing may be suitable for embodiments of the present invention. Barrier packaging with an inert gas backfill (e.g. argon, nitrogen, oxygen scavenger) is also suitable.
As reflected in
Sterilization generally occurs after packaging. In certain embodiments, sterilization is carried out at the same time as crosslinking, and therefore utilizes e-beam radiation. In embodiments in which crosslinking occurs before sterilization, additional suitable sterilization methods include gamma irradiation (either inert or in air), gas plasma exposure or ethylene oxide exposure.
As further exemplified in the Examples set forth below, the crosslinked UHMWPE blends produced according to embodiments of the present invention may have several beneficial characteristics. Notably, such blends exhibit lower levels of oxidation when compared to unstabilized UHMWPE materials, while still exhibiting suitable levels of crosslinking. The use of a high radiation dose rate or a series of high radiation dose rates, at least in part, contributes to improved crosslinking densities for the UHMWPE blend, which is contrary contrary to prior art reports that suggest that suitable crosslinking densities are difficult to achieve when irradiating stabilized UHMWPE blends.
Also, such UHMWPE blends may have a generally uniform distribution of vitamin E at least a surface region of the blend. As used herein, the phrase “surface region” refers to a region of a crosslinked UHMWPE blend extending from a surface of the blend to some depth or range of depths below the surface. For example, the implants formed from the crosslinked UHMWPE blend of certain embodiments may exhibit a substantially uniform distribution of vitamin E to a surface depth of at least 3 mm, more particularly, at least 5 mm. Other embodiments may exhibit a substantially uniform distribution of vitamin E to a surface depth of at least 10 mm, more particularly at least 15 mm, even more particularly at least 20 mm. In further embodiments, the UHMWPE blend may have a substantially uniform distribution of vitamin E throughout the blend.
Table 1 sets forth the processing parameters for Samples A-I.
As set forth in Table 1, GUR 1020 and GUR 1050 brand UHMWPE powders are available from Ticona GmbH, FrankfurtMain, Del. The vitamin E used for Samples C, D and F-H was α-tocopherol obtained from DSM Nutritional Products AG, Basel, Switzerland.
For Samples C, D and F-H, the α-tocopherol was dissolved in ethanol in a concentration of 50 g/l and mixed into the UHMWPE drop-wise using a Nauta-Vrieco brand screw-cone mixer. The ethanol was then removed from the UHMWPE blend in a vacuum dryer at 50° C. for 6 hours, resulting in a UHMWPE blend having a concentration of α-tocopherol of about 0.1 w/w %, The resulting UHMWPE blend was then sintered for 7 hours at 220° C. and 35 bar to produce UHMWPE plates having a thickness of 60 mm and a diameter of 600 mm. Homogeneity of the α-tocopherol in the UHMWPE blend was measured by standard HPLC methods and determined to vary up to +/−2% from the desired content.
Samples A, D and H were irradiated using a Studer IR-168 Gamma Irradiator utilizing a Co60 radiation source. Samples E-G and I were irradiated using a 10 MeV Rhodotron electron accelerator available from IBA SA, Louvain-La-Neuve using a 120 kW power setting.
Results
qs=(Ht/Ho)3
The data points for the lower flat line include a swell ratio standard for unstabilized UHMWPE (obtained from the interlaboratory comparison in ASTM F2214-02 at a dose rate of 89 kGy) and unstabilized Sample E. These data points indicate that dose rates do not have a substantial effect on crosslink density. The data points for the upper descending line include Samples H, F and G. Notably, the increased irradiation dosage rates used for Samples F and G resulted in a decreased swell ratio when compared to sample H, and consequently, an increased crosslink density.
This application is a continuation of U.S. patent application Ser. No. 11/465,743, filed Aug. 18, 2006, and now, U.S. Pat. No. 7,846,376, which is a continuation of PCT Patent Application No. PCT/EP2005/008967, filed Aug. 18, 2005, both of which are incorporated herein by reference in their entireties as if completely set forth herein below.
Number | Name | Date | Kind |
---|---|---|---|
5577368 | Hamilton et al. | Nov 1996 | A |
5753182 | Higgins | May 1998 | A |
5827904 | Hahn | Oct 1998 | A |
5879400 | Merrill et al. | Mar 1999 | A |
6017975 | Saum et al. | Jan 2000 | A |
6087553 | Cohen et al. | Jul 2000 | A |
6156845 | Saito et al. | Dec 2000 | A |
6184265 | Hamilton et al. | Feb 2001 | B1 |
6228900 | Shen et al. | May 2001 | B1 |
6231804 | Yamauchi et al. | May 2001 | B1 |
6245276 | McNulty | Jun 2001 | B1 |
6277390 | Schaffner | Aug 2001 | B1 |
6432349 | Pletcher | Aug 2002 | B1 |
6437048 | Saito et al. | Aug 2002 | B1 |
6448315 | Lidgren et al. | Sep 2002 | B1 |
6464926 | Merrill et al. | Oct 2002 | B1 |
6503439 | Burstein | Jan 2003 | B1 |
6558794 | Fehrenbacher | May 2003 | B1 |
6562540 | Saum et al. | May 2003 | B2 |
6620198 | Burstein et al. | Sep 2003 | B2 |
6627141 | McNulty | Sep 2003 | B2 |
6641617 | Merrill et al. | Nov 2003 | B1 |
6664308 | Sun | Dec 2003 | B2 |
6664317 | King, III | Dec 2003 | B2 |
6692679 | McNulty | Feb 2004 | B1 |
6786933 | Merrill et al. | Sep 2004 | B2 |
6818020 | Sun | Nov 2004 | B2 |
6818172 | King et al. | Nov 2004 | B2 |
6852772 | Muratoglu et al. | Feb 2005 | B2 |
6853772 | Battialo | Feb 2005 | B2 |
6872764 | King, III | Mar 2005 | B2 |
6933026 | Mauze | Aug 2005 | B2 |
7094472 | DuPlessis et al. | Aug 2006 | B2 |
7160492 | King | Jan 2007 | B2 |
7166650 | Muratoglu et al. | Jan 2007 | B2 |
7214764 | King | May 2007 | B2 |
7259198 | Vaillant | Aug 2007 | B2 |
7304097 | Muratoglu et al. | Dec 2007 | B2 |
7335697 | King et al. | Feb 2008 | B2 |
7384430 | Greer | Jun 2008 | B2 |
7431874 | Muratoglu et al. | Oct 2008 | B2 |
7435372 | Mimnaugh et al. | Oct 2008 | B2 |
7445641 | Ornberg et al. | Nov 2008 | B1 |
7498365 | Muratoglu et al. | Mar 2009 | B2 |
7507774 | Muratoglu et al. | Mar 2009 | B2 |
7569620 | Muratoglu et al. | Aug 2009 | B2 |
7615075 | Kunze et al. | Nov 2009 | B2 |
7635725 | Bellare et al. | Dec 2009 | B2 |
7683133 | King et al. | Mar 2010 | B2 |
7790095 | Muratoglu et al. | Sep 2010 | B2 |
7806064 | Wellman | Oct 2010 | B2 |
7833452 | Muratoglu et al. | Nov 2010 | B2 |
7846376 | Abt et al. | Dec 2010 | B2 |
7863348 | Abt et al. | Jan 2011 | B2 |
8129440 | Rufner et al. | Mar 2012 | B2 |
8178594 | Rufner et al. | May 2012 | B2 |
20010027345 | Merrill et al. | Oct 2001 | A1 |
20010049401 | Salovey et al. | Dec 2001 | A1 |
20020007219 | Merrill et al. | Jan 2002 | A1 |
20020156536 | Harris et al. | Oct 2002 | A1 |
20030013781 | Merrill et al. | Jan 2003 | A1 |
20030045603 | Salovey et al. | Mar 2003 | A1 |
20030105182 | Merrill et al. | Jun 2003 | A1 |
20030119935 | Merrill et al. | Jun 2003 | A1 |
20030127778 | Scott et al. | Jul 2003 | A1 |
20030149125 | Muratoglu | Aug 2003 | A1 |
20030158287 | Salovey et al. | Aug 2003 | A1 |
20030212161 | McKellop | Nov 2003 | A1 |
20040051213 | Muratoglu | Mar 2004 | A1 |
20040156879 | Muratoglu et al. | Aug 2004 | A1 |
20040265165 | King | Dec 2004 | A1 |
20050006821 | Merrill et al. | Jan 2005 | A1 |
20050056971 | Merrill et al. | Mar 2005 | A1 |
20050059750 | Sun et al. | Mar 2005 | A1 |
20050096749 | Merrill et al. | May 2005 | A1 |
20050124718 | Muratoglu et al. | Jun 2005 | A1 |
20050125074 | Salovey et al. | Jun 2005 | A1 |
20050146070 | Muratoglu et al. | Jul 2005 | A1 |
20050165495 | Merrill et al. | Jul 2005 | A1 |
20050194722 | Muratoglu et al. | Sep 2005 | A1 |
20050194723 | Muratoglu et al. | Sep 2005 | A1 |
20050267594 | Merrill et al. | Dec 2005 | A1 |
20060079597 | Muratoglu et al. | Apr 2006 | A1 |
20060115668 | King et al. | Jun 2006 | A1 |
20060264541 | Lederer et al. | Nov 2006 | A1 |
20070004818 | Muratoglu et al. | Jan 2007 | A1 |
20070043137 | Muratoglu et al. | Feb 2007 | A1 |
20070059334 | Abt et al. | Mar 2007 | A1 |
20070077268 | King et al. | Apr 2007 | A1 |
20070114702 | Muratoglu et al. | May 2007 | A1 |
20070149660 | Kumer et al. | Jun 2007 | A1 |
20070191504 | Muratoglu | Aug 2007 | A1 |
20070232762 | Ernsberger et al. | Oct 2007 | A1 |
20070265369 | Muratoglu et al. | Nov 2007 | A1 |
20070267030 | Muratoglu et al. | Nov 2007 | A1 |
20070275030 | Muratoglu et al. | Nov 2007 | A1 |
20070293647 | McKellop et al. | Dec 2007 | A1 |
20080039545 | Muratoglu et al. | Feb 2008 | A1 |
20080067724 | Muratoglu et al. | Mar 2008 | A1 |
20080090933 | Muratoglu et al. | Apr 2008 | A1 |
20080090934 | Muratoglu et al. | Apr 2008 | A1 |
20080119582 | Muratoglu et al. | May 2008 | A1 |
20080133018 | Salovey et al. | Jun 2008 | A1 |
20080133021 | Shen et al. | Jun 2008 | A1 |
20080139137 | Guo et al. | Jun 2008 | A1 |
20080140196 | Schroeder et al. | Jun 2008 | A1 |
20080214692 | Muratoglu et al. | Sep 2008 | A1 |
20080215142 | Muratoglu et al. | Sep 2008 | A1 |
20080262120 | Muratoglu | Oct 2008 | A1 |
20080274161 | Muratoglu et al. | Nov 2008 | A1 |
20080293856 | Kumer et al. | Nov 2008 | A1 |
20080319137 | Rufner et al. | Dec 2008 | A1 |
20090030524 | Schroeder et al. | Jan 2009 | A1 |
20090105364 | Merrill et al. | Apr 2009 | A1 |
20090118390 | Abt et al. | May 2009 | A1 |
20090192610 | Case et al. | Jul 2009 | A1 |
20090265001 | Muratoglu et al. | Oct 2009 | A1 |
20090281624 | Conteduca et al. | Nov 2009 | A1 |
20100029858 | Rufner et al. | Feb 2010 | A1 |
20100082101 | Muratoglu et al. | Apr 2010 | A1 |
20100137481 | Shen et al. | Jun 2010 | A1 |
20110028600 | Rufner et al. | Feb 2011 | A1 |
20110306698 | Pletcher | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2006283596 | Jan 2007 | AU |
2006350369 | Aug 2008 | AU |
2619937 | Mar 2007 | CA |
2669386 | Aug 2008 | CA |
221403 | Apr 1983 | CS |
221405 | Feb 1986 | CS |
221405 | Feb 1986 | CZ |
0560279 | Sep 1993 | EP |
0727195 | Aug 1996 | EP |
1421918 | May 2004 | EP |
1647242 | Apr 2006 | EP |
1924614 | May 2008 | EP |
2046577 | Apr 2009 | EP |
2083981 | May 2009 | EP |
2150285 | Feb 2012 | EP |
2012143575 | Aug 2012 | JP |
WO-8900755 | Jan 1989 | WO |
WO0105337 | Jan 2001 | WO |
WO0180778 | Nov 2001 | WO |
WO03049930 | Jun 2003 | WO |
WO2004024204 | Mar 2004 | WO |
WO2004064618 | Aug 2004 | WO |
WO2004101009 | Nov 2004 | WO |
WO2007019874 | Feb 2007 | WO |
WO-2007024684 | Mar 2007 | WO |
WO2007056561 | May 2007 | WO |
WO2007121167 | Oct 2007 | WO |
WO-2008016174 | Feb 2008 | WO |
WO-2008052574 | May 2008 | WO |
WO2008092047 | Jul 2008 | WO |
WO2008101073 | Aug 2008 | WO |
WO2008101134 | Aug 2008 | WO |
WO2008113388 | Sep 2008 | WO |
WO2008124825 | Oct 2008 | WO |
WO-2008124825 | Oct 2008 | WO |
WO2009032909 | Mar 2009 | WO |
WO2009045658 | Apr 2009 | WO |
WO 2010129514 | Nov 2010 | WO |
WO-2010129514 | Nov 2010 | WO |
Entry |
---|
US 7,253,214, 08/2007, McKellop (withdrawn). |
“New Joint Replacement Material Developed at MGH put to first Clinic Use” news release from Massachusetts General Hospital, dated Jul. 23, 2007, accessed May 13, 2008. |
“Joint Replacement Material Developed at the MGH” from MA General Hosp.MGH Hotline On-line publication dated Aug. 10, 2007. |
E-Poly HXLPE Brochure from BioMet Orthopedics, dated 2007. |
Wannomae, et al., “Vitamin E Stabilized, Irradiated UHMWPE for Cruciate Retaining Knee Components”,, 53rd Annual Meeting of Orthopaedic Research Society,. Feb. 11-14, 2007 Poster No. 1783. |
Kurtz, et al., “Trace Concentrations of Vitamin E Protect Radiation Crosslinked UHMWPE from Oxidative Degration”, 53rd Annual Meeting of the Orthopaedic Research Society. Feb. 11-14, 2007, Paper No. 0020. |
Bragdon, et al., “A New Pin-onDisk Wear Testing Method for Simulating Wear of Polyethylene on Cobalt-Chrome Alloy in Total Hip Arthroplasty”, Journal of Arthroplasty, vol. 16 No. 5, 2001 pp. 658-665. |
Wirtten Opinion & Search Report for PCT/US2009/032412 dated Mar. 25, 2010. |
Written Opinion & Search Report for PCT/US/2008/059909 dated Sep. 14, 2009. |
Written Opinion and Search Report for PCT/EP2005/008967 dated Jun. 21, 2006. |
Oral, et al., “Blending a-Tocopherol with UHMWPE Powder for Oxidation Resistance” , 50th Annual Meeting of Orthopaedic Research Society, Poster No. 1485, 2005. |
Oral, et al., “x-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear”, Biomaterials, vol. 25, 2004, pp. 5515-5522. |
Oral, et al., “Characterization of irradiated blends of X-tocopherol and UHMWPE”, Biomaterials, vol. 26, 2005, pp. 6657-6663. |
Parth, et al “Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular eight polyethylene under the influence of x-tocopherol w/ respect to its application in medical implants”, Jrnl of Materials Science,vol. 13, 2002 pp. 917. |
Tomita, et al., “Prevention of Fatigue Cracks in Ultrahigh Molecular Weight Polyethylene Joint Components by the Addition of Vitamin E” , Applied Biomaterials, vol. 48, 1999, pp. 474-478. |
Shibata, et al., “The anti-oxidative properties of x-tocopherol in y-irradiated UHMWPE with respect to fatigue and oxidation resistance”, Biomaterials, vol. 26, 2005, pp. 5755-5762. |
International Search Report for PCT/EP2009/008250 dated Jan. 21, 2010. |
Extended EP Search Report and Written Opinion for EP Application No. 10 01 2579 dated Dec. 9, 2010. |
Extended EP Search Report and Written Opinion for EP Application No. 10 01 2589 dated Dec. 9, 2010. |
E. Oral, et al., Crosslinked Vitamin E blended UHMWPE with Improved Grafting and Wear Resistance, ORS 2011 Annual Meeting, Poster No. 1181. |
C. Wolf, et al., Radiation grafting of Vitamin E to Ultra High Molecular Weight Polyethylene, ORS 2011 Annual Meeting, Poster No. 1178. |
E. Oral, et al., Trace Amounts of Grafted Vitamin E Protect UHMWPE Against Squalene-Initiated Oxidation, ORS 2011 Annual Meeting, Poster No. 1295. |
S. Rowell, et al., Detection of Vitamin E in Irradiated UHMWPE by UV-Visible Spectroscopy, ORS 2011 Annual Meeting, Poster No. 1186. |
European Office Action for EP Application No. 10 012579.8 dated Sep. 14, 2011. |
European Office Action for EP Application No. 09 013 154.1 dated Sep. 14, 2011. |
Japanese Office Action for Japanese Patent Application No. 2008-526378 dated Sep. 6, 2011 with English translation. |
Canadian Office Action for Canadian Patent Application No. 2,619,502 dated Nov. 4, 2011. |
Kurtz, S, et al., “Trace Concentrations of Vitamin E Protect Radiation Crosslinked UHMWPE from Oxidative Degradation”, 53rd Annual Meeting of the Orthopaedic Research Society,.Feb. Paper No. 0020, (Nov. 14, 2007), 1 pg. |
Oral, et al., “Blending a-Tocopherol with UHMWPE Powder for Oxidation Resistance”, Poster 1485, 50th Annual Meeting of Orthopaedic Research Society, San Francisco CA, Mar. 7-10, 2004, Transactions, vol. 29, (2004), 1 pg. |
Oral, et al., “Characterization of Irradiated Blends of X-Tocopherol and UHMWPE”, Biomaterials vol. 26, (2005), 6657-6663. |
Oral, et al., “x-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear”, Biomaterials vol. 25, (2004), 5515-5522. |
U.S. Appl. No. 12/943,160, filed Nov. 10, 2010, Ultra High Molecular Weight Polyethylene Articles and Methods of Forming Ultra High Molecular Weight Polyethylene Articles. |
U.S. Appl. No. 12/847,741, filed Jul. 30, 2010, Antioxidant Stabilized Crosslinked Ultra-High Molecular Weight Polyethylene for Medical Device Applications. |
“U.S. Appl. No. 11/465,743, Advisory Action mailed Jul. 16, 2008”, 5 pgs. |
“U.S. Appl. No. 11/465,743, Advisory Action mailed Aug. 6, 2008”, 6 pgs. |
“U.S. Appl. No. 11/465,743, Advisory Action mailed Aug. 24, 2009”, 6 pgs. |
“U.S. Appl. No. 11/465,743, Amended Appeal Brief filed Mar. 10, 2010”, 42 pgs. |
“U.S. Appl. No. 11/465,743, Amended Appeal Brief filed Dec. 15, 2009”, 41 pgs. |
“U.S. Appl. No. 11/465,743, Appeal Brief filed Nov. 15, 2009”, 41 pgs. |
“U.S. Appl. No. 11/465,743, Final Office Action mailed May 1, 2008”, 9 pgs. |
“U.S. Appl. No. 11/465,743, Final Office Action mailed Jun. 16, 2009”, 11 pgs. |
“U.S. Appl. No. 11/465,743, Non Final Office Action mailed Sep. 28, 2007”, 7 pgs. |
“U.S. Appl. No. 11/465,743, Non Final Office Action mailed Dec. 15, 2008”, 12 pgs. |
“U.S. Appl. No. 11/465,743, Notice of Allowance mailed May 26, 2010”, 6 pgs. |
“U.S. Appl. No. 11/465,743, Notice of Allowance mailed Sep. 3, 2010”, 7 pgs. |
“U.S. Appl. No. 11/465,743, Response filed Jan. 17, 2008 to Non Final Office Action mailed Sep. 28, 2007”, 13 pgs. |
“U.S. Appl. No. 11/465,743, Response filed Mar. 16, 2009 to Non Final Office Action mailed Dec. 15, 2008”, 11 pgs. |
“U.S. Appl. No. 11/465,743, Response filed Jul. 1, 2008 to Final Office Action mailed May 1, 2008”, 8 pgs. |
“U.S. Appl. No. 11/465,743, Response filed Jul. 22, 2008 to Advisory Action mailed Jul. 16, 2008”, 6 pgs. |
“U.S. Appl. No. 11/465,743, Response filed Jul. 29, 2009 to Final Office Action mailed Jun. 16, 2009”, 15 pgs. |
“U.S. Appl. No. 11/465,743, Supplemental Notice of Allowability mailed Jul. 14, 2010”, 2 pgs. |
“U.S. Appl. No. 11/465,743, Supplemental Notice of Allowability mailed Sep. 23, 2010”, 4 pgs. |
“U.S. Appl. No. 11/465,743, Supplemental Notice of Allowability mailed Sep. 29, 2010”, 4 pgs. |
“U.S. Appl. No. 11/465,743, Supplemental Response filed Apr. 20, 2009 to Non Final Office Action mailed Dec. 15, 2008”, 10 pgs. |
“U.S. Appl. No. 12/262,531, Final Office Action mailed Jan. 14, 2010”, 11 pgs. |
“U.S. Appl. No. 12/262,531, Non Final Office Action mailed Jun. 17, 2010”, 16 pgs. |
“U.S. Appl. No. 12/262,531, Non Final Office Action mailed Jun. 25, 2009”, 7 pgs. |
“U.S. Appl. No. 12/262,531, Notice of Allowance mailed Oct. 28, 2010”, 6 pgs. |
“U.S. Appl. No. 12/262,531, Response filed Apr. 28, 2010 to Final Office Action mailed Jan. 14, 2010”, 15 pgs. |
“U.S. Appl. No. 12/262,531, Response filed Sep. 17, 2010 to Non Final Office Action mailed Jun. 17, 2010”, 4 pgs. |
“U.S. Appl. No. 12/262,531, Response filed Sep. 23, 2009 to Non Final Office Action mailed Jun. 25, 2009”, 10 pgs. |
“U.S. Appl. No. 12/262,531, Supplemental Notice of Allowability mailed Nov. 23, 2010”, 4 pgs. |
“U.S. Appl. No. 12/847,741, Response filed Sep. 26, 2012 to Final Office Action mailed Jun. 27, 2012”, 14 pgs. |
“U.S. Appl. No. 12/943,160, filed Nov. 10, 2010”, 33 pgs. |
“U.S. Appl. No. 12/943,160, Final Office Action mailed Sep. 28, 2012”, 14 pgs. |
“U.S. Appl. No. 12/943,160, Non Final Office Action mailed Mar. 16, 2012”, 11 pgs. |
“U.S. Appl. No. 12/943,160, Non Final Office Action mailed Aug. 12, 2011”, 8 pgs. |
“U.S. Appl. No. 12/943,160, Response filed Jan. 11, 2012 to Non Final Office Action mailed Aug. 12, 2011”, 13 pgs. |
“U.S. Appl. No. 12/943,160, Response filed Jul. 16, 2012 to Non Final Office Action mailed Mar. 16, 2012”, 13 pgs. |
“U.S. Appl. No. 12/943,160, Response filed Nov. 20, 2012 to Non Final Office Action mailed Sep. 28, 2012”, 10 pgs. |
“European Application Serial No. 09013154.1, European Search Report mailed Feb. 23, 2010”, 6 pgs. |
“European Application Serial No. 09013154.1, Office Action mailed Oct. 21, 2010”, 1 pg. |
“European Application Serial No. 09013154.1, Response filed Jan. 26, 2012 to Office Action mailed Sep. 14, 2011”, 7 pgs. |
“European Application Serial No. 09013154.1, Response filed Mar. 21, 2011 to Office Action mailed Oct. 21, 2010”, 22 pgs. |
“European Application Serial No. 10012579.8, Office Action mailed Sep. 18, 2012”, 4 pgs. |
“European Application Serial No. 10012589.7, Response filed Jan. 13, 2012”, 8 pgs. |
“European Application Serial No. 10012589.7, Response filed Feb. 13, 2012 to Office Action mailed Dec. 2, 2011”, 7 pgs. |
“International Application Serial No. PCT/EP2005/008967, International Preliminary Report on Patentability mailed Feb. 20, 2008”, 7 pgs. |
“International Application Serial No. PCT/EP2005/008967, International Search Report mailed Jun. 21, 2006”, 3 pgs. |
“International Application Serial No. PCT/EP2005/008967, Written Opinion mailed Jun. 21, 2006”, 6 pgs. |
“Japanese Application Serial No. 2008-526378, Office Action mailed Jun. 19, 2012”, (w/ English translation), 6 pgs. |
“Japanese Application Serial No. 2008-526378, Response filed Mar. 6, 2012 to Office Action mailed Sep. 6, 2011”, (w/ English translation of claims), 10 pgs. |
“Japanese Application Serial No. 2008-526378, Response filed Oct. 19, 2012 to Examiners Decision of Final Refusal mailed Jun. 19, 2012”, (w/ English translation of claims), 13 pgs. |
Pletcher, Dirk, et al., “Polymers Compositions Including an Antioxidant”, U.S. Appl. No. 12/813,401, filed Jun. 10, 2010, 52 pgs. |
Rufner, Alicia, et al., “U.S. Appl. No. 12/847,741, filed Jul. 30, 2010”, 75 pgs. |
“European Application Serial No. 09013154.1, European Examination Notification mailed Jan. 4, 2013”, 4 pgs. |
“European Application Serial No. 10012579.8, Response filed Jan. 28, 2013 to Examination Notification Art. 94(3) mailed Sep. 18, 2012”, 9 pgs. |
“Japanese Application Serial No. 2008-526378, Office Action mailed Dec. 18, 2012”, (W/ English Translation), 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20110136933 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11465743 | Aug 2006 | US |
Child | 12942703 | US | |
Parent | PCT/EP2005/008967 | Aug 2005 | US |
Child | 11465743 | US |