The present invention relates to gas turbine engines, and more particularly, to an ultra low NOx emissions combustion system for gas turbine engines.
Low NOx emissions from a gas turbine engine, of below 10 volume parts per million (ppmv), are becoming important criteria in the selection of gas turbine engines for power plant applications. Some installations in non-attainment area in the United States are demanding even lower NOx emissions of less than 5 ppmv. The challenging NOx emission requirements must be achieved without compromising the more conventional constraints on gas turbine engines, of durability, low operating costs and high efficiency.
The main factor governing nitrogen oxide formation is temperature. One of the most attractive methods of reducing flame temperatures involves using Lean Premixed combustion, in which reductions in flame temperatures are readily accomplished by increasing the air content in a given fuel/air mixture. This method is often referred to as a Dry-Low-Emissions (DLE) to distinguish it from Wet NOx control by water or steam injection, and highlight the low emissions in which NOx levels down to 10 ppmv can be achieved.
However, flame stability decreases rapidly under the lean combustion conditions and the combustor may be operating close to its blow-out limit. In addition, severe constraints are imposed on the homogeneity of the fuel/air mixture since leaner than average pockets of mixture may lead to stability problems and richer than average pockets will lead to unacceptably high NOx emissions. The emission of carbon monoxide as a tracer for combustion efficiency will increase at leaner mixtures for a given combustor due to the exponential decrease in chemical reaction kinetics. Engine reliability and durability are of major concern under lean combustion conditions due to high-pressure fluctuations enforced by flame instabilities in the combustor.
It is well known in the industry that catalytic combustion can be used as an ultra-lean premixed combustion process where a catalyst is used to initiate and promote chemical reactions in a premixed fuel/air mixture beyond flammability limits that would otherwise not burn. This permits a reduction of peak combustion temperatures to levels below 1,650K, and NOx emissions less than 5 ppmv can be achieved.
Nevertheless, major challenges have prevented the implementation of catalytic combustors in a gas turbine engine. Catalyst operation and durability demand a very tight control over the engine and catalyst inlet operating parameters. As shown in
In the prior art, most Catalyst combustion systems utilize a pre-burner to increase compressor discharge air temperature at engine low power conditions where the compressor discharge air temperature is below catalyst ignition temperature. Other major problems in catalyst operation include ignition, engine start-up and catalyst warm up which cannot be performed with the catalyst. A separate fuel system is required. Any liquid fuel combustion has to be introduced downstream of the catalyst to prevent liquid fuel flooding the catalyst in case of ignition failure. Because of the narrow range of acceptable catalyst inlet temperatures, the catalyst has to be designed for full power operating conditions. As the engine decelerates the fuel/air mass ratio decreases. Generally, this compromises the catalyst and engine performance under part load conditions, thereby resulting in emissions leading to very high NOx and CO levels. The catalyst durability is affected by engine transient operation since catalyst operation is a delicate balancing act between catalyst ignition (blow-out) and catalyst burn-out. In this sense, turn-down of the catalyst system becomes a serious operability and durability issue. In the case when the pre-burner is used for part load of the entire operating range of the engine, the pre-burner then becomes the main source of NOx emissions from the engine. In addition, hot streaks from the pre-burner are very likely to damage catalyst hardware directly or act as sources of auto-ignition within the fuel/air mixing duct upstream of the catalyst, and impose a substantial risk to catalyst and engine operation. A pre-burner also substantially increases the combustor pressure drop by an additional 1.5% to 2.5%, which directly affects engine specific fuel consumption.
Efforts have bean made to improve catalytic combustors for gas turbine engines. One example of the improvements is described in U.S. Pat. No. 5,623,819, issued to Bowker et al. on Apr. 29, 1997. Bowker et al. describe a low NOx generating combustor in which a first lean mixture of fuel and air is pre-heated by transferring heat from hot gas discharging from the combustor. The pre-heated first fuel/air mixture is then catalyzed in a catalytic reactor and then combusted so as to produce a hot gas having a temperature in excess of the ignition temperature of the fuel. Second and third lean mixtures of fuel and air are then sequentially introduced into the hot gas, thereby raising their temperatures above the ignition temperature and causing homogeneous combustion of the second and third fuel/air mixtures. This homogeneous combustion is enhanced by the presence of the free radicals created during the catalyzing of the first fuel/air mixture. In addition, the catalytic reactor acts as a pilot that imparts stability to the combustion of the lean second and third fuel/air mixtures.
Another example of the improvements is described in U.S. Pat. No. 5,050,731, issued to Beebe et al. on Dec. 22, 1998. Beebe et al describe a combustor for gas turbine engines and a method of operating the combustor under low, mid-range and high load conditions. At the start-up or low-load levels, fuel and compressor discharge air are supplied to the diffusion flame combustion zone to provide combustion products for the turbine. At mid-range operating conditions, the products of combustion from the diffusion flame combustion zone are mixed with additional hydrocarbon fuel for combustion in the presence of a catalyst in the catalytic combustion zone. Because the fuel air mixture in the catalytic reactor bed is lean, the combustion reaction temperature is too low to produce thermal NOx. Under high-load conditions a lean direct injection of fuel/air is provided in a post-catalytic combustion zone where auto-ignition occur with the reactions going to completion in the transition between the combustor and turbine sections. In the post-catalytic combustion zone, the combustion temperature is low and the residence time in the transition piece is short, hence minimizing thermal NOx.
Nevertheless, there is still a need for further improvements of low emissions combustors for gas turbine engines that will allow minimizing the emissions of the NOx, CO and unburned hydrocarbon (UHC) simultaneously, over the entire operating range of the gas turbine engine.
In one aspect of the present invention there is a low-emissions combustion system provided for a gas turbine engine, which comprises a Catalyst (CAT) combustion sub-system adapted to controllably generate combustion products under a lean premixed fuel/air condition in the presence of a catalyst, a Dry-Low-Emissions (DLE) combustion sub-system adapted to controllably generate combustion products under a lean premixed fuel/air condition, a combustor communicating with the DLE and CAT combustion sub-systems for delivering the combustion products in adequate inlet conditions to an annular turbine of the engine and a thermal reactor disposed between the CAT combustion sub-system and the combustor. The CAT combustion sub-system communicates with a fuel injection sub-system and an air supply sub-system. The air supply sub-system communicates with a compressor The DLE combustion sub-system communicates with a fuel injection sub-system and an air supply sub-system communicating with said compressor. Said communication between the CAT combustion sub-system and the combustor is provided at least partially by the thermal reactor. The DLE combustion sub-system communicates with the combustor independent of the thermal reactor.
Other advantages and features of the present invention will be better understood with reference to a preferred embodiment described hereinafter.
Having thus generally described the nature of the present invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment in which:
Referring to the drawings, particularly to
The CAT combustion sub-system 18 includes a fuel/air mixer 20 to provide a lean-premixed fuel/air mixture, a catalyst 22 to initiate chemical reaction and combust approximately 50% of the lean-premixed fuel/air mixture, and a thermal reactor 24 to burn the remainder of the lean-premixed fuel/air mixture into combustion products, generally hot gas. The fuel/air mixer 20 provides a homogeneous mixture of fuel and air at the catalyst 22 inlet. Various means including the use of fuel spokes, air/fuel swirlers, mixing tubes, and other arrangements can achieve this. The catalyst 22 demands a very small deviation in fuel/air mixture variation, from the average. That range of deviation is indicated between the lines L and R as illustrated in
The DLE and CAT combustion sub-systems are preferably integrated into a single combustion can 15. A CO burn out zone 26 is provided in the joint region of the DLE and the CAT combustion sub-systems 12 and 18 of the combustion can 15 and is sized to ensure enough residence time to convert all CO which is formed under the low temperature combustion resulting from the lean FAR value, to CO2 over the entire range of the combustion operation.
An air supply sub-system 28 is provided to selectively supply air from the compressor discharge outlet 30 to the respective DLE and CAT combustion sub-systems 12 and 18 for the combustion procedure. The air supply sub-system 28 includes a by-pass passage 32 preferably with a valve 33 to permit a portion of compressor discharged air to selectively bypass both the DLE and CAT combustion sub-systems 12 and 18 so that the fuel/air ratio of the mixture entering either DLE combustion sub-system 12 or CAT combustion sub-system 18 becomes independent from the power level during engine operation. This is particularly important to the CAT combustion sub system 18 because of the narrow operating window of the catalyst 22 inlet conditions as shown in
A fuel injection sub-system 34 is included in the combustion system 10 and adapted to selectively inject gaseous hydrocarbon fuel 36 into the respective DLE combustion sub-system 12 and the CAT combustion sub-system 18 while selectively injecting liquid hydrocarbon fuel 38 into the DLE combustion sub-system 12.
The DLE and CAT combustion sub-systems 12 and 18 are connected to a transition section 40 of a combustor scroll 42 such that the hot gas resulting from the combustion procedure in the DLE and CAT combustion sub-systems 12 and 18 is delivered through the transition section 40 and the combustor scroll 42 in adequate inlet conditions to the annular turbine inlet 44. Heat exchange means (not shown), such as using convective cooling air, are provided to the combustor scroll 42 to cool the structure of the combustor scroll 42 and the turbine inlet 44. The heat absorbed and carried by the cooling air is transferred back into the air supply sub-system 28 to increase the compressor discharge air temperature and the catalyst 22 inlet temperature, as shown by the dashed line 46 in
A control sub-system 48 is operatively associated with the air supply sub-system 28, including the valve 33, and the fuel injection sub-system 34. The control sub system 48 further includes a means 50 for sensing the compressor discharge air temperature so that the control sub-system 48 is adapted to switch over the combustion procedure from the DLE combustion sub-system 12 to the CAT combustion sub-system 18 in response to a temperature signal sent from the temperature sensing means 50.
In operation, the fuel injection sub-system 34 injects gaseous hydrocarbon fuel 36 into the DLE combustion sub-system 12 and the air supply sub-system 28 supplies compressor discharge air to the DLE combustion sub-system 12 for light-off of the combustion procedure and starting up the engine. During the light-off and low power conditions, the control sub-system 48 controls the fuel injection and the air supply, to ensure that an adequate lean-premixed fuel/air mixture is used in the DLE combustion sub-system 12 so that the NOx, CO and UHC components formed in the combustion products are low. During this period the control sub-system 48 controls the heat addition to the compressor discharge air and the catalyst 22 to increase the compressor discharge air temperature and warm up the catalyst 22. It is optional to switch the fuel supply from gaseous hydrocarbon fuel 36 to liquid hydrocarbon fuel 38, to the DLE combustion sub-system 12 when the engine operation is stable after the idle condition is achieved.
Generally, the compressor discharge air temperature increases at the engine operating power level increases. At a certain power level, an adequate catalyst inlet temperature is reached which falls between the maximum and minimum inlet temperature as illustrated by lines M and N in
The combustion system 10 is adapted to selectively use gaseous and liquid hydrocarbon fuel in different engine operating power level ranges. Nevertheless, the DLE combustion sub-system 12 can optionally be used for liquid hydrocarbon fuel from the idle to full load engine operating condition when the combustion system 10 is used in areas requiring different emission levels.
Different structural arrangements and configurations may be designed for the combustion system according to the present invention. Single, dual stage or backup systems for liquid hydrocarbon fuel operation, incorporating different fuel/air mixing system and flame stabilization mechanisms for different emission levels, are also optional to the present invention. It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of implementation of the invention and which are susceptible to modification of form, size, arrangement of parts, and details of configuration. The invention rather, is intended to encompass all such modifications which are within its spirit and scope as defined by the claims.
This application is a continuation of U.S. patent application Ser. No. 10/349,243 filed Jan. 23, 2003 now U.S. Pat. No. 6,629,414, and was allowed on Apr. 16, 2003.
Number | Name | Date | Kind |
---|---|---|---|
2655786 | Carr | Oct 1953 | A |
2696076 | Weeks | Dec 1954 | A |
3797231 | McLean | Mar 1974 | A |
3928961 | Pfefferle | Dec 1975 | A |
3975900 | Pfefferle | Aug 1976 | A |
4019316 | Pfefferle | Apr 1977 | A |
4040252 | Mosier et al. | Aug 1977 | A |
4065917 | Pfefferle | Jan 1978 | A |
4433540 | Cornelius et al. | Feb 1984 | A |
5161366 | Beebe | Nov 1992 | A |
5165224 | Spadaccini et al. | Nov 1992 | A |
5235804 | Colket et al. | Aug 1993 | A |
5412938 | Keller | May 1995 | A |
5431017 | Kobayashi et al. | Jul 1995 | A |
5452574 | Cowell et al. | Sep 1995 | A |
5531066 | Pfefferle et al. | Jul 1996 | A |
5569020 | Griffin et al. | Oct 1996 | A |
5623819 | Bowker et al. | Apr 1997 | A |
5685156 | Willis et al. | Nov 1997 | A |
5826429 | Beebe et al. | Oct 1998 | A |
5850731 | Beebe et al. | Dec 1998 | A |
5937632 | Döbbeling et al. | Aug 1999 | A |
6105360 | Willis | Aug 2000 | A |
6125625 | Lipinski et al. | Oct 2000 | A |
6223537 | Lipinski et al. | May 2001 | B1 |
6339925 | Hung et al. | Jan 2002 | B1 |
6442939 | Stuttaford et al. | Sep 2002 | B1 |
6532743 | Fischer | Mar 2003 | B1 |
6629414 | Fischer | Oct 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20050103023 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10349243 | Jan 2003 | US |
Child | 10620295 | US |