The present disclosure relates to an ultra-low temperature freezer that includes a housing and a door mounted to the housing with hinges.
As a technique related to such an ultra-low temperature freezer, a freezing apparatus, for example, is described in Patent Literature (PTL) 1. This freezing apparatus includes a housing and a door that is openable by a user. The housing opens at its front side and accommodates objects. The door is mounted to the housing with a plurality of hinges. Specifically, each of the hinges has one of hinge pieces mounted to a first side of the housing and the other hinge piece mounted to a first side of the door. With regard to the door, a second side that faces the first side is provided with a handle that the user holds to open and close the door.
PTL 1
Japanese Patent Application Laid-Open No. 2010-096490
Unlike domestic or commercial refrigerators that make frequent use of center-hung hinges, an ultra-low temperature freezer has its door openably mounted to a housing by flat hinges (hereinafter simply referred to as “hinges”) to realize a storage environment in an ultra-low temperature range (e.g. not more than −50° C.). With the center-hung hinges, a door rotates about shafts that are respectively inserted into bearing holes respectively formed in an upper and a lower end face of the door. On the other hand, with the hinge, a pair of hinge pieces has connecting parts that are respectively formed with bearing holes, and the hinge pieces rotate relative to each other about a pivot inserted into the bearing holes.
With the ultra-low temperature freezer, the hinge is mounted to a first side of the ultra-low temperature freezer, so that a rotation center of the door is substantially disposed on the first side of the ultra-low temperature freezer. Because of that, there is a problem that the door easily comes into contact with an object next to the first side when opened.
In view of the above problem, an object of the present disclosure is to provide an ultra-low temperature freezer that is capable of suppressing contact of a door with an object positioned next to its first side.
The present disclosure is directed to an ultra-low temperature freezer including: a housing including: an exterior body including a first side and a second side that faces the first side in a transverse direction; an interior body provided inside the exterior body, the interior body being formed with a storage space that opens in a forward direction; a thermal insulator provided between the exterior body and the interior body, the thermal insulator being formed of a vacuum insulated panel; an evaporator disposed between the exterior body and the interior body to surround the storage space; and polyurethane provided between the thermal insulator and the interior body; at least one inner door that closes an opening of the storage space when closed; a hinge including a pivot extending in a perpendicular direction, and a first hinge piece and a second hinge piece that rotate relative to each other about the pivot, the first hinge piece being mounted to the second side; and an outer door that opens and closes by rotating about the pivot, the outer door including a third side and a fourth side that faces the third side and is mounted with the second hinge piece, in which the outer door further includes: an inner face that closes the storage space when closed; an outer face provided forwardly of the inner face; a thermal insulator provided near the inner face, the thermal insulator being foiled of a vacuum insulated panel; polyurethane provided between the thermal insulator of the outer door and the outer face; and a connecting face connecting an outer-face edge that is positioned in the transverse direction and a fourth-side edge that is positioned in the forward direction with the outer-face edge that is positioned in the transverse direction being located forwardly of the fourth-side edge that is positioned in the forward direction, the connecting face being a flat surface or a recessed surface, and in which the recessed surface is formed of only points that are positioned toward the inner face from a virtual plane connecting the outer-face edge that is positioned in the transverse direction and the fourth-side edge that is positioned in the forward direction.
According to the present disclosure, the ultra-low temperature freezer that can be provided is capable of suppressing its interference with an adjacent object.
With reference to the above drawings, a detailed description is hereinafter provided of ultra-low temperature freezer 1 according to an embodiment of the present disclosure.
In
As illustrated in
Housing 2 generally includes exterior body 21 and interior body 22 that are made of, for example, metal, and a plurality of thermal insulators 23. Exterior body 21 defines an outside shape of housing 2. Interior body 22 is provided inside exterior body 21 and defines space (hereinafter referred to as “storage space”) A for accommodating objects to store. Storage space A opens forward. Each of the plurality of thermal insulators 23 is preferably formed of a vacuum insulated panel and is provided near exterior body 21 between exterior body 21 and interior body 22. It is to be noted that
Outer door 3 includes interior body 31 and exterior body 32 that are made of, for example, metal, and at least one thermal insulator 33 disposed near interior body 31 in a space between interior body 31 and exterior body 32. Outer door 3 is openable by being rotated about respective pivots 343 (described later) of, for example, three hinges 34 through user operation. When closed, outer door 3 closes an opening of storage space A. On the other hand, when outer door 3 is opened, the user can open and close inner door 5 which is described later. Thermal insulator 33 is formed of a vacuum insulated panel. It is to be noted that in
As described above, respective pivots 343 of hinges 34 are a rotation center of outer door 3. As such, the rotation center of outer door 3 can have reference mark 343 in the following.
Outer door 3 is also provided with handle 35 that the user holds to open and close outer door 3. In the present embodiment, handle 35 has lock mechanism 36. Lock mechanism 36 locks outer door 3 that is closed, and unlocks to allow opening of outer door 3. With outer door 3 locked by lock mechanism 36, hermeticity and thermal insulation of ultra-low temperature freezer 1 can be enhanced.
Outer door 3 is also provided with control panel 37 at its front face. Control panel 37 internally has a control circuit board (not illustrated) and has a touch panel that enables operation and visual recognition by the user. The touch panel is a device that, for example, enables the user to set a target temperature (i.e. a target value for internal temperature) of storage space A and others and displays various information items including a currently preset temperature (the target value for the internal temperature).
Machinery compartment 4 is provided, for example, below housing 2. Machinery compartment 4 houses a well-known binary refrigerating system (also called cascade cycle). It is to be noted, however, that not all elements of the binary refrigerating system are housed by machinery compartment 4. A lower-temperature-side evaporator is disposed in contact with interior body 22 between exterior body 21 and interior body 22 of housing 2 to surround storage space A for the purpose of cooling storage space A, and a cascade condenser is disposed at a rear side of storage space A. Machinery compartment 4 houses the other elements. As described above, with thermal insulators 23 of housing 2 being disposed near exterior body 21, the thermal insulating layer that is formed of, for example, the laminated body of polyurethane or is obtained by filling of the thermal insulating material that foams is formed between interior body 22 and thermal insulators 23, so that a small temperature difference can be achieved between a front surface and a rear surface of each of thermal insulators 23 (i.e. the vacuum insulated panel). Consequently, generation of cracks in the vacuum insulated panels can be suppressed. A detailed description of the binary refrigerating system is provided by PTL 1 and others and thus is not provided in the present embodiment.
Machinery compartment 4 may be internally provided with two unitary multistage refrigeration cycles that are controlled independently of each other. In this case, respective evaporators of the unitary multistage refrigeration cycles are disposed in housing 2 to surround storage space A. Even when a problem is caused to one of the unitary multistage refrigeration cycles, storage space A is maintained in an ultra-low temperature range by the other unitary multistage refrigeration cycle.
As illustrated in
Inner door 5 is made of, for example, resin, is mounted by at least one inner-door hinge 51 at a right edge of the opening of storage space A and rotates about a pivot that is parallel to the z-axis to be openable by the user. When closed, inner door 5 closes the opening of storage space A. On the other hand, with inner door 5 opened, the user can access storage space A. Inner door 5 such as the above can enhance a thermal insulation effect on storage space A.
Storage box 6 accommodates objects to store and is mounted on a rack (not illustrated) that is provided in storage space A. To remove the objects in storage from storage box 6, the user opens outer door 3 and inner door 5 first and then pulls storage box 6 out of storage space A.
As illustrated in
Left side S1, which is an example of a first side, faces right side S2, which is an example of a second side, in the left to right direction, and left side S1 and right side S2 are each formed of, for example, a plane surface that is generally parallel to a y-z plane. Right side S2 faces left side S1 at a position that is about 1,030 mm away from left side S1 in the transverse direction (i.e. in the direction indicated by the x-axis) (refer to
Rear side S3 faces peripheral edge S4 in the rear to front direction, and rear side S3 and peripheral edge S4 each include, for example, a surface that is generally parallel to a z-x plane. Peripheral edge S4 faces rear side S3 in a position that is about 793 mm away from rear side S3 in the direction indicated by the y-axis (refer to
As illustrated in
Left side S5, which is an example of a third side, faces right side S6, which is an example of a fourth side, in the left to right direction, and left side S5 and right side S6 each include, for example, a surface that is generally parallel to the y-z plane. Right side S6 faces left side S5 at a position that is about 1,030 mm away from left side S5 in the direction indicated by the x-axis (refer to
Front face S7 and inner face S8 face each other and each include, for example, a surface that is generally parallel to the z-x plane. Inner face S8 faces outer face S7 at a position that is at most about 115 mm away from outer face S7 in a rearward direction (i.e. in the direction opposite to the direction indicated by the y-axis). A y-axis distance between each of x-axis ends of a peripheral edge of inner face S8 and outer face S7 is about b 90 mm (refer to
It is preferable that housing-end peripheral edge S4 (mentioned above) and the peripheral edge of inner face S8 be respectively mounted with breakers that are made of, for example, resin. Either one of peripheral edge S4 and inner face S8 is mounted with packing or the like via the breaker. When outer door 3 is closed and is locked by lock mechanism 36 (described later), inner face S8 faces housing-end peripheral edge S4 in close proximity to housing-end peripheral edge S4, thereby crushing the packing and the breakers that are interposed between inner face S8 and peripheral edge S4.
Left connecting face S9 includes a flat surface that connects a left edge of outer face S7 and a front edge of left side S5. Right connecting face S10 includes a flat surface that connects right edge E1 of outer face S7 and front edge E2 of right side S6. In right connecting face S10 such as the above, right edge E1 of outer face S7 is provided forwardly of front edge E2 of right side S6. This right connecting face S10 is parallel to pivots 343 and defines a straight line in a plane viewed in the direction indicated by the z-axis. In other words, right connecting face S10 has substantially identical cross-sectional shapes when outer door 3 is cut along x-y planes at z-axis positions of choice.
Right connecting face S10 is preferably formed between right side S6 and right edge A1 of storage space A in a plane view taken along the y-axis.
In consideration of design quality of ultra-low temperature freezer 1, outer door 3 is preferably shaped to have a bilateral symmetry. In other words, connecting faces S9, S10 are preferably shaped to be symmetrical to each other about a longitudinal plane of symmetry of ultra-low temperature freezer 1. The longitudinal plane of symmetry passes through an x-axis center of ultra-low temperature freezer 1 and is parallel to the y-z plane.
As illustrated clearly in
With a conventional freezing apparatus (i.e. a freezing apparatus of PTL 1), a plurality of hinges are mounted to a housing-end right side, so that a door is openable relative to a housing. As such, a rotation center of the door is substantially disposed on a right side of the freezing apparatus. Moreover, a right front corner of the door (that is to say, a corner formed by an outer face and a side of the door) is substantially right-angled. Because of that, in cases where the freezing apparatus is installed with its right side positioned alongside a wall, the corner of the door easily comes into contact with the wall when the door is opened.
On the other hand, with ultra-low temperature freezer 1, the housing and the door respectively have suppressed thicknesses without affecting thermal insulation performance because of the vacuum insulated panels provided as the thermal insulators, and a right front corner of the door has the flat surface (i.e. right connecting face S10) that connects right edge E1 of outer face S7 and front edge E2 of right side S6. A y-axis distance from rotation center 343 of outer door 3 to a rear edge of right connecting face S10 (i.e. front edge E2 of right side S6) is smaller than a y-axis distance from rotation center 343 to a front edge of right connecting face S10 (i.e. right edge E1 of outer face S7) (refer to
Since outer door 3 does not easily come into contact with the wall, this ultra-low temperature freezer 1 can have an increased y-axis distance between inner face S8 and outer face S7. For this reason, ultra-low temperature freezer 1 can secure the requisite thermal insulation performance even if inner door 5 is made thinner. With outer face S7 of outer door 3 shifted forward and with inner door 5 being thinner, the user can take storage box 6 out of storage space A with more ease. This is because a smaller rotation amount of outer door 3 (i.e. a smaller outer-door open angle) is required for 90° rotation of inner door 5 from a closed position. In the case of ultra-low temperature freezer 1, as illustrated in
In cases where outer door 3 can be made thicker as in ultra-low temperature freezer 1, the vacuum insulated panel that forms thermal insulator 33 can be disposed in contiguity with inner face S8. In other words, thermal insulator 33 can be isolated from control panel 37 that is provided at outer face S7 of outer door 3. Accordingly, there is no need for shaping of thermal insulator 33 based on an electrical system inside outer door 3 or designing of an electrical system that avoids thermal insulator 33. Consequently, thermal insulator 33 can be disposed in outer door 3 at low costs.
By being disposed near inner face S8, thermal insulator 33 is also isolated from outer face S7. In this case, a front surface of thermal insulator 33 is less susceptible to ambient temperature, and the lower-temperature-side evaporator is not disposed in outer door 3. As such, a small temperature difference can be achieved between the front surface and a rear surface of thermal insulator 33 (i.e. the vacuum insulated panel). Consequently, generation of cracks in the vacuum insulated panel can be suppressed.
Since thermal insulator 33 can be disposed in contiguity with inner face S8, an x-axis length of thermal insulator 33 to dispose can be greater than an x-axis length of outer face S7 as illustrated in
As illustrated in
With reference to
In the above embodiment, right connecting face S10 is provided to cover an area from an upper edge to a lower edge of outer door 3. However, right connecting face S10 is not limited to this. As illustrated in
In this case, respective positions of an upper and a lower edge of right connecting face S10 are fixed in consideration of a location where a handle and a lock mechanism of an ultra-low temperature freezer of the same model or a different model (hereinafter referred to as “another ultra-low temperature freezer”) are disposed (i.e. in consideration of respective positions of an upper and a lower edge of that location in the perpendicular direction). More specifically, right connecting face S10 is preferably designed so that its upper edge and its lower edge are substantially aligned with the respective upper and lower edges of the location where the handle and the lock mechanism of the other ultra-low temperature freezer are disposed. In this case, it is to be noted that outer face S7 and right side S6 meet, for example, substantially at right angles in an area other than right connecting face S10.
In addition, left connecting face S9 is preferably shaped to be symmetrical to right connecting face S10 of
According to the first modification, in cases where ultra-low temperature freezer 1 and the other ultra-low temperature freezer are disposed side by side, because of right connecting face S10 provided, outer door 3 of ultra-low temperature freezer 1 does not easily come into contact with the handle or the lock mechanism of the other ultra-low temperature freezer when opened.
An ultra-low temperature freezer is generally used in a research institution. As such, unlike domestic refrigerators and others, a plurality of ultra-low temperature freezers are sometimes disposed side by side in the same indoor space. When replacing one of those freezers with another ultra-low temperature freezer, generally, many users would conceivably not want to move the other ultra-low temperature freezers. In this case, an installation space for the ultra-low temperature freezer is limited. However, ultra-low temperature freezer 1 is suitable for side-by-side installation as described above and thus is very advantageous even during replacement such as the above.
With reference to
In the above embodiment, right connecting face S10 is flat. However, as illustrated in
In addition, left connecting face S9 is preferably shaped to be symmetrical to right connecting face S11 of
Even with the second modification, functional effects that are similar to the functional effects described in section 1-4 are achieved.
It is to be noted that respective ultra-low temperature freezers 1 of the above embodiment and the modifications may be flipped horizontally.
In consideration of design quality of each of ultra-low temperature freezers 1, in a plane viewed in the direction indicated by the z-axis, a left front corner and a right front corner of machinery compartment 4 may be formed into shapes that are substantially identical to left connecting face S9 and right connecting face S10, respectively. A front face of machinery compartment 4 can be provided with an air inlet for the binary refrigerating system, so that at least one of left connecting face S9 or right connecting face S10 is preferably shaped in consideration of size of the air inlet.
The present application claims priority to Japanese Patent Application No. 2016-048225 filed with the Japan Patent Office on Mar. 11, 2016. The contents of Japanese Patent Application No. 2016-048225 are hereby incorporated by reference into the present application.
An ultra-low temperature freezer according to the present disclosure can quickly regain temperature of a storage space and thus is suitable as an ultra-low temperature freezer or the like.
Number | Date | Country | Kind |
---|---|---|---|
2016-048225 | Mar 2016 | JP | national |
This application is a U.S. Continuation of International Patent Application No. PCT/JP2017/008321, filed on Mar. 2, 2017, which in turn claims the benefit of Japanese Application No. 2016-048225, filed on Mar. 11, 2016, the entire disclosures of which Applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6128914 | Tamaoki | Oct 2000 | A |
20040118139 | Kelly | Jun 2004 | A1 |
20100326109 | Tobe et al. | Dec 2010 | A1 |
20110023532 | Kobayashi et al. | Feb 2011 | A1 |
20110273071 | Kim | Nov 2011 | A1 |
20120104922 | Takahashi et al. | May 2012 | A1 |
20140319993 | Kimura et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
H10-300330 | Nov 1998 | JP |
2010-096490 | Apr 2010 | JP |
2012-097407 | May 2012 | JP |
2013-185735 | Sep 2013 | JP |
2013-190128 | Sep 2013 | JP |
2010-029839 | Mar 2010 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Patent Application No. PCT/JP2017/008321 dated May 23, 2017; with partial English translation. |
Extended European Search Report issued in corresponding European Patent Application No. 17763075.3, dated Feb. 26, 2019. |
Number | Date | Country | |
---|---|---|---|
20190003759 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2017/008321 | Mar 2017 | US |
Child | 16126153 | US |