The present invention relates to structures for use in industrial fabrics such as paper machine clothing and engineered fabrics. More specifically, the structures include hollow elastic members, which may be compressible in a thickness or radial direction and resilient in a length or axial direction, and relatively inelastic functional yarns in various patterns. Such structures have a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
Industrial fabrics means an endless structure in the form of a continuous loop such as one used as a forming, press or dryer fabric (paper machine clothing or PMC) as well as a process belt such as a shoe press, calendar, or transfer belt used on a paper machine. Industrial fabrics also means a fabric used in textile finishing processes. Industrial fabrics also include other endless belts where a high degree of compressibility and resiliency is required.
While the discussion herein concerns for the most part the papermaking process in general, the application of the invention is not considered limited thereto.
In this regard, during the papermaking process, for example, a cellulosic fibrous web is formed by depositing a fibrous slurry, that is, an aqueous dispersion of cellulose fibers, onto a moving forming fabric in a forming section of a paper machine. A large amount of water is drained from the slurry through the forming fabric, leaving the cellulosic fibrous web on the surface of the forming fabric.
The newly formed cellulosic fibrous web proceeds from the forming section to a press section, which includes a series of press nips. The cellulosic fibrous web passes through the press nips supported by a press fabric, or, as is often the case, between two such press fabrics. In the press nips, the cellulosic fibrous web is subjected to compressive forces which squeeze water therefrom, and which adhere the cellulosic fibers in the web to one another to turn the cellulosic fibrous web into a paper sheet. The water is accepted by the press fabric or fabrics and, ideally, does not return to the paper sheet.
The paper sheet finally proceeds to a dryer section, which includes at least one series of rotatable dryer drums or cylinders, which are internally heated by steam. The newly formed paper sheet is directed in a serpentine path sequentially around each in the series of drums by a dryer fabric, which holds the paper sheet closely against the surfaces of the drums. The heated drums reduce the water content of the paper sheet to a desirable level through evaporation.
It should be appreciated that the forming, press and dryer fabrics all take the form of endless loops on the paper machine and function in the manner of conveyors. It should further be appreciated that paper manufacture is a continuous process which proceeds at considerable speeds. That is to say, the fibrous slurry is continuously deposited onto the forming fabric in the forming section, while a newly manufactured paper sheet is continuously wound onto rolls after it exits from the dryer section.
Base fabrics, which form an important portion of the above discussed fabrics, take many different forms. For example, they may be woven either endless or flat and subsequently rendered into endless form with a woven seam using one or more layers of machine direction (MD) and cross machine direction (CD) yarns. Also such fabrics may employ what is referred to as a pin seam also formed from MD yarns to allow installation on the paper machine. Further, the base fabrics may be laminated by placing one base fabric within the endless loop formed by another base fabric, and joining or laminating them together by various means known to those skilled in the art such as by needling staple fiber batt through both base fabrics to join them to one another.
In paper machine clothing (PMC) especially press fabrics used in the press section of a paper machine, the fabric has one or more “base structures” formed from yarns and staple fiber batt needled into usually at least the sheet contact surface. The press fabric has an initial thickness, mass, and consequent void volume (the calculated volume based upon this mass and thickness) which equates to water handling capacity. They also have a measurable contact area.
Since press fabrics are subjected to normal loads (normal to the fabric plane in use) as it passes through one or more press nips, the fabric has a compressed void volume and surface contact area as well. While there have been various attempts to change the degree of compressibility, press fabrics become progressively thinner over time and millions of nip cycles. Eventually they must be removed due to various reasons such as lack of water handling capability, marking, or press vibration. When they have reached the end of their useful lifetime they must be removed and replaced with a new fabric.
New fabrics also go through a break in period wherein the density is not ideal and water handling is less than optimum. Accordingly, an ideal press fabric is one that has near constant or steady state performance (for example water handling capability) from day one until it is removed from the paper machine.
Various attempts have been made to affect press fabric properties, especially compressibility and resiliency. One attempt has been to introduce “elastic” yarns into structures. One example of this is seen in PCT application WO 2004/072368 A1. There are shortcomings to this approach however. The compressibility is only due to the elastic portion (in the through thickness direction) of the yarn, and is therefore limited to such. While larger yarns can be used, there is eventually a diminishing return on performance. Also large yarns are heavy, and can cause objectionable sheet marking. If the yarn is a sheath/core type, there is always the danger of delamination of the sheath from the core. Finally, the degree of compressibility is limited to a maximum of some fraction of the yarn diameter.
Another example is U.S. Patent application 2007/0163741 A1 which incorporates an array of compressible sheath/core yarns attached to the backside of a seamed press fabric. It is taught that the sheath is elastomeric, and can provide vibration dampening effects. It further teaches that the yarn core alone can be 200 to 2000 denier, and a total size of 0.30 to 1.2 mm in diameter. Such yarn sizes can be limited in use due to weight and potential marking considerations.
A further example is taught in U.S. Pat. No. 4,350,731 which teaches the use of wrapped yarns to make a compressible press fabric structure. Again the degree of compressibility and recovery is due to only the elastomeric wrapping sheath layers.
Another example of this type of structure is taught in GB 2 197 886. This patent discloses compressible yarns which alternated in some manner with functional (tensile) load bearing yarns to provide, under an applied normal load, a dense, quasi-single layer base structure without “knuckles” and with long weave floats to provide a quasi-crossless base construction.
Yet another example is disclosed in U.S. Pat. No. 5,087,327 to Hood, which relates to a composite yarn for use in a papermaker's fabric. The composite yarn includes a soluble core surrounded by a layer of non-soluble monofilament.
Yet another example is disclosed in U.S. Pat. No. 5,597,450, which relates to a paper machine dryer fabric including hollow thermoplastic monofilaments in the cross-machine direction.
A further example is disclosed in U.S. Publication No. 2002/0100572, which relates to a papermaking fabric having beam construction yarns that resist lateral, vertical and torsional deflection as well as compression when interwoven. The yarns are non-circular in cross-section, such as I-beam, H-beam, and box-beam.
A further example is a structure taught in U.S. Pat. No. 4,781,967. Such a structure is defined to be relatively incompressible as the stacked yarn arrays do not compress nor move relative to any other layer. In other words, when there is an applied load normal to the plane of the structure, there is little thickness change, except for any yarn deformation which is permanent. If an elastomeric (in the yarn thickness direction) is employed as the yarns in an entire layer, the compressibility of the structure is limited to some portion of that yarn diameter.
Yet another example is taught in U.S. Pat. No. 4,555,440. Again this structure is considered incompressible as there is little through thickness change when a normal load is applied or removed.
Incorporating “elastic” (in the thickness or radial direction) yarns into fabrics has affected to some degree the resiliency or spring back of these fabric structures once the normal load is removed. But again, using these yarns, the compressibility and spring back is limited to some portion of the yarn diameter at most.
As stated above, because of this limited resiliency, press fabrics have a relatively high void volume to handle water when new, more than is ideally required. They will compact and reach an optimum performance level for a period of time. However as they have limited resiliency, they will continue to compact, eventually requiring removal and replacement.
Accordingly, it is a principal object of the present invention to provide a base structure that is substantially more compressible and resilient than those of the prior art, and that maintains its compressibility and resiliency through its entire lifetime.
In this regard, the instant invention provides for a base support structure that combines hollow elastic members with excellent compressibility and resiliency with relatively inelastic functional yarns in several types of patterns, for use as at least a layer of a base support structure in PMC, industrial process belts, textile finishing belts, and other belts that require a high degree of compressibility and resiliency.
A hollow member that is defined as elastic in its thickness or radial direction and length or axial direction is required for all the embodiments discussed. The hollow elastic member can have any form as appropriate for the application and can be, for example, single monofilament, plied monofilament or multifilament, wrapped member of different materials, multicomponent member, knitted member, twisted member, or braided. The hollow elastic members can be partially composed of an elastic material, such as a multicomponent member where one component is the elastic material, or the hollow elastic member can be wholly comprised of the elastic material. The hollow elastic member may have a circular or non-circular cross sectional shape. The non-circular cross sectional shapes may include, but are not limited to, square, rectangular, triangular, elliptical, trapezoidal, polygonal, and lobate shapes. The hollow elastic member can have one or more holes running along its length or axial direction, and the holes themselves can have a circular or non-circular cross sectional shape including square, rectangular, triangular, elliptical, trapezoidal, polygonal, and lobate shapes, and can be of any suitable size. Examples of good elastic materials include, but are not limited to, polymers such as polyurethane, rubber or that sold under trademarks Lycra® by Invista or Estane® by Lubrizol.
A first embodiment employs a structure in its simplest form described as follows. Layer (1), which is the uppermost layer, is an array of parallel functional yarns. Functional yarns can include any type of yarn as known by ordinarily skilled artisans. For example, if they are oriented in the machine or running direction, they can be tensile load bearing yarns. They can again be of any size, shape, material or form as required for the particular application known to those skilled in the art. For a press fabric structure, polyamide would be a desired polymer choice. The next layer (2) is a parallel array of members oriented orthogonal or 90 degrees to the yarn layer (1). These are the required hollow elastic members. The third layer (3) is also a parallel array of functional yarns that are located on the opposite side of layer (2) and are oriented orthogonal to layer (2). However, the yarns in layer (3) are arranged such that each layer (3) yarn lines up with the space between two adjacent layer (1) yarns. In other words, this design can be classified as “crossless” in that the yarns and members in the MD and CD do not interweave with each other, but are stacked orthogonal to each other and lie in separate planes. These arrays are held together in some manner. For instance, they can be attached to a fibrous layer as taught in the aforementioned U.S. Pat. No. 4,781,967, the entire content of which is incorporated herein by reference, or the yarns/members in one layer can be attached to the yarns/members in an adjacent layer at the point where they touch via use of glues, adhesives, or a thermal fusion/welding method as known to those skilled in the art.
Note yarn systems (1) and (3) can be the same as each other or they can be different in terms of material, form, shape, etc. It is only required that the yarns in layer (3) are spaced to fit between adjacent yarns of layer (1) or vice versa.
Also note there does not have to be a one to one relationship between the number of yarns of layers (1) and (3), and the number of yarns in layer (3) can be only a fraction of the number of yarns in layer (1) or vice versa. For example, layer (3) may contain only half the yarns of layer (1) so that there are spaces between the yarns of layer (3) in use, creating additional void volume/waterhandling/water removal capability. Another embodiment is the same as that described above, but with woven binder yarns that may be alternated with the hollow elastic members in layer (2). Binder yarns may be in the MD instead, or in both MD and CD. Batt may then be applied to this structure at least on the sheet contact side by methods known to those skilled in the art.
Accordingly described herein is a compressible resilient industrial fabric that comprises a plurality of substantially parallel cross-machine direction (CD) yarns/members and a plurality of substantially parallel machine direction (MD) yarns/members. Any number of these yarns/members, in either or both CD and MD, can include an axially and radially elastic material. All the members of one layer, however, must be the hollow elastic members described above, except for the binder yarns, which may be alternated with the hollow elastic members in that layer. For example, in a MD/CD/MD configuration, all the CD members must be the hollow elastic members, with or without the alternating binder yarns. The fabric can comprise a first layer of the parallel functional yarns running in either the CD or the MD direction; a second layer of the parallel members on one side of the first layer, the second layer's members running in the CD or MD direction different from that of the first layer and comprising the hollow elastic members with excellent compressibility and resiliency; and a third layer of the parallel functional yarns on the opposite of the second layer as the first layer and running in the same direction as those of the first layer. The parallel yarns of the third layer are aligned such that they nest between the spaces created between the parallel yarns of the first layer. The fabric can comprise a binder yarn system. In the compressible resilient fabric, the number of yarns in the third layer can be less than the number of yarns in the first layer. The hollow elastic members of the second layer can also be orthogonal to those of the first and third layers. In the fabric, the hollow elastic members of the second layer can be at an angle of less than 90 degrees of the first and third layer, such as an angle of 45 degrees.
The fabric of can also include a fourth layer of parallel hollow elastic members in the same direction as the second layer, which include the hollow elastic material, and a fifth layer of parallel functional yarns in the same direction as the first layer, wherein the functional yarns of the fifth layer are aligned in the same vertical plane in a through thickness direction as that of the first layer.
In another embodiment, the fabric can include a laminated structure. For example, the fabric can comprise two independently woven fabric layers with a hollow elastic member layer/array there between. As another example, the fabric comprises a binder yarn system weaving between the two woven layers of the laminate. In another embodiment, the binder yarn system and the hollow elastic members of the fabric can be in the same direction, for example, the CD, and may be alternated with each other. In such an embodiment, the layer of hollow elastic members can be inside a double layer construction.
The resilient compressible fabric can form or be included in any number of final fabrics including: paper machine clothing, such as a forming fabric, a press fabric, a dryer fabric, a through air dryer fabric, a shoe press belt base, a calendar belt base, or a transfer belt base; an engineered fabric base; or a fabric used in the production of nonwovens by processes such as airlaid, melt blowing, spunbonding, and hydroentangling; or an industrial process belt such as a textile finishing belt, or other belts that require a high degree of compressibility and resiliency. Where the fabric is a base for a dryer fabric, the dryer fabric can include a backside or a non-sheet contact side of the fabric, the backside including angled components.
In another embodiment, the fabric is a compressible resilient industrial fabric, wherein the fabric comprises: one or more layers of a plurality of functional yarns in the machine direction (MD) and/or cross-machine direction (CD), and one or more layers of a plurality of hollow elastic (axially and radially) members interspersed between the one or more layers of a plurality of functional yarns. Any number of the MD yarns and CD yarns are interwoven to form a woven fabric. The fabric further can include a plurality of binder yarns. Also, the fabric can comprise a 2-8-shed pattern. The compressible resilient fabric can be woven into any of a flat woven fabric, an endless fabric; and an on-machine seamable fabric. In one embodiment the fabric can include a laminated structure. For example, the fabric can comprise two woven layers with the inventive compressible resilient fabric there between. As another example, the fabric can comprise binder yarns weaving between the layers of laminate. In another embodiment, the binder yarns and the hollow elastic members of the fabric can be in the same direction, for example, the CD. Binder yarns may be in the MD instead, or in both MD and CD. In such an embodiment, the layer of hollow elastic members can be inside a double layer construction. The hollow elastic members are preferably coarser (larger) than the binder yarns. Also, the fabric can comprise the hollow elastic members in the CD and the MD, wherein the binder yarns are smaller than the hollow elastic members.
The interwoven resilient compressible fabric can form or be included in any number of final fabrics including: paper machine clothing, such as a forming fabric, a press fabric, a dryer fabric, a through air dryer fabric, a shoe press belt base, a calendar belt base, or a transfer belt base; an engineered fabric base; or a fabric used in the production of nonwovens by processes such as airlaid, melt blowing, spunbonding, and hydroentangling; or an industrial process belt such as a textile finishing belt, or other belts that require a high degree of compressibility and resiliency. Where the fabric is a base for a dryer fabric, the dryer fabric can include a backside or a non-sheet contact side of the fabric, the backside including angled components.
Thus by the present invention its objects and advantages will be realized, the description of which should be taken in conjunction with the drawings wherein:
Initially although a press fabric will be discussed, as aforesaid the present invention has application to other type fabrics or belts including forming fabrics, dryer fabrics, through air dryer fabrics, shoe press belts, calendar belts, or transfer belts; engineered fabrics; or fabrics used in the production of nonwovens by processes such as airlaid, melt blowing, spunbonding, and hydroentangling; or industrial process belts such as textile finishing belts, or other belts that require a high degree of compressibility and resiliency.
A hollow member that is defined as elastic in its thickness or radial direction and length or axial direction is required for all the embodiments discussed herein. The hollow elastic member can have any form as appropriate for the application and can be, for example, single monofilament, plied monofilament or multifilament, wrapped member of different materials, multicomponent member, knitted member, twisted member, or braided. The hollow elastic members can be partially composed of an elastic material, such as a multicomponent member where one component is the elastic material, or the hollow elastic member can be wholly comprised of the elastic material. The hollow elastic member may have a circular or non-circular cross sectional shape. The non-circular cross sectional shapes may include, but are not limited to, square, rectangular, triangular, elliptical, trapezoidal, polygonal, and lobate shapes. The hollow elastic member can have one or more holes running along its length or axial direction, and the holes themselves can have a circular or non-circular cross sectional shape including square, rectangular, triangular, elliptical, trapezoidal, polygonal, and lobate shapes, and can be of any suitable size. Some non-limiting examples of cross-sectional shapes for the hollow elastic member are illustrated in
With that said turning now more particularly to the drawings, a press fabric base structure 10 is shown for example in
A second or middle (2) layer 16 of hollow elastic members 18 is provided oriented orthogonal or 90 degrees to the first layer 12. The hollow elastic members 18 have the elastic features as aforesaid.
A third or bottom (3) layer 20 comprised of functional yarns 22 is provided in the form of a parallel array orthogonal to layer 16. The yarns 22 in layer 20 are positioned or aligned within the space between yarns 14 in top (1) layer 12.
The yarns/members of adjacent layers can be attached as aforesaid in a variety of ways suitable for the purpose. A batt layer (not shown) can be applied to the top (sheet side) surface and/or the bottom surface using techniques known in the art.
Upon application of a compressive load as the press fabric enters a press nip on a paper machine, the hollow elastic members 18 will stretch allowing the yarns 14 and 22 to move towards each other and to “nest” between each other, virtually almost in the same plane, as shown in
These properties are important as they affect: uniformity of pressure distribution under load as well as the total contact area; fast startup as the fabric compresses easily to the desired in nip void volume; vibration dampening as the structure acts as a dampening “spring”; and the quick recovery of thickness may help to minimize rewet during the expansion phase of post mid nip dewatering.
It is important to note that the member arrays of layers 12 and 20 can be oriented either in the MD or CD in the fabric in use, and so can the hollow elastic member array of layer 16. It is also important to note that although functional yarns 14, 22 are illustrated as having a square cross-section in some figures, they can be of any size, shape, material or form suitable for the purpose.
In another embodiment similar to that of the above, yarn layers 12 and 20 have the same position and relative orientation/spacing as above, but hollow elastic member layer 16 is oriented at less than 90 degree angle to layers 12 and 20, preferably at a 45 degree angle.
Another embodiment employs a similar principle as above, but the structure is made using a process as taught in co-pending U.S. application Ser. No. 11/893,874, the entire disclosure of which is incorporated herein by reference. In this embodiment, a full length, full width array of functional (e.g. tensile load bearing) MD yarns is created according to the method disclosed in the '874 application. To this array is attached another layer of the required hollow elastic members in the CD direction. These CD hollow elastic members can be orthogonal or at an angle less than 90 degrees relative to the MD yarns. When the fabric is then folded over according to the method in the application, yarn layers 12 and 20 are formed, sandwiching two layers 18 of hollow elastic members which are either stacked perpendicular and on top of each other, or crisscross each other an acute angle. The spacing of the MD yarns after folding over has to be arranged to allow the yarns to “nest,” as explained in the previous embodiment. When used as a press fabric, additional batt fiber can be attached to at least one surface to further consolidate the structure.
In another embodiment, a structure is woven similar to that taught in the aforementioned U.S. Pat. No. 4,555,440, the entire disclosure of which is incorporated herein by reference. For purposes of illustration in the present application, only two layers of yarns in one direction 12 and 20, and one layer 16 of hollow elastic members in the other orthogonal direction 16 are shown in
They can be the same or different from each other in shape, form, material, etc. Layer 16 has the hollow elastic members. Again, the spacing of yarns 14 and 22 relative to each other has to be such to allow “nesting”. Binder yarns 24 can act just as binder yarns or also be functional yarns as well which for example can positively affect CD fabric stability. As in the other embodiments above when used as a press fabric for example, batt can be applied at least to one surface. Also depending on the application instead of batt a porous or non-porous film may be laminated to the structure. The structure can have a layer of coating on either or both surfaces and the coating can also partially or fully encapsulate or impregnate the entire structure.
When a load is applied normal to the fabric plane, yarn layers 12 and 20 will move towards each other and “nest,” allowing compression of the base fabric to almost a full yarn diameter. More importantly, as the load is removed, the hollow elastic members 18 will “spring back,” causing yarn layers 12 and 20 to move apart from one another, and causing the fabric to regain its original shape and thickness.
Furthermore, there can be more than two layers of functional MD yarns and more than one layer of CD yarns as shown in
Layers 12, 16, 20, 26 and 28 are not interwoven, as illustrated in
According to another embodiment of the invention, all the structures described above can be employed to produce spiral wound strips of material as taught in U.S. Pat. No. 5,360,656, the entire content of which is incorporated herein by reference.
All the structures above can be made endless in the machine direction. They can also have a seam to allow on-machine seaming capability. One method to make such a seam in “crossless” structures is taught in U.S. Pat. No. 4,979,543, the entire content of which is incorporated herein by reference.
Again it is important to note that the layer of hollow elastic members can be employed in either the MD or CD layers, or in both MD and CD layers, as long as there is at least one MD layer of tensile load bearing yarns to provide adequate strength and stretch resistance to the structure in use.
Also the degree of compression/resiliency is controlled by the elasticity of the required elastic members, number of layers of the elastic members, size, shape and number of elastic members in each layer of the elastic members, and of course the totality of the structure itself. The inventive structure can also be part of a laminate with other yarn arrays or base fabrics attached thereto.
Moreover, in the case of a dryer fabric, the three layer embodiment, shown in the figures, may be particularly advantageous in that as the fabric structure passes around a roll, for example a dryer can, the yarns in the dryer fabric will at least partially nest improving contact area of the paper sheet to the dryer can surface and therefore improve heat transfer. This would be caused by a temporary increase in MD tension as the dryer fabric passes around a roll and not due to any applied load normal to the fabric. The invention, according to another embodiment, is a support layer of a dryer fabric, where the inventive fabric forms the sheet side component of the dryer fabric, such as shown in
In yet another embodiment, the fabric may be woven, and the layers of the fabric may each be formed by mixing different weave repeats or shed patterns. By way of background, in flat weaving, a warp, or MD, yarn is threaded through a heddle, and the weave pattern is created by raising and lowering the heddle position for each yarn in the warp direction before the weft or pick is inserted into the shed created by raising or lowering the warp yarns or MD yarns. The number of yarns intersected before a weave pattern repeats is known as a shed. With this understanding, a plain weave utilizes, for example two sheds in a loom for changing the warp yarn positions, and can therefore be termed a two shed weave pattern. Accordingly the fabric of the present invention can be constructed using a 2, 4, 6 or 8 shed weave pattern, and so on.
Illustrating other embodiments of the fabric, in
In another embodiment,
The weave must be such that the hollow elastic members are allowed to stretch and compress, and the base compresses under a normal load then ‘springs back’ after removal of the load.
Another variant of the embodied fabric is shown in
Modifications to the present invention would be obvious to those of ordinary skill in the art in view of this disclosure, but would not bring the invention so modified beyond the scope of the appended claims.
This application is a continuation-in-part of U.S. application Ser. No. 12/345,466 filed Dec. 29, 2008, which claims priority of U.S. Provisional Patent Application Ser. No. 61/017,484 filed Dec. 28, 2007, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2919217 | Bobkowicz | Dec 1959 | A |
2919467 | Mercer | Jan 1960 | A |
3095258 | Scott | Jun 1963 | A |
3316136 | Pufahl | Apr 1967 | A |
3384692 | Galt | May 1968 | A |
3537928 | Maglio | Nov 1970 | A |
3553857 | Isham et al. | Jan 1971 | A |
3630824 | Rohlig | Dec 1971 | A |
3723218 | Gaffney | Mar 1973 | A |
3733721 | Clemens | May 1973 | A |
3815645 | Codorniu | Jun 1974 | A |
4088805 | Wiegand | May 1978 | A |
4323622 | Gladh et al. | Apr 1982 | A |
4328840 | Fontana | May 1982 | A |
4328841 | Fontana | May 1982 | A |
4350731 | Siracusano | Sep 1982 | A |
4555440 | Crook | Nov 1985 | A |
4569874 | Kuznetz | Feb 1986 | A |
4569883 | Renjilian | Feb 1986 | A |
4608768 | Cavanagh | Sep 1986 | A |
4781967 | Legge et al. | Nov 1988 | A |
4791863 | Vahatalo | Dec 1988 | A |
4870998 | Westhead | Oct 1989 | A |
4931358 | Wahl et al. | Jun 1990 | A |
4979543 | Moriarty et al. | Dec 1990 | A |
5087327 | Hood | Feb 1992 | A |
5360656 | Rexfelt et al. | Nov 1994 | A |
5368696 | Cunnane, III et al. | Nov 1994 | A |
5401564 | Lee et al. | Mar 1995 | A |
5436052 | Basse | Jul 1995 | A |
5480646 | Vu | Jan 1996 | A |
5560401 | Miglus | Oct 1996 | A |
5597450 | Baker et al. | Jan 1997 | A |
5732749 | Fargeout | Mar 1998 | A |
6001460 | Morman | Dec 1999 | A |
6039821 | Buck | Mar 2000 | A |
6146499 | Lin et al. | Nov 2000 | A |
6158576 | Eagles | Dec 2000 | A |
6179965 | Cunnane, III et al. | Jan 2001 | B1 |
6391420 | Cederblad et al. | May 2002 | B1 |
6413889 | Best et al. | Jul 2002 | B1 |
6630223 | Hansen | Oct 2003 | B2 |
6723208 | Hansen | Apr 2004 | B1 |
20020072290 | Johnson | Jun 2002 | A1 |
20020100572 | Cunnane, III | Aug 2002 | A1 |
20020162246 | Mayer et al. | Nov 2002 | A1 |
20030217484 | Christensen et al. | Nov 2003 | A1 |
20030228815 | Bhatnagar et al. | Dec 2003 | A1 |
20040005832 | Neculescu et al. | Jan 2004 | A1 |
20040023582 | Espe | Feb 2004 | A1 |
20040219854 | Groitzsch et al. | Nov 2004 | A1 |
20050081570 | Karlsson et al. | Apr 2005 | A1 |
20060029772 | Huang et al. | Feb 2006 | A1 |
20060278328 | Westerkamp et al. | Dec 2006 | A1 |
20070163741 | Crook | Jul 2007 | A1 |
20070194490 | Bhatnagar et al. | Aug 2007 | A1 |
20070202314 | Youn et al. | Aug 2007 | A1 |
20080166533 | Jones et al. | Jul 2008 | A1 |
20090176427 | Hansen et al. | Jul 2009 | A1 |
20090181590 | Hansen et al. | Jul 2009 | A1 |
20100129597 | Hansen et al. | May 2010 | A1 |
20120189806 | Hansen et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1914373 | May 2010 | CN |
42 02 325 | Aug 1993 | DE |
10 2004 038770 | Feb 2006 | DE |
0306313 | Mar 1989 | EP |
0505788 | Mar 1992 | EP |
1302578 | Apr 2003 | EP |
1386723 | Feb 2004 | EP |
1568808 | Aug 2005 | EP |
1 719 834 | Nov 2006 | EP |
1118784 | Jul 1968 | GB |
2197886 | Jun 1988 | GB |
06-135455 | May 1994 | JP |
2003-193326 | Jul 2003 | JP |
2000-0064842 | Nov 2000 | KR |
WO 9317180 | Sep 1993 | WO |
WO 2004005018 | Jan 2004 | WO |
WO 2004072368 | Aug 2004 | WO |
WO 2005075734 | Aug 2005 | WO |
WO 2007067949 | Jun 2007 | WO |
WO 2009086533 | Jul 2009 | WO |
WO 2010030298 | Mar 2010 | WO |
Entry |
---|
Definition “loom” Complete Textile Glossary, Celanese Acetate LLC, Copyright 2001 (no month). |
BPAI Decision on Appeal, U.S. Appl. No. 10/699,997, mailed Dec. 19, 2011. |
Definition “laminated” Merriam-Webster Dictionary, https://www.merriam-webster.com/dictionary/laminated, (no date). |
Definition of “Needle Loom” Complete Textile Glossay, Celanese Acetate, 2001. |
Definition of “soft” Webster's New World College Dictionary, Wiley Publishing, 2010. |
International Search Report and Written Opinion from EPO for PCT/US2008/088478 dated Jul. 2, 2009. |
International Search Report and Written Opinion from EPO for PCT/US2008/088450 dated Apr. 15, 2009. |
International Search Report and Written Opinion from EPO for PCT/US2010/036398 dated Sep. 15, 2010. |
International Search Report and Written Opinion from EPO for PCT/US2010/036385 dated Oct. 7, 2010. |
International Search Report and Written Opinion from International Application PCT/US2012/022029. |
International Search Report and Written Opinion from International Application PCT/US2012/022035. |
Notification of First Office Action, including search report, issued by Chinese Patent Office for corresponding Chinese application 201280009844.1 dated Sep. 3, 2014, English translation only. |
Dell'Isola, Francesco et al.: “A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics”, Journal of Elasticity, The Physical and Mathematical Science of Solids, Jan. 2015, pp. 113-125, vol. 118, No. 1. |
Gu, Huang: “Tensile behaviours of woven fabrics and laminates”, Materials and Designs, 2007, pp. 704-707, vol. 28, issue 2. |
Homaeigohar, Seyed Shahin et al.: “Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes”, Journal of Colloid and Interface Science, Apr. 15, 2012, pp. 6-15, vol. 372. |
Gonca, V. et al.: “Theoretical and Experimental Studies of Stiffness Properties of Laminated Elastomeric Structures”, presented at 9th International DAAAM Baltic Conference “Industrial Engineering”, Apr. 24-26, 2014 in Tallinn, Estonia, pp. 342-347. |
Woodford, Chris, “Composites and laminates”, EXPLAINTHATSTUFF!, Jul. 13, 2015, http://www.explainthatstuff.com/composites.html ; accessed on Nov. 20, 2015. |
“Non Wovens and Laminates Make Their Way Into Press Felts”, Pulp & Paper Canada, Feb. 29, 2000, http://www.pulpandpapercanada.com/innovation/non-wovens-and-laminates-make-their-way-into-press-felts-1000107127 ; accessed on Nov. 20, 2015. |
“Woven Fabrics”, NetComposites Now, published courtesy of David Cripps, Gurit, http://www.netcomposites.com/guide-tools/guide/reinforcements/woven-fabrics/ , accessed on Nov. 20, 2015. |
Kaw, Autar K.: Mechanics of Composite Materials 2nd Ed., 2006, pp. 52-53, Taylor and Francis Group. https://books.google.com/books?id=MwLBQAAQBAJ&pg=PA53&Ipg=PA53&dq=%22what+is+a+laminate%22+- floor&source=bl&ots=0RHWB8ye64&sig=cDYgwIdYguJag18GoXdiG4ZLQIM&hl=en&sa=X&ved=0CCMQ6AEwAWoVChMI3_-p9pCdyQIVzLIeCh22CABs#v=onepage&q=%22what%20is%20a%20laminate%22%20-floor&f=false. |
Number | Date | Country | |
---|---|---|---|
20100129597 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61017484 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12345466 | Dec 2008 | US |
Child | 12479317 | US |