This application is based on and claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2021-0134584, filed on Oct. 12, 2021, in the Korean Intellectual Property Office, the disclosure of which is herein incorporated by reference in its entirety.
The disclosure relates to a component for communications, and more particularly, to a broadband coupler which distributes input power through broadband, and simultaneously, makes a phase difference of 90 degrees.
A problem of this structure lies in that an amplitude of the port 3 is lower than the other ports by 0.5 dB due to the additional transmission line as shown in
However, a recent mobile communication system (5G system) requires a bandwidth of 20% or higher, and as shown in
The disclosure has been developed to address the above-discussed deficiencies of the related art, and an object of the present disclosure is to provide a method for implementing an ultra-small size Lange coupler having broadband characteristics.
According to an embodiment of the disclosure to achieve the above-described object, a Lange coupler includes: first lines which are formed in a spiral shape, and have a first port and a second port formed at one end thereof and have connection ends formed at the other end thereof; and second lines which are formed in a spiral shape, and have connection ends formed at one end thereof to be connected to the connection ends of the first lines, and have a third port and a fourth port formed at the other end thereof.
The connection ends of the first lines may be positioned inside the spiral shape formed by the first lines, and the connection ends of the second lines may be positioned inside the spiral shape formed by the second lines.
In addition, the Lange coupler according to an embodiment may further include inter-connection lines which connect the connection ends of the first lines and the connection ends of the second lines through vias.
In addition, the inter-connection lines may be positioned on upper portions of the first lines and the second lines.
The first lines may include a 11 line, a 12 line, a 13 line, a 14 line, the second lines may include a 21 line, a 22 line, a 23 line, a 24 line, and the inter-connection lines may include: an inter-connection line for connecting a connection end of the 11 line and a connection end of the 13 line; an inter-connection line for connecting a connection end of the 12 line and a connection end of the 21 line; an inter-connection line for connecting the connection line of the 13 line and a connection end of the 22 line; an inter-connection line for connecting a connection end of the 14 line and a connection end of the 23 line; and an inter-connection line for connecting the connection end of the 22 line and a connection end of the 24 line.
The first port may be a port that is configured by coupling an input end of a 11 line and an input end of a 13 line, the second port may be a port that is configured by coupling an input end of a 12 line and an input end of a 14 line, the third port may be a port that is configured by coupling an input end of a 21 line and an input end of a 23 line, and the fourth port may be a port that is configured by coupling an input end of a 22 line and an input end of a 24 line.
Respective lengths of the first lines and the second lines may be λ/8.
According to another embodiment of the disclosure, a Lange coupling method includes: receiving a signal through a first port and a second port formed at one end of first lines; and outputting a signal through a third port and a fourth port which are formed at the other end of second lines which have one end connected to the first lines, and the first lines are formed in a spiral shape, and have the first port and the second port formed at one end thereof and have connection ends formed at the other end thereof, and the second lines are formed in a spiral shape, and have connection ends formed at one end thereof to be connected to the connection ends of the first lines, and have the third port and the fourth port formed at the other end thereof.
According to embodiments of the disclosure as described above, the Lange coupler may maintain broadband characteristics while minimizing its area, so that it is possible to design a small component for mobile communication and to noticeably reduce an insertion loss.
Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
Hereinafter, the disclosure will be described in detail with reference to the accompanying drawings.
Embodiments of the disclosure propose a structure of an ultra-small size broadband Lange coupler. Compared to related-art couplers which have a large volume to implement broadband and cause an insertion loss to increase, the Lange coupler according to an embodiment may reduce a volume by dividing lines and implementing in a spiral shape, and may minimize an insertion loss by connecting the divided lines through via-connection.
The input lines 100 and the output line 200 are formed in a spiral shape, and are symmetric to each other. Lengths of the input lines 100 and the output lines 200 are λ/8, respectively.
That is, a line of λ/4 of the Lange coupler according to an embodiment may be divided into two lines of λ/8, and may be implemented in a spiral shape in order to reduce a size. Accordingly, the Lange coupler according to an embodiment may be implemented to have an ultra-small size of 1.2 mm×0.9 mm.
The input lines 100 may be configured with four lines 110, 120, 130, 140, and the output lines 200 may be configured with four lines 210, 220, 230, 240.
An input port and a coupled port may be formed at one end of the input lines 100. Although not shown in
Connection ends 112, 122, 132, 142 may be formed at the other end of the input lines 100 to be connected with the output lines 200. The connection ends 112, 122, 132, 142 may be positioned inside the spiral shape formed by the input lines 100.
Connection ends 212, 222, 232, 242 may be formed at one of the output lines 200 to be connected with the connection ends 112, 122, 132142 of the input lines 100. The connection ends 212, 222, 232, 242 may be positioned inside the spiral shape formed by the output lines 200.
An isolated port and a direct port may be formed at the other end of the output lines 200. Although not shown in
The inter-connection lines 300 may be lines for connecting the connection ends 112, 122, 132, 142 of the input lines 100 and the connection lines 212, 222, 232242 of the output lines 200.
Since the connection ends 112, 122, 132, 142 of the input lines 100 are positioned inside the spiral shape and the connection ends 212, 222, 232, 242 of the output lines 200 are positioned inside the spiral shape, the inter-connection lines 300 may couple the connection ends 112, 122, 132, 142 of the input lines 200 and the connection ends 212, 222, 232, 242 of the output lines 200 through vias. That is, the inter-connection lines 300 may be formed on upper layers of the input lines 100 and the output lines 200 to connect the connection ends 112, 122, 132, 142 of the input lines 100 and the connection ends 212, 222, 232, 242 of the output lines 200.
The inter-connection lines 300 may include five (5) inter-connection lines although they are not illustrated in
The inter-connection line-1 may be a line for connecting the connection end 112 of the input line-1 110 and the connection end 132 of the input line-3 130.
The inter-connection line-2 may be a line for connecting the connection end 122 of the input line-2 120 and the connection end 212 of the output line-1 210.
The inter-connection line-3 may be a line for connecting the connection end 132 of the input line-3 130 and the connection end 222 of the output line-2 220.
The inter-connection line-4 may be a line for connecting the connection end 142 of the input line-4 140 and the connection end 232 of the output line-3 230.
The inter-connection line-5 may be a line for connecting the connection end 222 of the output line-2 220 and the connection end 242 of the output line-4 240.
The inter-connection lines 300 do not greatly influence the size of the broadband Lange coupler according to an embodiment. That is, a horizontal length or a vertical length of the broadband Lange coupler according to an embodiment does not increase due to the inter-connection lines 300.
A result of simulating amplitude characteristics of the broadband Lange coupler according to an embodiment is illustrated in
A result of simulating phase characteristics of the broadband Lange coupler according to an embodiment is illustrated in
Up to now, the ultra-small size broadband coupler has been described in detail with reference to preferred embodiments.
In the above-descried embodiments, there is proposed an ultra-small size broadband coupler which divides RF broadband power in next-generation mobile communication, and maintains broadband characteristics while reducing its area, so that an insertion loss and a cost can be reduced when the ultra-small size broadband coupler is employed in a system.
The ultra-small size Lange coupler according to an embodiment may be utilized in designing an RF circuit, and particularly, may be used for an MMIC circuit like a Doherty power amplifier, and also, may be applied to an active phase shifter using a 90-degree phase difference in a recent beamforming component.
In addition, while preferred embodiments of the present disclosure have been illustrated and described, the present disclosure is not limited to the above-described specific embodiments. Various changes can be made by a person skilled in the art without departing from the scope of the present disclosure claimed in claims, and also, changed embodiments should not be understood as being separate from the technical idea or prospect of the present disclosure.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10-2021-0134584 | Oct 2021 | KR | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 20090189712 | Jiang | Jul 2009 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20230111667 A1 | Apr 2023 | US |