1. Field of the Invention
This invention relates to a printed loop antenna with introducing a L shape portion to its arms for Ultra Wideband (UWB) signal radiation.
2. Description of the Related Art
The main difference between UWB communication system and conventional narrowband communication systems is that the UWB system transmits tremendously short pulses without any carrier and occupies bandwidth of more than a few GHz. As a result, the antenna plays an important role in the UWB systems than it in any other system.
Compare to traditional antennas it is more complicated to provide the typical parameters like bandwidth and gain within the limited antenna volume. An antenna design becomes even more critical with respect to the UWB system with high data rate and low power density. Moreover, antennas for the UWB system should have linear phase over the entire frequency, omni-directional patterns, and constant gain. Therefore, UWB antenna should be designed carefully to avoid unnecessary distortions. That's why the UWB antenna design is going to be one of the main challenges for UWB system.
Printed monopole and dipole antennas are extensively used in different wireless applications due to their many advantages, such as low profile, light weight, easy to fabricate and low cost, some of them are references [1]-[2].
The loop antennas also can be used for wireless communications (references [3]-[5]).
In this invention we present a loop antenna whose left and upper arms together introduce an L-shape. However, the L-shape antenna itself is a class of broadband planar antenna, which allows the broad impedance bandwidth and less cross-polarization radiation (references [6], [7]).
There are antennas with good impulsive behavior at the cost of poor matching and large reflections. Also there are antennas with resistive loading, which give lower radiation efficiency, but a good matching and high impedance bandwidth.
The large size parabolic antennas with good performance can be used for UWB system, however, make them less suitable for most commercial (with respect to price) and handheld or portable (with respect to size) applications.
The antenna design for Ultra Wideband (UWB) signal radiation is one of the main challenges of the UWB system, especially when low-cost, geometrically small and radio efficient structures are required for typical applications.
In this invention, we propose a novel Loop antenna with very compact size that could be use as an on-chip or stand-alone antenna for UWB system.
This invention presents a novel printed loop antenna with introducing a L shape portion to its arms. The antenna offers excellent performance for lower-band frequency of UWB system, ranging from 3.1 (GHz) to 5.1 (GHz). The antenna exhibits a −10 (dB) return loss over the entire bandwidth.
The antenna is designed on FR4 substrate and fed with 50 ohms coupled tapered transmission line. It is found that the lower frequency band depends on the L portion of the loop antenna, however the upper frequency limit was decided by the taper transmission line. The proposed antenna is very easy to design and inexpensive.
The wideband L-loop antenna is presented in this invention. It has excellent performance for lower band of UWB system and has the attractive features of small size, inexpensive, and easy to design. A VSWR≦1.6 was shown to be achievable over the entire bandwidth, 3.1-5.1 (GHz). The return loss of −10 dB is achieved over the frequency band. The gain in the whole range of frequency band is more than 1 dBi. Two analysis techniques, Moment Method and Finite Element Method, are applied to design this novel antenna, which could be concluded that, the results are trustable. A good impedance matching has been achieved in the simplest way.
In
The L shape portion is formed by widening the width of one of the side arms and the fourth arm in comparison with the other side arm and the first arm which is connected with the coupled tapered transmission line 4,5. However, it is not necessarily required that the width over the whole length of the one side arm and the fourth arm is widened. The width may be widened over the partial length of each of the one side arm and the fourth arm.
To have a linearly polarized radiation the total length of outer limits of the square (or rectangular) loop antenna should be in substantially one wavelength. Designing an antenna for 3.1 GHz will give the wavelength of λ0=96.77 mm. The proposed antenna is composed of a single metallic layer, which is copper, with thickness of hm, and printed on the top of a substrate 1 of thickness hs and relative permittivity εr. A coupled tapered transmission line 4,5 is printed on the top of same substrate 1.
The metallic layer has thickness of hm=0.018 mm. The patch is on a substrate with εr=4.4, loss tangent of tan θ=0.02, and thickness of hs=1 mm. The size of the proposed antenna is 24×25×1 mm, which is quite appropriate for wireless system. The square loop has 98 mm length, which is fairly close to one wavelength of antenna design. The reference plane is at the center of antenna.
The transmission lines 4 and 5 are connected to an external circuit device (not shown). The transmission lines shown in
The tapered transmission lines have shown good impedance matching over a wide frequency range (references [8]-[13]). The antenna is fed from a 50 Ohms coaxial cable through a coupled tapered transmission line. The geometry of the taper is chosen to minimize the reflection and optimize impedance matching and bandwidth.
The proposed antenna can be made from a plate composed of a substrate of FR 4 and a copper plate stick on the substrate. The antenna patterns composed of the antenna elements and the impedance matching portions are made by photo-etching the copper plate, for example. A layer of photo-resist film is formed on the copper plate by painting photo-resist. Next the painted photo-resist layer is exposed through a photo-mask, which has the pattern of the antenna elements and the impedance matching portion. The photo-resist film is soaked in solution to dissolve the not lighted portion. The lighted portion of the photo-resist layer is left on the copper plate. The left portion of the exposed photo-resist layer on the copper is used as an etching musk. Further the whole is soaked in etching liquid and etches the copper plate with the etching musk of photo-resist. Thus the L-loop antenna to which the taper transmission line 4 and 5 are united is formed on the substrate.
The designed antenna can operate in the frequency range of 3.1-5.1 GHz. The proposed design is described in detail, and simulation results of the antenna are presented. The simulation results have been obtained from two different softwares, Ansoft Designer® 1.1 and Ansoft High Frequency Structure Simulator, HFSS® 9.1, to make sure that the obtained results are trustable.
In
Number | Date | Country | Kind |
---|---|---|---|
2004-133759 | Apr 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2004/019594 | 12/28/2004 | WO | 00 | 6/14/2008 |