Ultrafast dynamics in enzyme catalysis

Information

  • Research Project
  • 9488019
  • ApplicationId
    9488019
  • Core Project Number
    R35GM119818
  • Full Project Number
    5R35GM119818-03
  • Serial Number
    119818
  • FOA Number
    RFA-GM-16-003
  • Sub Project Id
  • Project Start Date
    9/7/2016 - 7 years ago
  • Project End Date
    5/31/2021 - 3 years ago
  • Program Officer Name
    WEHRLE, JANNA P
  • Budget Start Date
    6/1/2018 - 6 years ago
  • Budget End Date
    5/31/2019 - 5 years ago
  • Fiscal Year
    2018
  • Support Year
    03
  • Suffix
  • Award Notice Date
    5/21/2018 - 6 years ago

Ultrafast dynamics in enzyme catalysis

PROJECT SUMMARY Enzyme dynamics span a broad range of timescales, from milliseconds and microseconds down to picoseconds and femtoseconds. Catalysis of biological reactions is linked to these motions, but the role of ultrafast dynamics in the femtosecond and picosecond range remains controversial. Because diverse fields in the biological sciences, such as the study of metabolism and drug design, depend on a detailed understanding of enzyme function, resolving this controversy could have important implications for our understanding of many human diseases. We approach this problem using a combination of traditional protein chemistry techniques and 2D IR spectroscopy to correlate dynamics measurements with biologically-relevant function. In this proposal, we describe our current and future efforts to characterize differences in the ultrafast motions of enzymes in sets of mutants with different degrees of activity. The long-term goal of this project is to discover how protein sequence variations, including disease-causing mutations, can influence the catalytic function of enzymes via motions on a similar timescale as bond formation and breaking in an enzyme?s active site. Our direct objectives in this research are to develop the experimental tools needed to observe communication between an enzyme?s active site and scaffold, both via mutagenesis and spectroscopy. We hypothesize that trends in the activities of mutants will also be reflected in their ultrafast dynamics due to modulation of barrier crossing during reactions. We will use protein synthesis and labeling techniques to prepare a set of model enzymes with active site vibrational labels, and will use 2D IR spectroscopy to characterize local electric field dynamics. We will utilize vibrationally-labeled substrate analogs as well as protein-based labels in concert with variations in pump-rpbe waiting time to characterize these dynamics. Using random mutagenesis and activity screens, we will identify mutants of these enzymes with altered catalytic rates. Dynamics measurements of active site labels will be correlated to enzyme activities and other properties such as fold stability. Our research program also includes experiments designed to measure non-equilibrium dynamics that may influence catalysis. We will also use our labeled systems to investigate the origins of non-exchangeable heavy isotope effects on catalytic efficiency. Later, we will examine the efficiency of energy transfer within the active site, and between the active site and scaffold, using variations on 2D IR spectroscopy. We will use dual- frequency 2D IR spectroscopy to probe pairs of labels for evidence of vibrational energy transfer pathways. Finally, we will use transient 2D IR spectroscopy to examine pathways for energy relaxation through the protein scaffold after electronic photoexcitation of active site moieties, which we use as a proxy for relaxation after a reaction step. In all cases, we will perform these experiments against mutant backgrounds in which catalysis is altered.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    228559
  • Indirect Cost Amount
    108566
  • Total Cost
    337125
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:337125\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    SOUTHERN ILLINOIS UNIVERSITY CARBONDALE
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    939007555
  • Organization City
    CARBONDALE
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    629014709
  • Organization District
    UNITED STATES