Ultrasonic-assisted liquid manipulation

Information

  • Patent Grant
  • 11740018
  • Patent Number
    11,740,018
  • Date Filed
    Monday, August 23, 2021
    3 years ago
  • Date Issued
    Tuesday, August 29, 2023
    a year ago
Abstract
A phased array of ultrasonic transducers may create arbitrary fields that can be utilized to manipulate fluids. This includes the translation of drops on smooth surfaces as well speeding the evaporation of fluids on wetted hands. Proposed herein is the use airborne ultrasound focused to the surface of the hand. The risk is that coupling directly into the bulk of the hand may cause damage to the cellular material through heating, mechanical stress, or cavitation. Using a phased array, the focus may be moved around, thus preventing acoustic energy from lingering too long on one particular position of the hand. While some signaling may penetrate into the hand, most of the energy (99.9%) is reflected. Also disclosed are methods to couple just to the wetted surface of the hand.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to improved techniques for manipulation of liquids using ultrasonic signals.


BACKGROUND

A continuous distribution of sound energy, which we will refer to as an “acoustic field”, can be used for a range of applications including haptic feedback in mid-air.


High-powered ultrasound is well known in the food-drying market. The sound-energy is pumped into the bulk of the fruit/vegetables directly either through a coupling medium (that may be oil-based) or through the air in a resonator (to avoid too much loss). This results in a measurable increase in drying speed. There are various theories attempting to explain the phenomena (discussed below).


More generally, liquid manipulation without direct contact may be used in manufacturing techniques which that soluble materials. This avoids contamination or corrosion that could substantially improve manufacturing efficiencies.


Hand-drying is a common aspect of public restrooms across the world. Forced air dryers are hygienic and energy-efficient but often too slow or loud for many users. These people often resort to wasteful paper towels. If it was possible to speed drying or make it relatively quiet, this would increase usage rates and lower costs associated with maintaining the restroom.


SUMMARY

A phased array of ultrasonic transducers may create arbitrary fields that can be utilized to manipulate fluids. This includes the translation of drops on smooth surfaces as well speeding the evaporation of fluids on wetted hands. Ultrasound signals may be used to manipulate liquids by interacting with the resulting acoustic pressure field.


Proposed herein is the use airborne ultrasound focused to the surface of the hand. The risk is that coupling directly into the bulk of the hand may cause damage to the cellular material through heating, mechanical stress, or cavitation. Using a phased array, the focus may be moved around, thus preventing acoustic energy from lingering too long on one particular position of the hand. While some signaling may penetrate into the hand, most of the energy (99.9%) is reflected. Methods are discussed to couple just to the wetted surface of the hand as well.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, serve to further illustrate embodiments of concepts that include the claimed invention and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic showing acoustic fields pushing water towards the tips of the fingers so that it can pool and fall away.



FIG. 2 is a schematic showing a moving pressure field pushes water towards the tips of each of the fingers to pool and fall away.



FIGS. 3A. 3B and 3C are schematics showing oscillating pressure fields that launch capillary waves into a convergence point of highest pressure.



FIGS. 4A, 4B and 4C are schematics showing translating pressure fields that launch capillary waves into a convergence point of highest pressure.



FIGS. 5A and 5B are schematics showing diagonal converging nonlinear pressure fields that yield sharp features.



FIGS. 6A and 6B are schematics showing facing converging nonlinear pressure fields that yield sharp features.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Airborne ultrasound is composed of longitudinal pressure waves at frequencies beyond the range of human hearing. These waves carry energy and can be used to excite waves in other objects (such as create haptic feedback on skin) and do mechanical work (such as levitating or pushing objects).


I. USING ULTRASONIC FIELDS TO MANIPULATE LIQUIDS

The nonlinear pressure field created at high ultrasonic sound pressure level (SPL) includes a static pressure component. This pressure can be used to manipulate liquid droplets on surfaces which are at least slightly phobic to that liquid (for instance hydrophobic surfaces and water). If a focus point is created near a droplet, the droplet will be repulsed. This is a method for translating this droplet without direct contact.


In embodiments of this invention, a phased array of ultrasonic transducers is placed nearby the surface of interaction and creates a field on that surface with high-pressure regions used to push drops or liquid channels. These regions may be arbitrarily shaped and may be manipulated dynamically to achieve the desired translation. With enough resolution (i.e., high-frequency) drops may be diced into sub-drops and separated in a controlled manner. Further, directing a focus point of the phased array to the surface of a liquid that is at least a few wavelengths deep can cause the capture of gas droplets from the nearby gas interface. This can be used to mix gasses into the liquid or simply help agitate/mix the solution.


It has recently been discovered that high-intensity airborne ultrasound can effectively speed up the drying process for fruits and vegetables. The process can involve high temperatures (up to 70° C.) but this is not required. In fact, ultrasound makes the largest difference when drying at lower temperatures.


In embodiments of this invention, ultrasonic-assisted drying may be used to speed the de-wetting of hands in a safe and controlled manner.


Turning to FIG. 1, shown is a schematic 100 of two hands interacting with moving ultrasonic fields. On the left, dry skin 110 is formed when a moving sound field 120 of a generally circular shape “pushes” drops 130 off the hand. On the right, dry skin 180 is formed when a moving sound field 170 of a generally rectangular shape “pushes” wetness 160 off the hand.


In this arrangement, acoustic pressure may be used to manipulate a thin film of water on a wetted hand much as it may manipulate fluids on a surface described above. An acoustic focal area, which may be made into any shape such as a point or line, is translated to push the water film off the hand even as the hand itself is moving. The de-wetting process may be accomplished by bunching enough water together (for instance near the fingertips) when the hand is pointed down, so that it forms a droplet and falls away (left side). Alternatively, this technique may be paired with forced air so that the ultrasound pressure pushes the wetted film towards areas with the highest (or most effective) forced air (right side).


There are two primary mechanisms beyond the physical pushing of water that may assist drying: enhanced mass-transfer and atomization. One or both of these drying-assist mechanisms may be exploited in various arrangements presented below.


For enhanced mass-transfer, during each cycle of sound there is alternating high-pressure and low-pressure that mechanically compresses and decompresses the medium. During the compression cycle, moisture is pushed out of compressible cavities like a sponge. During rarefaction, the water is pushed away by the expanding cavities instead of back into them. No longer trapped by the cavities, the water is free to flow along gradients to areas of lower moisture. This improves the ability of water to move in a semi-solid environment and brings water to the surface more quickly in a drying environment.


Atomization has been popularized as ultrasonic foggers. In these devices, high-intensity ultrasound is generated by a transducer submerged in water which excites capillary waves on the surface. At sufficient amplitude, the capillary waves become unstable and droplets are pinched off into the air forming a visible mist. In the context of drying, capillary wave-produced droplets effectively remove moisture from the surface of the object. The capillary wave-produced droplets may then be removed from the vicinity with gradients in pressure from one or more of: (a) a sound field; (b) forced air; and (c) heat-assisted evaporation (which is very effective due to the capillary wave-produced droplets high surface-area-to-volume ratio).


Both mass transfer enhancement and atomization are threshold phenomena. A focused sound field may create the necessary high-pressures without a sophisticated resonance chamber. In one arrangement of this invention, a phased array is placed near the user's hands and a focal point is created on the hand to promote mass transfer of moisture to the surface and atomization. Forced and/or heated air will further improve the drying speed if desired.


With the application of high intensity ultrasound comes mechanical heating and potential damage to the skin. Both mass transfer and atomization are fast phenomenon, taking only a few cycles of sound to start being effective. Mechanical heating, on the other hand, can take many cycles build up a damaging temperature. A phased array may translate the focal point to avoid any tissue damage. Drying would still be enhanced by crossing the pressure threshold for the dying phenomena while not lingering long enough to deposit a damaging amount of energy to the skin.


Of the two effects, atomization by capillary waves is preferred in the hand drying context as it forces moisture away from surface of the skin without heating the water or mechanically driving the medium. Capillary waves will be excited by any incident ultrasound. Optimal coupling, and therefore maximum atomization for a given sound pressure, may be achieved through specific arrangements of the sound field (described below). In these arrangements, some enhancement by mass transfer will be inevitable and will only help to speed the drying.


Turning to FIG. 2, shown is a schematic 200 of high-pressure, repeating focal regions that continually drain with an acoustic structure that behaves much like an Archimedes screw. A moving pressure field in the configuration of an Archimedes screw actively pushes water towards the tips of each of the fingers to pool and fall away. The left illustration shows the palm and front of the hand 210a with the lines of heightened pressure 220a, while the right side shows the back of the hand 210b, with the lines of force 220b winding around to move the liquid forward.


As the spiral pattern of high acoustic pressure turns around the wetted area as time moves forward, the “thread” of the Archimedean screw structure contains liquid that is propelled towards the edges. But if the spiral pattern is moved too quickly, the liquid will not react and drying time will increase. If the spiral pattern is moved too slowly, the liquid will move too slowly and drying time will increase.


An optimal speed of the spiral pattern may be calculated. Relative to sound waves in air, capillary waves are characterized by short wavelength and slow speed. For wavelengths short relative to the depth of the fluid, capillary waves can be described by the following dispersion relation:










ω
2

=


α






k
3


ρ





(
1
)








where ω is the angular frequency, k is the wave number, α is the surface tension and ρ is the density of the fluid. At 40 kHz, a typical frequency for airborne ultrasound, the wavelength in air is about 8.5 mm with a propagation speed of 343 m/s under normal conditions. For the same frequency, capillary waves have a wavelength of 0.066 mm with a propagation speed of 2.6 m/s given by equation 1. This illustrates the difficulty in creating efficient coupling between the two systems.


Diffraction limits the ability of any monochromatic system to create features smaller than the wavelength. In fact, any high-pressure finite focal region will contain higher frequency components near its edges due to spatial frequencies and nonlinear effects. If these higher frequency points, lines or regions are translated at the correct speed to match the desired capillary mode speed (such as 2.6 m/s for plane waves given above), this will increase coupling to that mode. In one arrangement, the higher frequency regions may be focus points or lines that move at capillary speeds. Ideally, these regions would spend more time in locations with more water concentration.


Turning to FIGS. 3A, 3B and 3C, shown are examples of one or more focal regions that may be designed to create converging capillary wave mode to further increase the amplitude of oscillation to a point necessary to create the pinch-off instability. These may take the form of oscillating points/regions that send capillary waves emanating away from them which then can interact and focus.


The figures show oscillating pressure fields that launch capillary waves into a convergence point of highest pressure. FIG. 3A shows a schematic 300 of a hand 305 where the focal regions 310a, 310b are rectangular shaped and operate vertically to converge at a center horizontal line 315 on the hand 305. FIG. 3B shows a schematic 320 of a hand 325 where the focal regions 330a, 330b, 330c, 330d are oval shaped and operate diagonally to converge at a center point 335 on the hand 325. FIG. 3C shows a schematic 350 of a hand 365 where the focal region 360 is circular shaped and operates radially to converge at a center point 370 on the hand 365.


Alternatively, single points or trains of points may propagate to one or more common centers pushing the capillary waves into a focus. Here, translating pressure fields launch capillary waves into a convergence point of highest pressure.


Turning to FIGS. 4A, 4B and 4C, shown are translating pressure fields on a hand that launch capillary waves into a convergence point of highest pressure. FIG. 4A shows a schematic 400 of a hand 405 where the pressure fields 410a, 410b are rectangular shaped and translate in a vertical direction. FIG. 4B shows a schematic 420 of a hand 425 where the focal regions 430a, 430b, 430c, 430d are circular shaped to translate in various diagonal directions. FIG. 4C shows a schematic 450 of a hand 455 where the pressure fields are circular shaped and translate in a radial direction.


In either of these two cases, the convergence point(s) are translated around in order to dry the entire hand.


Nonlinearities may be exploited to create repetitive features and overcome the diffraction limit. At high pressure, sound waves exhibit steepening whereby the high-pressure portion of the pressure wave moves slightly faster than the low-pressure portion. This eventually leads to the formation of shock waves.


This sharp region of pressure may be used (either before or after a true shock forms) to create sharp features by combining multiple wave fronts.


Turning to FIG. 5A, shown is a schematic 500 demonstrating the effect of diagonal converging nonlinear pressure fields that yield sharp features. A left pressure field 530a and a right pressure field 530b converge at a location 550 on a hand 505.


The plots of the bottom left graph 520a and the bottom right graph 520b show clean emitted waves that show no wave “tilting”. The bottom left graph 520a shows a clean emitted wave 523a and is a close-up of waves at a location 520c within the left pressure field 530a relatively distant from the convergence location 550. The x-axis 521a shows distance in millimeters. They-axis 522a shows pressure in arbitrary units. The bottom right graph 520b shows a clean emitted wave 523b and is a close-up of waves at a location 520d within the right pressure field 530b relatively distant from the convergence location 550. The x-axis 521b shows distance in millimeters. The y-axis 522b shows pressure in arbitrary units.


The top left graph 510a and the top right graph 510b show sound waves exhibit steepening whereby the high-pressure portion of the pressure wave moves slightly faster than the low-pressure portion. The plots in these graphs show wave “tilting” that result from the steepening.


Specifically, the top left graph 510a shows a steepened wave 513a (represented by a dashed line) that produces the left pressure field 530a and is a close-up of waves at a location 510c on or near the convergence location 550. The x-axis 511a shows distance in millimeters. The y-axis 512a shows pressure in arbitrary units.


The top right graph 510b shows a steepened wave 513b (represented by a dot-dashed line) that produces the right pressure field 530b and is a close-up of waves at a location 510d on or near the convergence location 550. The x-axis 511b shows distance in millimeters. The y-axis 512b shows pressure in arbitrary units.


Turning to FIG. 5B, shown is a graph 575 that shows diagonal nonlinear pressure fields yield sharp features when they a converge at a location 550 on the hand 505. Like the graphs in FIG. 5A, the x-axis 541 shows distance in millimeters and the y-axis 542 shows pressure in arbitrary units. The plot of the dashed line 544 is equivalent to the left steepened wave shown in the plot of the top left graph 510a in FIG. 5A. The plot of the dot-dashed line 545 is equivalent to the right steepened wave shown in the plot of the top left graph 510b in FIG. 5A. The plot of the solid line 543 represents the cumulative effect of the two steepened waves 544, 545 at their convergence 550 on the hand 505. This solid line plot 543 shows the sharp features that may occur as a result of this convergence. In this example, the sharp features occur approximately between 11 to 13 millimeters of distance.


Turning to FIG. 6A, shown is a schematic 600 demonstrating the effect of facing nonlinear pressure fields that yield sharp features. A left pressure field 610a and a right pressure field 610b converge at a location 640 on a hand 630.


The left graph and the right graph show sound waves exhibit steepening whereby the high-pressure portion of the pressure wave moves slightly faster than the low-pressure portion. The plots in these graphs show wave “tilting” that result from the steepening.


Specifically, the left graph 620a shows a steepened wave 623a (represented by a dashed line) that produces the left pressure field 610a and is a close-up of waves at a location 620c on or near the convergence location 640. The x-axis 621a shows distance in millimeters. The y-axis 621a shows pressure in arbitrary units.


The right graph 620b shows a steepened wave 623b (represented by a dot-dashed line) that produces the right pressure field 610b and is a close-up of waves at a location 620d on or near the convergence location 640. The x-axis 621b shows distance in millimeters. They-axis 621b shows pressure in arbitrary units.


Graphs corresponding to the bottom left graph 520a and bottom right graph 520b in FIG. 5A are not shown in FIG. 6A but would reflect similar data.


Turning to FIG. 6B, shown is a graph 675 that shows facing nonlinear pressure fields yield sharp features when they a converge at a location 640 on the hand 630. Like the graphs in FIG. 6A, the x-axis 606 shows distance in millimeters and they-axis 607 shows pressure in arbitrary units. The plot of the dashed line 604 is equivalent to the left steepened wave shown in the plot of the left graph 602a in FIG. 6A. The plot of the dot-dashed line 609 is equivalent to the right steepened wave shown in the plot of the top left graph 602b in FIG. 6A. The plot of the solid line 608 represents the convergence of the steepened waves 604, 609. This solid line plot 608 shows the sharp features that may occur as a result of this convergence. In this example, the sharp features occur approximately between 3 to 5 and between 11.5 and 13.5 millimeters of distance.



FIGS. 5A, 5B and 6A, 6B are examples where at least two transducers create high pressure wave fronts in physically distinct areas that overlap after some distance. The distance before interaction needs to be long enough to cause significant steepening before the waves combine. This distance will depend on the pressure and frequency of the sound waves and can be as short as a few centimeters. If fired near perpendicular to the surface of the fluid and angled so that they are substantially parallel w % ben they combine, it is possible to create a pressure feature traveling across the surface of the fluid at the desired capillary wavelength which will improve coupling.


To further improve this method, many wave fronts may be used to create by separate systems to build a shock wave train with the correct wavelength spacing to maximally couple to capillary waves. In another arrangement, one or more phased arrays could be used. In this arrangement, half of the array could function as one transducer and the other half could be the other. If using one or more phased arrays it is possible to further shape the acoustic field in order to make higher-pressure regions and translate those regions to desired locations.


Differences in speed of sound may be overcome by setting up a standing wave condition. In this arrangement, a series of shock fronts are created propagating one direction (say positive x-direction) and another wave-train is fired from another set of arrays in the opposite direction (−x in this example). As they pass through each other, the resulting pressure field will have features which can be the correct length-scale. This will increase coupling to the desired capillary wave mode. The “standing wave” is not a true repeating sine wave in the traditional sense but merely a pressure profile that repeats itself at the frequency of the ultrasound.


The high-pressure and/or sharp features may be moved around by changing the phasing between the ultrasonic transducers. Sound waves transmitted from one transducer will reach the opposing transducer and reflect back into the drying environment. In one arrangement, this may be used to add to the transmitted ultrasound from that transducer. If the sharp sound features are to be translated in this arrangement, the transducers will need to translate in space slightly as well as in phase. In another arrangement the transducers may be angled (or phased) slightly so that their beams do not intersect with the opposite transducer.


In another arrangement each transducer may a phased array. The phased arrays allow arbitrary fields to be created and, in this case, may create intersecting focus spots. Just like the parallel transducers, the interacting focus spots will contain sharp features due to wave steepening. The phased arrays may translate this focus point as well as manipulate the phase of each array allowing for arbitrary sharp feature translation to dry the entire hand efficiently. In this arrangement, reflected fields will be unimportant since they will scatter instead of focusing. Monochromatic sound, while typically the easiest to create, is not a requirement.


In another arrangement, broadband acoustic fields may be used. With sufficient bandwidth, arbitrarily-shaped acoustic pressure fields may be created at sharp moments in time. To optimally couple to capillary waves, a repetitive acoustic pattern may be projected onto the hand with the correct wavelength/shape for the desired capillary mode. After the first pulse hits, the pressure field would disperse so as to drive the capillary mode and a repetitive series of pulses at the desired frequency would need to be made. These may be identically shaped or evolve in time with the desired capillary mode.


As the water from the hand is removed, the wetted film becomes thinner and equation 1 no longer applies. The propagation speed begins to change as hand the above methods will need to compensate. Thickness change from evaporation may be modeled, and in one arrangement the system may start with a maximum possible assumed thickness and then progress towards thinner films. Given it started at a maximum, at some point the system will encounter the actual film thickness and then enhancement will take place and it will progress towards the (dry) endpoint. Alternatively, the system may measure the average wetting thickness as the user starts the dryer (such as a laser interference method) and the system will start at that value.


In another arrangement, since thickness will influence optimal coupling, monitoring the thickness may be done by looking at the return acoustic power. As the film drifts out of optimal coupling, more sound will be reflected and the system may adjust to compensate until a chosen end-point is reached. In yet another arrangement, the film thickness may be continually monitored using a light-based technique and this information is passed to the ultrasonic system. This may be used as feedback to hold the system in optimal coupling.


Liquid manipulation needs focused fields but not necessarily a phased array (although that makes it much easier). The non-phased-array version would need the entire transducer network to translate the liquid where its field is being projected.


II. ADDITIONAL DISCLOSURE

The following numbered clauses show further illustrative examples only:


1. A method of liquid manipulation comprising the steps of


Providing a plurality of ultrasonic transducers having known relative positions and orientations;


Defining a plurality of control fields wherein each of the plurality of control fields have a known spatial relationship relative to the transducer array;


Defining a control surface onto which the control fields will be projected; and


Orienting the control fields onto the surface so that liquid on that surface is adjusted.


2. A method as in claim 1 where the adjustment is position.


3. A method as in claim 1 where the adjustment is thickness.


4. A method as in claim 1 where the adjustment is flow/particle velocity.


5. A method as in claim 1 where the control fields are dynamically updated as the liquid is adjusted.


6. A method as in claim 1 where the field induces cavitation in the liquid.


7. A method as in claim 1 where the transducer's positions are adjusted to adjust the liquid.


8. A method of de-wetting of an object/person comprising the steps of:


Producing an acoustic field directed at a wetted object/person;


Setting the amplitude or phasing or shape of the acoustic field to de-wet the object/person.


9. A method as in claim 8 where the acoustic field is within a resonant chamber.


10. A method as in claim 8 where the object/person is also subjected to forced air.


11. A method as in claim 8 where the liquid on the wetted object/person experiences improved mass-transfer.


12. A method as in claim 8 where the liquid experiences drop pinch-off from capillary waves.


13. A method as in claim 8 where the acoustic field takes the form of a rotating spiral.


14. A method as in claim 8 where the acoustic field can be adjusted by adjusting the position or phase of one or more transducers.


15. A method as in claim 14 where the transducer(s) create focus regions.


16. A method as in claim 15 where those focus regions are translated across the object/person.


17. A method as in claim 16 where the focus regions push water off the object/person.


18. A method as in claim 16 where the focus regions push water off hands or fingers.


19. A method as in claim 15 where the focus regions move at a speed which improves coupling to capillary waves.


20. A method as in claim 15 where the focus regions occur at a spacing which improves coupling to capillary waves.


21. A method as in claim 15 where translating focus fields are arranged in such a way that converging capillary waves are created.


22. A method as in claim 8 where acoustic fields are arranged so that nonlinear wave steepening creates sharp features.


23. A method as in claim 22 where 2 sources are close to parallel whose sharp features combine after some distance.


24. A method as in claim 22 where 2 sources are close to parallel facing each other whose sharp features combine after some distance.


25. A method as in claim 8 which uses a broadband system to create an acoustic field which has high-pressure features which couples to capillary waves.


26. A method as in claim 8 where the amplitude or phasing changes as wetting thickness changes.


27. A method as in claim 26 which includes a sensor to detect wetting thickness.


28. A method as in claim 26 which includes a sensor to measure reflected ultrasound.


III. CONCLUSION

While the foregoing descriptions disclose specific values, any other specific values may be used to achieve similar results. Further, the various features of the foregoing embodiments may be selected and combined to produce numerous variations of improved haptic systems.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”. “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method of liquid manipulation comprising the steps of: establishing a transducer array having a plurality of ultrasonic transducers having known relative positions and orientations;defining a plurality of control fields wherein each of the plurality of control fields has a known spatial relationship relative to the transducer array;defining a control surface onto which the plurality of the control fields will be projected;wherein the control surface is human skin;orienting the control fields onto the control surface so that liquid on the control surface is adjusted using a spiral pattern of high acoustic pressure to produce capillary waves.
  • 2. The method as in claim 1, wherein the plurality of control fields are dynamically updated as the liquid is adjusted.
  • 3. The method as in claim 1, wherein the plurality of control fields induce cavitation in the liquid.
  • 4. The method as in claim 1, wherein positions of the transducer array are altered to adjust the liquid.
  • 5. The method as in claim 1, wherein the human skin is a human hand.
  • 6. The method as in claim 1, wherein the capillary waves are described as:
  • 7. The method as in claim 1, wherein the capillary waves include higher frequency components near edges of the capillary waves.
  • 8. The method as in claim 1, wherein the spiral pattern of high acoustic pressure comprises oscillating pressure fields that launch the capillary waves into a convergence point of high pressure.
  • 9. The method as in claim 1, wherein the spiral pattern of high acoustic pressure comprises at least one common centers pushing the capillary waves into a focus.
  • 10. The method as in claim 1, wherein the adjustment involves position of the liquid.
  • 11. The method as in claim 1, wherein the adjustment involves thickness of the liquid.
  • 12. The method as in claim 1, wherein the adjustment is flow velocity of the liquid.
RELATED APPLICATION

This application claims the benefit of the following U.S. Provisional Patent Applications, which is incorporated by reference in its entirety: 1) Ser. No. 62/728,829, filed on Sep. 9, 2018.

US Referenced Citations (333)
Number Name Date Kind
4218921 Berge Aug 1980 A
4771205 Mequio Sep 1988 A
4881212 Takeuchi Nov 1989 A
5226000 Moses Jul 1993 A
5235986 Maslak Aug 1993 A
5243344 Koulopoulos Sep 1993 A
5329682 Thurn Jul 1994 A
5371834 Tawel Dec 1994 A
5422431 Ichiki Jun 1995 A
5426388 Flora Jun 1995 A
5477736 Lorraine Dec 1995 A
5511296 Dias Apr 1996 A
5729694 Holzrichter Mar 1998 A
5859915 Norris Jan 1999 A
6029518 Oeftering Feb 2000 A
6193936 Gardner Feb 2001 B1
6216538 Yasuda Apr 2001 B1
6436051 Morris Aug 2002 B1
6503204 Sumanaweera Jan 2003 B1
6647359 Verplank Nov 2003 B1
6771294 Pulli Aug 2004 B1
6772490 Toda Aug 2004 B2
6800987 Toda Oct 2004 B2
7107159 German Sep 2006 B2
7109789 Spencer Sep 2006 B2
7182726 Williams Feb 2007 B2
7225404 Zilles May 2007 B1
7284027 Jennings, III Oct 2007 B2
7345600 Fedigan Mar 2008 B1
7487662 Schabron Feb 2009 B2
7497662 Mollmann Mar 2009 B2
7577260 Hooley Aug 2009 B1
7692661 Cook Apr 2010 B2
RE42192 Schabron Mar 2011 E
7966134 German Jun 2011 B2
8000481 Nishikawa Aug 2011 B2
8123502 Blakey Feb 2012 B2
8269168 Axelrod Sep 2012 B1
8279193 Birnbaum Oct 2012 B1
8351646 Fujimura Jan 2013 B2
8369973 Risbo Feb 2013 B2
8594350 Hooley Nov 2013 B2
8607922 Werner Dec 2013 B1
8782109 Tsutsui Jul 2014 B2
8833510 Koh Sep 2014 B2
8884927 Cheatham, III Nov 2014 B1
9208664 Peters Dec 2015 B1
9267735 Funayama Feb 2016 B2
9421291 Robert Aug 2016 B2
9612658 Subramanian Apr 2017 B2
9662680 Yamamoto May 2017 B2
9667173 Kappus May 2017 B1
9816757 Zielinski Nov 2017 B1
9841819 Carter Dec 2017 B2
9863699 Corbin, III Jan 2018 B2
9898089 Subramanian Feb 2018 B2
9945818 Ganti Apr 2018 B2
9958943 Long May 2018 B2
9977120 Carter May 2018 B2
10101811 Carter Oct 2018 B2
10101814 Carter Oct 2018 B2
10133353 Eid Nov 2018 B2
10140776 Schwarz Nov 2018 B2
10146353 Smith Dec 2018 B1
10168782 Tchon Jan 2019 B1
10268275 Carter Apr 2019 B2
10281567 Carter May 2019 B2
10318008 Sinha Jun 2019 B2
10444842 Long Oct 2019 B2
10469973 Hayashi Nov 2019 B2
10496175 Long Dec 2019 B2
10497358 Tester Dec 2019 B2
10510357 Kovesi Dec 2019 B2
10520252 Momen Dec 2019 B2
10523159 Megretski Dec 2019 B2
10531212 Long Jan 2020 B2
10535174 Rigiroli Jan 2020 B1
10569300 Hoshi Feb 2020 B2
10593101 Han Mar 2020 B1
10657704 Han May 2020 B1
10685538 Carter Jun 2020 B2
10755538 Carter Aug 2020 B2
10818162 Carter Oct 2020 B2
10911861 Buckland Feb 2021 B2
10915177 Carter Feb 2021 B2
10921890 Subramanian Feb 2021 B2
10930123 Carter Feb 2021 B2
10943578 Long Mar 2021 B2
11048329 Lee Jun 2021 B1
11098951 Kappus Aug 2021 B2
11113860 Rigiroli Sep 2021 B2
11169610 Sarafianou Nov 2021 B2
11189140 Long Nov 2021 B2
11204644 Long Dec 2021 B2
11276281 Carter Mar 2022 B2
11531395 Kappus Dec 2022 B2
11543507 Carter Jan 2023 B2
11550395 Beattie Jan 2023 B2
11550432 Carter Jan 2023 B2
11553295 Kappus Jan 2023 B2
20010007591 Pompei Jul 2001 A1
20010033124 Norris Oct 2001 A1
20020149570 Knowles Oct 2002 A1
20030024317 Miller Feb 2003 A1
20030144032 Brunner Jul 2003 A1
20030182647 Radeskog Sep 2003 A1
20040005715 Schabron Jan 2004 A1
20040014434 Haardt Jan 2004 A1
20040052387 Norris Mar 2004 A1
20040091119 Duraiswami May 2004 A1
20040210158 Organ Oct 2004 A1
20040226378 Oda Nov 2004 A1
20040264707 Yang Dec 2004 A1
20050052714 Klug Mar 2005 A1
20050056851 Althaus Mar 2005 A1
20050212760 Marvit Sep 2005 A1
20050226437 Pellegrini Oct 2005 A1
20050267695 German Dec 2005 A1
20050273483 Dent Dec 2005 A1
20060085049 Cory Apr 2006 A1
20060090955 Cardas May 2006 A1
20060091301 Trisnadi May 2006 A1
20060164428 Cook Jul 2006 A1
20070036492 Lee Feb 2007 A1
20070094317 Wang Apr 2007 A1
20070177681 Choi Aug 2007 A1
20070214462 Boillot Sep 2007 A1
20070263741 Erving Nov 2007 A1
20080012647 Risbo Jan 2008 A1
20080027686 Mollmann Jan 2008 A1
20080084789 Altman Apr 2008 A1
20080130906 Goldstein Jun 2008 A1
20080152191 Fujimura Jun 2008 A1
20080226088 Aarts Sep 2008 A1
20080273723 Hartung Nov 2008 A1
20080300055 Lutnick Dec 2008 A1
20090093724 Pernot Apr 2009 A1
20090116660 Croft, III May 2009 A1
20090232684 Hirata Sep 2009 A1
20090251421 Bloebaum Oct 2009 A1
20090319065 Risbo Dec 2009 A1
20100013613 Weston Jan 2010 A1
20100016727 Rosenberg Jan 2010 A1
20100030076 Vortman Feb 2010 A1
20100044120 Richter Feb 2010 A1
20100066512 Rank Mar 2010 A1
20100085168 Kyung Apr 2010 A1
20100103246 Schwerdtner Apr 2010 A1
20100109481 Buccafusca May 2010 A1
20100199232 Mistry Aug 2010 A1
20100231508 Cruz-Hernandez Sep 2010 A1
20100262008 Roundhill Oct 2010 A1
20100302015 Kipman Dec 2010 A1
20100321216 Jonsson Dec 2010 A1
20110006888 Bae Jan 2011 A1
20110010958 Clark Jan 2011 A1
20110051554 Varray Mar 2011 A1
20110066032 Vitek Mar 2011 A1
20110199342 Vartanian Aug 2011 A1
20110310028 Camp, Jr. Dec 2011 A1
20120057733 Morii Mar 2012 A1
20120063628 Rizzello Mar 2012 A1
20120066280 Tsutsui Mar 2012 A1
20120223880 Birnbaum Sep 2012 A1
20120229400 Birnbaum Sep 2012 A1
20120229401 Birnbaum Sep 2012 A1
20120236689 Brown Sep 2012 A1
20120243374 Dahl Sep 2012 A1
20120249409 Toney Oct 2012 A1
20120249474 Pratt Oct 2012 A1
20120299853 Dagar Nov 2012 A1
20120307649 Park Dec 2012 A1
20120315605 Cho Dec 2012 A1
20130035582 Radulescu Feb 2013 A1
20130079621 Shoham Mar 2013 A1
20130094678 Scholte Apr 2013 A1
20130100008 Marti Apr 2013 A1
20130101141 Mcelveen Apr 2013 A1
20130173658 Adelman Jul 2013 A1
20130331705 Fraser Dec 2013 A1
20140027201 Islam Jan 2014 A1
20140104274 Hilliges Apr 2014 A1
20140139071 Yamamoto May 2014 A1
20140168091 Jones Jun 2014 A1
20140201666 Bedikian Jul 2014 A1
20140204002 Bennet Jul 2014 A1
20140265572 Siedenburg Sep 2014 A1
20140269207 Baym Sep 2014 A1
20140269208 Baym Sep 2014 A1
20140269214 Baym Sep 2014 A1
20140270305 Baym Sep 2014 A1
20140369514 Baym Dec 2014 A1
20150002477 Cheatham, III Jan 2015 A1
20150005039 Liu Jan 2015 A1
20150006645 Oh Jan 2015 A1
20150007025 Sassi Jan 2015 A1
20150013023 Wang Jan 2015 A1
20150029155 Lee Jan 2015 A1
20150066445 Lin Mar 2015 A1
20150070147 Cruz-Hernandez Mar 2015 A1
20150070245 Han Mar 2015 A1
20150078136 Sun Mar 2015 A1
20150081110 Houston Mar 2015 A1
20150084929 Lee Mar 2015 A1
20150110310 Minnaar Apr 2015 A1
20150130323 Harris May 2015 A1
20150168205 Lee Jun 2015 A1
20150192995 Subramanian Jul 2015 A1
20150220199 Wang Aug 2015 A1
20150226537 Schorre Aug 2015 A1
20150226831 Nakamura Aug 2015 A1
20150248787 Abovitz Sep 2015 A1
20150258431 Stafford Sep 2015 A1
20150277610 Kim Oct 2015 A1
20150293592 Cheong Oct 2015 A1
20150304789 Babayoff Oct 2015 A1
20150323667 Przybyla Nov 2015 A1
20150331576 Piya Nov 2015 A1
20150332075 Burch Nov 2015 A1
20160019762 Levesque Jan 2016 A1
20160019879 Daley Jan 2016 A1
20160026253 Bradski Jan 2016 A1
20160044417 Clemen, Jr. Feb 2016 A1
20160124080 Carter May 2016 A1
20160138986 Carlin May 2016 A1
20160175701 Froy Jun 2016 A1
20160175709 Idris Jun 2016 A1
20160189702 Blanc Jun 2016 A1
20160242724 Lavallee Aug 2016 A1
20160246374 Carter Aug 2016 A1
20160249150 Carter Aug 2016 A1
20160291716 Boser Oct 2016 A1
20160306423 Uttermann Oct 2016 A1
20160320843 Long Nov 2016 A1
20160339132 Cosman Nov 2016 A1
20160374562 Vertikov Dec 2016 A1
20170002839 Bukland Jan 2017 A1
20170004819 Ochiai Jan 2017 A1
20170018171 Carter Jan 2017 A1
20170024921 Beeler Jan 2017 A1
20170052148 Estevez Feb 2017 A1
20170123487 Hazra May 2017 A1
20170123499 Eid May 2017 A1
20170140552 Woo May 2017 A1
20170144190 Hoshi May 2017 A1
20170153707 Subramanian Jun 2017 A1
20170168586 Sinha Jun 2017 A1
20170181725 Han Jun 2017 A1
20170193768 Long Jul 2017 A1
20170193823 Jiang Jul 2017 A1
20170211022 Reinke Jul 2017 A1
20170236506 Przybyla Aug 2017 A1
20170270356 Sills Sep 2017 A1
20170279951 Hwang Sep 2017 A1
20170336860 Smoot Nov 2017 A1
20170366908 Long Dec 2017 A1
20180035891 Van Soest Feb 2018 A1
20180039333 Carter Feb 2018 A1
20180047259 Carter Feb 2018 A1
20180074580 Hardee Mar 2018 A1
20180081439 Daniels Mar 2018 A1
20180101234 Carter Apr 2018 A1
20180139557 Ochiai May 2018 A1
20180146306 Benattar May 2018 A1
20180151035 Maalouf May 2018 A1
20180166063 Long Jun 2018 A1
20180181203 Subramanian Jun 2018 A1
20180182372 Tester Jun 2018 A1
20180190007 Panteleev Jul 2018 A1
20180246576 Long Aug 2018 A1
20180253627 Baradel Sep 2018 A1
20180267156 Carter Sep 2018 A1
20180304310 Long Oct 2018 A1
20180309515 Murakowski Oct 2018 A1
20180310111 Kappus Oct 2018 A1
20180350339 Macours Dec 2018 A1
20180361174 Radulescu Dec 2018 A1
20190038496 Levesque Feb 2019 A1
20190091565 Nelson Mar 2019 A1
20190163275 Iodice May 2019 A1
20190175077 Zhang Jun 2019 A1
20190187244 Riccardi Jun 2019 A1
20190196578 Iodice Jun 2019 A1
20190196591 Long Jun 2019 A1
20190197840 Kappus Jun 2019 A1
20190197841 Carter Jun 2019 A1
20190197842 Long Jun 2019 A1
20190204925 Long Jul 2019 A1
20190206202 Carter Jul 2019 A1
20190235628 Lacroix Aug 2019 A1
20190257932 Carter Aug 2019 A1
20190310710 Deeley Oct 2019 A1
20190342654 Buckland Nov 2019 A1
20200042091 Long Feb 2020 A1
20200080776 Kappus Mar 2020 A1
20200082804 Kappus Mar 2020 A1
20200103974 Carter Apr 2020 A1
20200117229 Long Apr 2020 A1
20200193269 Park Jun 2020 A1
20200218354 Beattie Jul 2020 A1
20200294299 Rigiroli Sep 2020 A1
20200302760 Carter Sep 2020 A1
20200320347 Nikolenko Oct 2020 A1
20200327418 Lyons Oct 2020 A1
20200380832 Carter Dec 2020 A1
20210037332 Kappus Feb 2021 A1
20210043070 Carter Feb 2021 A1
20210109712 Long Apr 2021 A1
20210111731 Long Apr 2021 A1
20210112353 Brian Apr 2021 A1
20210141458 Sarafianou May 2021 A1
20210165491 Sun Jun 2021 A1
20210170447 Buckland Jun 2021 A1
20210183215 Carter Jun 2021 A1
20210201884 Kappus Jul 2021 A1
20210225355 Long Jul 2021 A1
20210303072 Carter Sep 2021 A1
20210303758 Long Sep 2021 A1
20210334706 Yamaguchi Oct 2021 A1
20210381765 Kappus Dec 2021 A1
20210397261 Kappus Dec 2021 A1
20220035479 Lasater Feb 2022 A1
20220083142 Brown Mar 2022 A1
20220095068 Kappus Mar 2022 A1
20220113806 Long Apr 2022 A1
20220155949 Ring May 2022 A1
20220198892 Carter Jun 2022 A1
20220236806 Carter Jul 2022 A1
20220252550 Catsis Aug 2022 A1
20220300028 Long Sep 2022 A1
20220300070 Iodice Sep 2022 A1
20220329250 Long Oct 2022 A1
20220393095 Chilles Dec 2022 A1
Foreign Referenced Citations (61)
Number Date Country
2470115 Jun 2003 CA
101986787 Mar 2011 CN
102459900 May 2012 CN
102591512 Jul 2012 CN
103797379 May 2014 CN
103984414 Aug 2014 CN
107340871 Nov 2017 CN
0057594 Aug 1982 EP
309003 Mar 1989 EP
0696670 Feb 1996 EP
1875081 Jan 2008 EP
1911530 Apr 2008 EP
2271129 Jan 2011 EP
1461598 Apr 2014 EP
3207817 Aug 2017 EP
3216231 Aug 2019 EP
2464117 Apr 2010 GB
2513884 Nov 2014 GB
2513884 Nov 2014 GB
2530036 Mar 2016 GB
2008074075 Apr 2008 JP
2010109579 May 2010 JP
2011172074 Sep 2011 JP
2012048378 Mar 2012 JP
2012048378 Mar 2012 JP
5477736 Apr 2014 JP
2015035657 Feb 2015 JP
2016035646 Mar 2016 JP
20120065779 Jun 2012 KR
20130055972 May 2013 KR
20160008280 Jan 2016 KR
20200082449 Jul 2020 KR
9118486 Nov 1991 WO
9639754 Dec 1996 WO
03050511 Jun 2003 WO
2005017965 Feb 2005 WO
2007144801 Dec 2007 WO
2009071746 Jun 2009 WO
2009112866 Sep 2009 WO
2010003836 Jan 2010 WO
2010139916 Dec 2010 WO
2011132012 Oct 2011 WO
2012023864 Feb 2012 WO
2012104648 Aug 2012 WO
2013179179 Dec 2013 WO
2014181084 Nov 2014 WO
2015006467 Jan 2015 WO
2015039622 Mar 2015 WO
2015127335 Aug 2015 WO
2016007920 Jan 2016 WO
2016073936 May 2016 WO
2016095033 Jun 2016 WO
2016099279 Jun 2016 WO
2016132141 Aug 2016 WO
2016132144 Aug 2016 WO
2016137675 Sep 2016 WO
2016162058 Oct 2016 WO
2017172006 Oct 2017 WO
2020049321 Mar 2020 WO
WO-2020049321 Mar 2020 WO
2021130505 Jul 2021 WO
Non-Patent Literature Citations (315)
Entry
Communication Pursuant to Article 94(3) EPC for EP 19723179.8 (dated Feb. 15, 2022).
EPO ISR and WO for PCT/GB2022/050204 (Apr. 7, 2022) (15 pages).
IN 202047026493 Office Action dated Mar. 8, 2022.
ISR & WO for PCT/GB2021/052946.
Office Action (Final Rejection) dated Mar. 14, 2022 for U.S. Appl. No. 16/564,016 (pp. 1-12).
Office Action (Non-Final Rejection) dated Mar. 15, 2022 for U.S. Appl. No. 16/144,474 (pp. 1-13).
Office Action (Non-Final Rejection) dated Apr. 1, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-10).
Office Action (Non-Final Rejection) dated May 2, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-10).
“Welcome to Project Soli” video, https://atap.google.com/#project-soli Accessed Nov. 30, 2018, 2 pages.
A. B. Vallbo, Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects, Journal of Physiology (1995), 483.3, pp. 783-795.
A. Sand, Head-Mounted Display with Mid-Air Tactile Feedback, Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Nov. 13-15, 2015 (8 pages).
Alexander, J. et al. (2011), Adding Haptic Feedback to Mobile TV (6 pages).
Amanda Zimmerman, The gentle touch receptors of mammalian skin, Science, Nov. 21, 2014, vol. 346 Issue 6212, p. 950.
Aoki et al., Sound location of stero reproduction with parametric loudspeakers, Applied Acoustics 73 (2012) 1289-1295 (7 pages).
Ashish Shrivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, Jul. 19, 2017, pp. 1-16.
Bajard et al., BKM: A New Hardware Algorithm for Complex Elementary Functions, 8092 IEEE Transactions on Computers 43 (1994) (9 pages).
Bajard et al., Evaluation of Complex Elementary Functions / A New Version of BKM, SPIE Conference on Advanced Signal Processing, Jul. 1999 (8 pages).
Benjamin Long et al, “Rendering volumetric haptic shapes in mid-air using ultrasound”, ACM Transactions on Graphics (TOG), ACM, US, (Nov. 19, 2014), vol. 33, No. 6, ISSN 0730-0301, pp. 1-10.
Bortoff et al., Pseudolinearization of the Acrobot using Spline Functions, IEEE Proceedings of the 31st Conference on Decision and Control, Sep. 10, 1992 (6 pages).
Bożena Smagowska & Małgorzata Pawlaczyk-Łuszczyńska (2013) Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review, International Journal of Occupational Safety and Ergonomics, 19:2, 195-202.
Brian Kappus and Ben Long, Spatiotemporal Modulation for Mid-Air Haptic Feedback from an Ultrasonic Phased Array, ICSV25, Hiroshima, Jul. 8-12, 2018, 6 pages.
Canada Application 2,909,804 Office Action dated Oct. 18, 2019, 4 pages.
Casper et al., Realtime Control of Multiple-focus Phased Array Heating Patterns Based on Noninvasive Ultrasound Thermography, IEEE Trans Biomed Eng. Jan. 2012; 59(1): 95-105.
Christoper M. Bishop, Pattern Recognition and Machine Learning, 2006, pp. 1-758.
Colgan, A., “How Does the Leap Motion Controller Work?” Leap Motion, Aug. 9, 2014, 10 pages.
Corrected Notice of Allowability dated Aug. 9, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-6).
Corrected Notice of Allowability dated Jan. 14, 2021 for U.S. Appl. No. 15/897,804 (pp. 1-2).
Corrected Notice of Allowability dated Jun. 21, 2019 for U.S. Appl. No. 15/966,213 (2 pages).
Corrected Notice of Allowability dated Oct. 31, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-2).
Damn Geeky, “Virtual projection keyboard technology with haptic feedback on palm of your hand,” May 30, 2013, 4 pages.
David Joseph Tan et al., Fits like a Glove: Rapid and Reliable Hand Shape Personalization, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610-5619.
Definition of “lnterferometry”according to Wikipedia, 25 pages., Retrieved Nov. 2018.
Definition of “Multilateration” according to Wikipedia, 7 pages., Retrieved Nov. 2018.
Definition of “Trilateration”according to Wikipedia, 2 pages., Retrieved Nov. 2018.
Diederik P. Kingma et al., Adam: A Method for Stochastic Optimization, Jan. 30, 2017, pp. 1-15.
E. Bok, Metasurface for Water-to-Air Sound Transmission, Physical Review Letters 120, 044302 (2018) (6 pages).
E.S. Ebbini et al. (1991), Aspherical-section ultrasound phased array applicator for deep localized hyperthermia, Biomedical Engineering, IEEE Transactions on (vol. 38 Issue: 7), pp. 634-643.
EPO Office Action for EP16708440.9 dated Sep. 12, 2018 (7 pages).
EPSRC Grant summary EP/J004448/1 (dated 2011) (1 page).
Eric Tzeng et al., Adversarial Discriminative Domain Adaptation, Feb. 17, 2017, pp. 1-10.
European Office Action for Application No. EP16750992.6, dated Oct. 2, 2019, 3 pages.
Ex Parte Quayle Action dated Dec. 28, 2018 for U.S. Appl. No. 15/966,213 (pp. 1-7).
Extended European Search Report for Application No. EP19169929.7, dated Aug. 6, 2019, 7 pages.
Freeman et al., Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions ICMI'14, Nov. 12-16, 2014, Istanbul, Turkey (8 pages).
Gavrilov L R et al. (2000) “A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on (vol. 47, Issue: 1), pp. 125-139.
Gavrilov, L.R. (2008) “The Possibility of Generating Focal Regions of Complex Configurations in Application to the Problems of Stimulation of Human Receptor Structures by Focused Ultrasound” Acoustical Physics, vol. 54, No. 2, pp. 269-278.
Georgiou et al., Haptic In-Vehicle Gesture Controls, Adjunct Proceedings of the 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '17), Sep. 24-27, 2017 (6 pages).
GitHub—danfis/libccd: Library for collision detection between two convex shapes, Mar. 26, 2020, pp. 1-6.
GitHub—IntelRealSense/hand_tracking_samples: researc codebase for depth-based hand pose estimation using dynamics based tracking and CNNs, Mar. 26, 2020, 3 pages.
Gokturk, et al., “A Time-of-Flight Depth Sensor-System Description, Issues and Solutions,” Published in: 2004 Conference on Computer Vision and Pattern Recognition Workshop, Date of Conference: Jun. 27-Jul. 2, 2004, 9 pages.
Hasegawa, K. and Shinoda, H. (2013) “Aerial Display of Vibrotactile Sensation with High Spatial-Temporal Resolution using Large Aperture Airbourne Ultrasound Phased Array”, University of Tokyo (6 pages).
Henrik Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, 2012, 12, 20-28.
Hilleges et al. Interactions in the air: adding further depth to interactive tabletops, UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technologyOct. 2009 pp. 139-148.
Hoshi et al.,Tactile Presentation by Airborne Ultrasonic Oscillator Array, Proceedings of Robotics and Mechatronics Lecture 2009, Japan Society of Mechanical Engineers; May 24, 2009 (5 pages).
Hoshi T et al, “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound”, IEEE Transactions on Haptics, IEEE, USA, (Jul. 1, 2010), vol. 3, No. 3, ISSN 1939-1412, pp. 155-165.
Hoshi, T., Development of Aerial-Input and Aerial-Tactile-Feedback System, IEEE World Haptics Conference 2011, p. 569-573.
Hoshi, T., Handwriting Transmission System Using Noncontact Tactile Display, IEEE Haptics Symposium 2012 pp. 399-401.
Hoshi, T., Non-contact Tactile Sensation Synthesized by Ultrasound Transducers, Third Joint Euro haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2009 (5 pages).
Hoshi, T., Touchable Holography, SIGGRAPH 2009, New Orleans, Louisiana, Aug. 3-7, 2009. (1 page).
Hua J, Qin H., Haptics-based dynamic implicit solid modeling, IEEE Trans Vis Comput Graph. Sep.-Oct. 2004;10(5):574-86.
Hyunjae Gil, Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face, CHI 2018, Apr. 21-26, 2018, Montreal, QC, Canada.
Iddan, et al., “3D Imaging in the Studio (And Elsewhwere . . . ” Apr. 2001, 3DV systems Ltd., Yokneam, Isreal, www.3dvsystems.com.il, 9 pages.
Imaginary Phone: Learning Imaginary Interfaces by Transferring Spatial Memory From a Familiar Device Sean Gustafson, Christian Holz and Patrick Baudisch. UIST 2011. (10 pages).
India Morrison, The skin as a social organ, Exp Brain Res (2010) 204:305-314.
International Preliminary Report on Patentability and Written Opinion issued in corresponding PCT/US2017/035009, dated Dec. 4, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2017/069569 dated Feb. 5, 2019, 11 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053738, dated Apr. 11, 2019, 14 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053739, dated Jun. 4, 2019, 16 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/050969, dated Jun. 13, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/051223, dated Aug. 8, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/052510, dated Jan. 14, 2020, 25 pages.
ISR & WO for PCT/GB2020/052545 (Jan. 27, 2021) 14 pages.
ISR and WO for PCT/GB2020/050013 (Jul. 13, 2020) (20 pages).
ISR and WO for PCT/GB2020/050926 (Jun. 2, 2020) (16 pages).
ISR and WO for PCT/GB2020/052544 (Dec. 18, 2020) (14 pages).
ISR for PCT/GB2020/052546 (Feb. 23, 2021) (14 pages).
ISR for PCT/GB2020/053373 (Mar. 26, 2021) (16 pages).
Iwamoto et al. (2008), Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound, EuroHaptics, pp. 504-513.
Iwamoto et al., Airborne Ultrasound Tactile Display: Supplement, The University of Tokyo 2008 (2 pages).
Iwamoto T et al, “Two-dimensional Scanning Tactile Display using Ultrasound Radiation Pressure”, Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on Alexandria, VA, USA Mar. 25-26, 2006, Piscataway, NJ, USA,IEEE, (Mar. 25, 2006), ISBN 978-1-4244-0226-7, pp. 57-61.
Jager et al., “Air-Coupled 40-KHZ Ultrasonic 2D-Phased Array Based on a 3D-Printed Waveguide Structure”, 2017 IEEE, 4 pages.
Japanese Office Action (with English language translation) for Application No. 2017-514569, dated Mar. 31, 2019, 10 pages.
JonasChatel-Goldman, Touch increases autonomic coupling between romantic partners, Frontiers in Behavioral Neuroscience Mar. 2014, vol. 8, Article 95.
Jonathan Taylor et al., Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting, ACM Transactions on Graphics, vol. 36, No. 4, Article 244, Publication Date: Nov. 2017, pp. 1-12.
Jonathan Taylor et al., Efficient and Precise Interactive Hand Tracking Through Joint, Continuous Optimization of Pose and Correspondences, SIGGRAPH '16 Technical Paper, Jul. 24-28, 2016, Anaheim, CA, ISBN: 978-1-4503-4279-87/16/07, pp. 1-12.
Jonathan Tompson et al., Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Trans. Graph. 33, 5, Article 169, Aug. 2014, pp. 1-10.
K. Jia, Dynamic properties of micro-particles in ultrasonic transportation using phase-controlled standing waves, J. Applied Physics 116, n. 16 (2014) (12 pages).
Kai Tsumoto, Presentation of Tactile Pleasantness Using Airborne Ultrasound, 2021 IEEE World Haptics Conference (WHC) Jul. 6-9, 2021. Montreal, Canada.
Kaiming He et al., Deep Residual Learning for Image Recognition, http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015, Dec. 10, 2015, pp. 1-12.
Kamakura, T. and Aoki, K. (2006) “A Highly Directional Audio System using a Parametric Array in Air” WESPAC IX 2006 (8 pages).
Keisuke Hasegawa, Electronically steerable ultrasound-driven long narrow airstream, Applied Physics Letters 111, 064104 (2017).
Keisuke Hasegawa, Midair Ultrasound Fragrance Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 24, No. 4, Apr. 2018 1477.
Keisuke Hasegawa,,Curved acceleration path of ultrasound-driven airflow, J. Appl. Phys. 125, 054902 (2019).
Kolb, et al., “Time-of-Flight Cameras in Computer Graphics,” Computer Graphics forum, vol. 29 (2010), No. 1, pp. 141-159.
Konstantinos Bousmalis et al., Domain Separation Networks, 29th Conference on Neural Information Processing Sysgtems (NIPS 2016), Barcelona, Spain. Aug. 22, 2016, pp. 1-15.
Krim, et al., “Two Decades of Array Signal Processing Research—The Parametric Approach”, IEEE Signal Processing Magazine, Jul. 1996, pp. 67-94.
Lang, Robert, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD—Technology”, A dissertation submitted to Department of EE and CS at Univ. of Siegen, dated Jun. 28, 2000, 223 pages.
Large et al.,Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm, Applied Ergonomics (2019) (10 pages).
Li, Larry, “Time-of-Flight Camera—An Introduction,” Texas Instruments, Technical White Paper, SLOA190B—Jan. 2014 Revised May 2014, 10 pages.
Light, E.D., Progress in Two Dimensional Arrays for Real Time Volumetric Imaging, 1998 (17 pages).
Line S Loken, Coding of pleasant touch by unmyelinated afferents in humans, Nature Neuroscience vol. 12 [ No. 5 [ May 2009 547.
M. Barmatz et al., “Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields”, The Journal of the Acoustical Society of America, New York, NY, US, (Mar. 1, 1985), vol. 77, No. 3, pp. 928-945, XP055389249.
M. Toda, New Type of Matching Layer for Air-Coupled Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelecthcs, and Frequency Control, vol. 49, No. 7, Jul. 2002 (8 pages).
Mahdi Rad et al., Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images, Mar. 26, 2018, pp. 1-14.
Marco A B Andrade et al, “Matrix method for acoustic levitation simulation”, IEEE Transactions on Ultrasonics, Ferroelectricsand Frequency Control, IEEE, US, (Aug. 1, 2011), vol. 58, No. 8, ISSN 0885-3010, pp. 1674-1683.
Mariana von Mohr, The soothing function of touch: affective touch reduces feelings of social exclusion, Scientific Reports, 7: 13516, Oct. 18, 2017.
Marin, About LibHand, LibHand—A Hand Articulation Library, www.libhand.org/index.html, Mar. 26, 2020, pp. 1-2; www.libhand.org/download.html, 1 page; www.libhand.org/examples.html, pp. 1-2.
Markus Oberweger et al., DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation, Aug. 28, 2017, pp. 1-10.
Markus Oberweger et al., Hands Deep in Deep Learning for Hand Pose Estimation, Dec. 2, 2016, pp. 1-10.
Marshall, M ., Carter, T Alexander, J., & Subramanian, S. (2012). Ultratangibles: creating movable tangible objects on interactive tables. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, (pp. 2185-2188).
Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications DOI: I0.1038/ncomms9661 (2015) (7 pages).
Meijster, A., et al., “A General Algorithm for Computing Distance Transforms in Linear Time,” Mathematical Morphology and its Applications to Image and Signal Processing, 2002, pp. 331-340.
Mingzhu Lu et al. (2006) Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery, Ultrasonics, vol. 44, Supplement, Dec. 22, 2006, pp. e325-e330.
Mitsuru Nakajima, Remotely Displaying Cooling Sensation via Ultrasound-Driven Air Flow, Haptics Symposium 2018, San Francisco, USA p. 340.
Mohamed Yacine Tsalamlal, Affective Communication through Air Jet Stimulation: Evidence from Event-Related Potentials, International Journal of Human-Computer Interaction 2018.
Mueller, GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB, Eye in-Painting with Exemplar Generative Adverserial Networks, pp. 49-59 (Jun. 1, 2018).
Nina Gaissert, Christian Wallraven, and Heinrich H. Bulthoff, “Visual and Haptic Perceptual Spaces Show High Similarity in Humans ”, published to Journal of Vision in 2010, available at http://www.journalofvision.org/content/10/11/2 and retrieved on Apr. 22, 2020 (Year: 2010), 20 pages.
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-5).
Notice of Allowance dated Apr. 22, 2020 for U.S. Appl. No. 15/671,107 (pp. 1-5).
Notice of Allowance dated Dec. 19, 2018 for U.S. Appl. No. 15/665,629 (pp. 1-9).
Notice of Allowance dated Dec. 21, 2018 for U.S. Appl. No. 15/983,864 (pp. 1-7).
Notice of Allowance dated Feb. 10, 2020, for U.S. Appl. No. 16/160,862 (pp. 1-9).
Notice of Allowance dated Feb. 7, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-7).
Notice of Allowance dated Jul. 22, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-9).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-9).
Notice of Allowance dated Jun. 10, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-9).
Notice of Allowance dated Jun. 17, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-9).
Notice of Allowance dated Jun. 25, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-10).
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 15/966,213 (pp. 1-9).
Notice of Allowance dated Oct. 1, 2020 for U.S. Appl. No. 15/897,804 (pp. 1-9).
Notice of Allowance dated Oct. 16, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-7).
Notice of Allowance dated Oct. 30, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-9).
Notice of Allowance dated Oct. 6, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-8).
Notice of Allowance dated Sep. 30, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-10).
Notice of Allowance in U.S. Appl. No. 15/210,661 dated Jun. 17, 2020 (22 pages).
Obrist et al., Emotions Mediated Through Mid-Air Haptics, CHI 2015, Apr. 18-23, 2015, Seoul, Republic of Korea. (10 pages).
Obrist et al., Talking about Tactile Experiences, CHI 2013, Apr. 27-May 2, 2013 (10 pages).
Office Action dated Apr. 8, 2020, for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-8).
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-15).
Office Action dated Apr. 18, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-6).
Office Action dated Apr. 28, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-12).
Office Action dated Apr. 29, 2020 for U.S. Appl. No. 16/374,301 (pp. 1-18).
Office Action dated Apr. 4, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Aug. 10, 2021 for U.S. Appl. No. 16/564,016 (pp. 1-14).
Office Action dated Aug. 19, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-9).
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 16/160,862 (pp. 1-5).
Office Action dated Aug. 9, 2021 for U.S. Appl. No. 17/068,825 (pp. 1-9).
Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/959,266 (pp. 1-15).
Office Action dated Dec. 7, 2020 for U.S. Appl. No. 16/563,608 (pp. 1-8).
Office Action dated Feb. 20, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-8).
Office Action dated Feb. 25, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-7).
Office Action dated Feb. 7, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jan. 10, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-6).
Office Action dated Jan. 29, 2020 for U.S. Appl. No. 16/198,959 (p. 1-6).
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 15/210,661 (pp. 1-12).
Office Action dated Jul. 26, 2019 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jul. 9, 2020 for U.S. Appl. No. 16/228,760 (pp. 1-17).
Office Action dated Jun. 19, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-12).
Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-27).
Office Action dated Jun. 25, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-5).
Office Action dated Mar. 11, 2021 for U.S. Appl. No. 16/228,767 (pp. 1-23).
Office Action dated Mar. 20, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-10).
Office Action dated Mar. 31, 2021 for U.S. Appl. No. 16/228,760 (pp. 1-21).
Office Action dated May 13, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Office Action dated May 14, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-6).
Office Action dated May 16, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-7).
Office Action dated May 18, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-21).
Office Action dated Oct. 17, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/671,107 (pp. 1-6).
Office Action dated Oct. 7, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-9).
Office Action dated Sep. 16, 2021 for U.S. Appl. No. 16/600,496 (pp. 1-8).
Office Action dated Sep. 18, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-14).
Office Action dated Sep. 21, 2020 for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action dated Sep. 24, 2021 for U.S. Appl. No. 17/080,840 (pp. 1-9).
OGRECave/ogre—GitHub: ogre/Samples/Media/materials at 7de80a7483f20b50f2b10d7ac6de9d9c6c87d364, Mar. 26, 2020, 1 page.
Optimal regularisation for acoustic source reconstruction by inverse methods, Y. Kim, P.A. Nelson, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK Received Feb. 25, 2003; 25 pages.
Oscar Martínez-Graullera et al, “2D array design based on Fermat spiral for ultrasound imaging”, Ultrasonics, (Feb. 1, 2010), vol. 50, No. 2, ISSN 0041-624X, pp. 280-289, XP055210119.
Partial International Search Report for Application No. PCT/GB2018/053735, dated Apr. 12, 2019, 14 pages.
Partial ISR for Application No. PCT/GB2020/050013 dated May 19, 2020 (16 pages).
PCT Partial International Search Report for Application No. PCT/GB2018/053404 dated Feb. 25, 2019, 13 pages.
Péter Tamás Kovács et al, “Tangible Holographic 3D Objects with Virtual Touch”, Interactive Tabletops & Surfaces, ACM, 2 Penn Plaza, Suite 701 New York NY 10121-0701 USA, (Nov. 15, 2015), ISBN 978-1-4503-3899-8, pp. 319-324.
Phys.org, Touchable Hologram Becomes Reality, Aug. 6, 2009, by Lisa Zyga (2 pages).
Pompei, F.J. (2002), “Sound from Ultrasound: The Parametric Array as an Audible Sound Source”, Massachusetts Institute of Technology (132 pages).
Rocchesso et al., Accessing and Selecting Menu Items by In-Air Touch, ACM CHItaly'19, Sep. 23-25, 2019, Padova, Italy (9 pages).
Rochelle Ackerley, Human C-Tactile Afferents are Tuned to the Temperature of a Skin-Stroking Caress, J. Neurosci., Feb. 19, 2014, 34(8):2879-2883.
Ryoko Takahashi, Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus, Journal of Latex Class Files, vol. 14, No. 8, Aug. 2015.
Schmidt, Ralph, “Multiple Emitter Location and Signal Parameter Estimation” IEEE Transactions of Antenna and Propagation, vol. AP-34, No. 3, Mar. 1986, pp. 276-280.
Sean Gustafson et al., “Imaginary Phone”, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Techology: Oct. 16-19, 2011, Santa Barbara, CA, USA, ACM, New York, NY, Oct. 16, 2011, pp. 283-292, XP058006125, DOI: 10.1145/2047196.2047233, ISBN: 978-1-4503-0716-1.
Search report and Written Opinion of ISA for PCT/GB2015/050417 dated Jul. 8, 2016 (20 pages).
Search report and Written Opinion of ISA for PCT/GB2015/050421 dated Jul. 8, 2016 (15 pages).
Search report and Written Opinion of ISA for PCT/GB2017/050012 dated Jun. 8, 2017. (18 pages).
Search Report by EPO for EP 17748466 dated Jan. 13, 2021 (16 pages).
Search Report for GB1308274.8 dated Nov. 11, 2013. (2 pages).
Search Report for GB1415923.0 dated Mar. 11, 2015. (1 page).
Search Report for PCT/GB/2017/053729 dated Mar. 15, 2018 (16 pages).
Search Report for PCT/GB/2017/053880 dated Mar. 21, 2018. (13 pages).
Search report for PCT/GB2014/051319 dated Dec. 8, 2014 (4 pages).
Search report for PCT/GB2015/052507 dated Mar. 11, 2020 (19 pages).
Search report for PCT/GB2015/052578 dated Oct. 26, 2015 (12 pages).
Search report for PCT/GB2015/052916 dated Feb. 26, 2020 (18 pages).
Search Report for PCT/GB2017/052332 dated Oct. 10, 2017 (12 pages).
Search report for PCT/GB2018/051061 dated Sep. 26, 2018 (17 pages).
Search report for PCT/US2018/028966 dated Jul. 13, 2018 (43 pages).
Sergey Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariat Shift, Mar. 2, 2015, pp. 1-11.
Seungryul, Pushing the Envelope for RGB-based Dense 3D Hand Pose Estimation for RGB-based Desne 3D Hand Pose Estimation via Neural Rendering, arXiv:1904.04196v2 [cs.CV] Apr. 9, 2019 (5 pages).
Shakeri, G., Williamson, J. H. and Brewster, S. (2018) May the Force be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars. In: 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2018) (11 pages).
Shanxin Yuan et al., BigHand2.2M Bechmark: Hand Pose Dataset and State of the Art Analysis, Dec. 9, 2017, pp. 1-9.
Shome Subhra Das, Detectioin of Self Intersection in Synthetic Hand Pose Generators, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya University, Nagoya, Japan, May 8-12, 2017, pp. 354-357.
Sixth Sense webpage, http://www.pranavmistry.com/projects/sixthsense/ Accessed Nov. 30, 2018, 7 pages.
Stan Melax et al., Dynamics Based 3D Skeletal Hand Tracking, May 22, 2017, pp. 1-8.
Stanley J. Bolanowski, Hairy Skin: Psychophysical Channels and Their Physiological Substrates, Somatosensory and Motor Research, vol. 11. No. 3, 1994, pp. 279-290.
Stefan G. Lechner, Hairy Sensation, Physiology 28: 142-150, 2013.
Steve Guest et al., “Audiotactile interactions in roughness perception”, Exp. Brain Res (2002) 146:161-171, DOI 10.1007/s00221-002-1164-z, Received: Feb. 9, 2002/Accepted: May 16, 2002/Published online: Jul. 26, 2002, Springer-Verlag 2002, (11 pages).
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-2).
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-2).
Sylvia Gebhardt, Ultrasonic Transducer Arrays for Particle Manipulation (date unknown) (2 pages).
Takaaki Kamigaki, Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound, EuroHaptics 2020, LNCS 12272, pp. 271-278, 2020.
Takahashi Dean: “Ultrahaptics shows off sense of touch in virtual reality”, Dec. 10, 2016 (Dec. 10, 2016), XP055556416, Retrieved from the Internet: URL: https://venturebeat.com/2016/12/10/ultrahaptics-shows-off-sense-of-touch-in-virtual-reality/ [retrieved on Feb. 13, 2019] 4 pages.
Takahashi, M. et al., Large Aperture Airborne Ultrasound Tactile Display Using Distributed Array Units, SICE Annual Conference 2010 p. 359-62.
Takayuki et al., “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound” IEEE Transactions on Haptics vol. 3, No. 3, p. 165 (2010).
Teixeira, et al., “A brief introduction to Microsoft's Kinect Sensor,” Kinect, 26 pages, retrieved Nov. 2018.
Toby Sharp et al., Accurate, Robust, and Flexible Real-time Hand Tracking, CHI '15, Apr. 18-23, 2015, Seoul, Republic of Korea, ACM 978-1-4503-3145—Jun. 15, 2004, pp. 1-10.
Tom Carter et al., “UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces”, Proceedings of the 26TH Annual ACM Symposium on User Interface Software and Technology, UIST'13, New York, New York, USA, (Jan. 1, 2013), ISBN 978-1-45-032268-3, pp. 505-514.
Tom Nelligan and Dan Kass, Intro to Ultrasonic Phased Array (date unknown) (8 pages).
Tomoo Kamakura, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97 (5), Pt. 1, May 1995 p. 2740.
Uta Sailer, How Sensory and Affective Attributes Describe Touch Targeting C-Tactile Fibers, Experimental Psychology (2020), 67(4), 224-236.
Vincent Lepetit et al., Model Based Augmentation and Testing of an Annotated Hand Pose Dataset, ResearchGate, https://www.researchgate.net/publication/307910344, Sep. 2016, 13 pages.
Wang et al., Device-Free Gesture Tracking Using Acoustic Signals, ACM MobiCom '16, pp. 82-94 (13 pages).
Wilson et al., Perception of Ultrasonic Haptic Feedback on the Hand: Localisation and Apparent Motion, CHI 2014, Apr. 26-May 1, 2014, Toronto, Ontario, Canada. (10 pages).
Wooh et al., “Optimum beam steering of linear phased arays,” Wave Motion 29 (1999) pp. 245-265, 21 pages.
Xin Cheng et al, “Computation of the acoustic radiation force on a sphere based on the 3-D FDTD method”, Piezoelectricity, Acoustic Wavesand Device Applications (SPAWDA), 2010 Symposium on, IEEE, (Dec. 10, 2010), ISBN 978-1-4244-9822-2, pp. 236-239.
Xu Hongyi et al, “6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields”, IEEE Transactions on Haptics, IEEE, USA, vol. 10, No. 2, ISSN 1939-1412, (Sep. 27, 2016), pp. 151-161, (Jun. 16, 2017).
Yang Ling et al, “Phase-coded approach for controllable generation of acoustical vortices”, Journal of Applied Physics, American Institute of Physics, US, vol. 113, No. 15, ISSN 0021-8979, (Apr. 21, 2013), pp. 154904-154904.
Yarin Gal et al., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Oct. 4, 2016, pp. 1-12, Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016, JMLR: W&CP vol. 48.
Yaroslav Ganin et al., Domain—Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 (2016) 1-35, submitted May 2015; published Apr. 2016.
Yaroslav Ganin et al., Unsupervised Domain Adaptataion by Backpropagation, Skolkovo Institute of Science and Technology (Skoltech), Moscow Region, Russia, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, JMLR: W&CP vol. 37, copyright 2015 by the author(s), 11 pages.
Yoshino, K. and Shinoda, H. (2013), “Visio Acoustic Screen for Contactless Touch Interface with Tactile Sensation”, University of Tokyo (5 pages).
Zeng, Wejun, “Microsoft Kinect Sensor and its Effect,” IEEE Multimedia, Apr.-Jun. 2012, 7 pages.
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 18, 2022 for U.S. Appl. No. 16/899,720 (pp. 1-2).
Office Action (Non-Final Rejection) dated Jan. 24, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-22).
Office Action (Non-Final Rejection) dated Jan. 21, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-12).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 11, 2022 for U.S. Appl. No. 16/228,760 (pp. 1-8).
ISR and WO for PCT/GB2020/052829 (Feb. 10, 2021) (15 pages).
EPO Examination Report 17 748 4656.4 (dated Jan. 12, 2021) (16 pages).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 28, 2022 for U.S. Appl. No. 17/068,825 (pp. 1-7).
Mohamed Yacine Tsalamlal, Non-Intrusive Haptic Interfaces: State-of-the Art Survey, HAID 2013, LNCS 7989, pp. 1-9, 2013.
EPO Communication for Application 18 811 906.9 (dated Nov. 29, 2021) (15 pages).
ISR and WO for PCT/GB2021/052415 (Dec. 22, 2021) (16 pages).
Gareth Young et al.. Designing Mid-Air Haptic Gesture Controlled User Interfaces for Cars, PACM on Human-Computer Interactions, Jun. 2020 (24 pages).
Office Action (Non-Final Rejection) dated Mar. 4, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 7, 2022 for U.S. Appl. No. 16/600,496 (pp. 1-5).
ISR & WO for PCT/GB2022/051388 (Aug. 30, 2022) (15 pages).
Office Action (Final Rejection) dated Sep. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-6).
Office Action (Non-Final Rejection) dated Aug. 29, 2022 for U.S. Appl. No. 16/995,819 (pp. 1-6).
Office Action (Non-Final Rejection) dated Sep. 21, 2022 for U.S. Appl. No. 17/721,315 (pp. 1-10).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 24, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-6).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 31, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 7, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 8, 2022 for U.S. Appl. No. 17/176,899 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 12, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-7).
EPO Examination Search Report 17 702 910.5 (dated Jun. 23, 2021).
Office Action dated Oct. 29, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-7).
Notice of Allowance dated Nov. 5, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-9).
Corrected Notice of Allowability dated Nov. 24, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-5).
International Search Report and Written Opinion for App. No. PCT/GB2021/051590, dated Nov. 11, 2021, 20 pages.
Anonymous: “How does Ultrahaptics technology work?—Ultrahaptics Developer Information”, Jul. 31, 2018 (Jul. 31, 2018), XP055839320, Retrieved from the Internet: URL:https://developer.ultrahaptics.com/knowledgebase/haptics-overview/ [retrieved on Sep. 8, 2021].
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Dec. 14, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-8).
Office Action (Non-Final Rejection) dated Dec. 20, 2021 for U.S. Appl. No. 17/195,795 (pp. 1-7).
EPO Application 18 725 358.8 Examination Report dated Sep. 22, 2021.
EPO 21186570.4 Extended Search Report dated Oct. 29, 2021.
Almusawi et al., A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242). Computational intelligence and neuroscience 2016 (2016). (Year: 2016).
Azad et al., Deep domain adaptation under deep label scarcity. arXiv preprint arXiv:1809.08097 (2018) (Year: 2018).
Beranek, L., & Mellow, T. (2019). Acoustics: Sound Fields, Transducers and Vibration. Academic Press.
Boureau et al.,“A theoretical analysis of feature pooling in visual recognition.” In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 111-118. 2010. (Year: 2010).
Bybi, A., Grondel, S., Mzerd, A., Granger, C., Garoum, M., & Assaad, J. (2019). Investigation of cross-coupling in piezoelectric transducer arrays and correction. International Journal of Engineering and Technology Innovation, 9(4), 287.
Certon, D., Felix, N., Hue, P. T. H., Patat, F., & Lethiecq, M. (Oct. 1999). Evaluation of laser probe performances for measuring cross-coupling in 1-3 piezocomposite arrays. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) (vol. 2, pp. 1091-1094).
Certon, D., Felix, N., Lacaze, E., Teston, F., & Patat, F. (2001). Investigation of cross-coupling in 1-3 piezocomposite arrays. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 48(1), 85-92.
Chang Suk Lee et al., An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter, J. Mater. Chem. C, 2018, 6, 4243 (7 pages).
Der et al., Inverse kinematics for reduced deformable models. ACM Transactions on graphics (TOG) 25, No. 3 (2006): 1174-1179. (Year: 2006).
DeSilets, C. S. (1978). Transducer arrays suitable for acoustic imaging (No. GL-2833). Stanford Univ CA Edward L Ginzton Lab of Physics.
Duka, “Neural network based inverse kinematics solution for trajectory tracking of a robotic arm.” Procedia Technology 12 (2014) 20-27. (Year: 2014).
Henneberg, J., Geriach, A., Storck, H., Cebulla, H., & Marburg, S. (2018). Reducing mechanical cross-coupling in phased array transducers using stop band material as backing Journal of Sound and Vibration, 424, 352-364.
https://radiopaedia.org/articles/physical-principles-of-ultrasound-1?lang=gb (Accessed May 29, 2022).
Office Action (Non-Final Rejection) dated May 25, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-28).
Office Action (Non-Final Rejection) dated Jun. 9, 2022 for U.S. Appl. No. 17/080,840 (pp. 1-9).
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-13).
Oikonomidis et al., “Efficient model-based 3D tracking of hand articulations using Kinect.” In BmVC, vol. 1, No. 2, p. 3. 2011. (Year 2011).
Patricio Rodrigues, E., Francisco de Oliveira, T., Yassunori Matuda, M., & Buiochi, F. (Sep. 2019). Design and Construction of a 2-D Phased Array Ultrasonic Transducer for Coupling in Water. In Inter-Noise and Noise-Con Congress and Conference Proceedings (vol. 259, No. 4, pp. 5720-5731). Institute of Noise Control Engineering.
Seo et al., “Improved numerical inverse kinematics for human pose estimation,” Opt. Eng. 50(3 037001 (Mar. 1, 2011) https://doi.org/10.1117/1.3549255 (Year 2011).
Walter, S., Nieweglowski, K., Rebenklau, L., Wolter, K. J., Lamek, B., Schubert, F., . . . & Meyendorf, N. (May 2008). Manufacturing and electrical interconnection of piezoelectric 1-3 composite materials for phased array ultrasonic transducers. In 2008 31st International Spring Seminar on Electronics Technology (pp. 255-260).
Wang et al., Few-shot adaptive faster r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7173-7182. 2019. (Year 2019).
Al-Mashhadany, “Inverse Kinematics Problem (IKP) of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs),” Management and Service Science (MASS), International Conference on Management and Service Science., IEEE, Aug. 24, 2010, 5 pages. (Year: 2010).
Guez, “Solution to the inverse kinematic problem in robotics by neural networks ” In Proceedings of the 2nd International Conference on Neural Networks, 1988. San Diego, California. (Year: 1988) 8 pages.
Invitation to Pay Additional Fees for PCT/GB2022/051821 (Oct. 20, 2022), 15 pages.
Mahboob, “Arlincial neural networks for learning inverse kinematics of humanoid robot arms.” MS Thesis, 2015. (Year 2015) 95 pages.
Office Action (Ex Parte Quayle Action) dated Jan. 6, 2023 for U.S. Appl. No. 17/195,795 (pp. 1-6).
Office Action (Final Rejection) dated Jan. 9, 2023 for U.S. Appl. No. 16/144,474 (pp. 1-16).
Office Action (Final Rejection) dated Nov. 18, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-27).
Office Action (Final Rejection) dated Nov. 18, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-9).
Office Action (Final Rejection) dated Dec. 8, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-9).
Office Action (Final Rejection) dated Dec. 15, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-25).
Office Action (Non-Final Rejection) dated Oct. 17, 2022 for U.S. Appl. No. 17/807,730 (pp. 1-8).
Office Action (Non-Final Rejection) dated Nov. 9, 2022 for U.S. Appl. No. 17/454,823 (pp. 1-16).
Office Action (Non-Final Rejection) dated Nov. 16, 2022 for U.S. Appl. No. 17/134,505 (pp. 1-7).
Office Action (Non-Final Rejection) dated Nov. 16, 2022 for U.S. Appl. No. 17/692,852 (pp. 1-4).
Office Action (Non-Final Rejection) dated Dec. 22, 2022 for U.S. Appl. No. 17/457,663 (pp. 1-20).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 31, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 31, 2022 for U.S. Appl. No. 17/176,899 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 1, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 2, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 10, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-2).
Related Publications (1)
Number Date Country
20210381765 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62728829 Sep 2018 US
Continuations (1)
Number Date Country
Parent 16563608 Sep 2019 US
Child 17409783 US