The present invention relates, in general, to an improved tissue pad and blade for use in an ultrasonic surgical instrument, such as an ultrasonic clamp coagulator.
Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and hemostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically effected by an end-effector at the distal end of the instrument, with the end-effector transmitting ultrasonic energy to tissue brought into contact therewith. Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic or endoscopic surgical procedures.
Ultrasonic surgical instruments have been developed that include a clamp mechanism to press tissue against the end-effector of the instrument in order to couple ultrasonic energy to the tissue of the patient. Such an instrument is disclosed in U.S. Pat. No. 5,322,055, hereby incorporated in its entirety by reference.
Various configurations have been known for the ultrasonic end-effector of the above type of clamp coagulator apparatus. The various configurations optimize the manner in which tissue is coupled to the end-effector or blade, with particular attention paid to achieving the desired degree of tissue cutting and concomitant coagulation.
With current instrumentation surgeons may improve the speed of cutting with these devices by increasing the clamping force of the instrument but this lowers the amount of coagulation that is done to the tissue and thus lowers hemostasis. This effect is more dramatic at higher blade amplitudes for a given blade geometry. Achieving first-cut hemostasis with currently available ultrasonic instruments usually requires the surgeon to apply energy in one of a number of ways. In one instance, the surgeon may utilize different aspects of the blade (blunt and sharp surfaces). They first apply energy to the structure with the instrument in “blunt” mode, to coagulate the structure, and then to transect it with the “sharp” mode of the instrument. This is time consuming, therefore more advanced surgeons have adopted a second methodology that makes an improved cut by varying the pressure applied to the structure during the course of the energy application. Experience with current instrumentation has shown that lower application of pressure will coagulate the tissue structure while a higher application of pressure will transect the tissue structure. Though this method is faster and does give a first-cut hemostasis, it may at times be difficult to perform correctly and difficult to reproduce.
It has also been observed that ultrasonic devices may make an uneven cut when grabbing large bites of tissue. This occurs because the tip velocity of ultrasonic devices drops off sinusoidally as a function of the distance from the node to the tip. When a constant force is applied to tissue (homogeneous and isotropic) with a blade that has an energy profile that is sinusoidal, the energy delivered to the tissue has the same sinusoidal profile. This varying energy profile directly affects both the coagulation and cutting tissue effects and causes both of these tissue effects to vary depending upon the location of the tissue within the jaw.
In conventional ultrasonic medical devices, as for example, disclosed in U.S. Pat. No. 5,322,055, the tissue is pressed against the side of an active blade by a clamp arm or clamping device. In this configuration the tissue presents a frictional drag load to the resonant system. The frictional drag to the system is overcome as the generator applies more energy to the blade and tissue proportional to the frictional drag on the system. The tissue frictional drag is a function of at least two parameters, blade velocity and the applied force at the tissue/blade interface. In most systems the blade velocity is user selected at the generator and remains a constant throughout a single cut. The blade velocity, however, does vary along the length of the blade. In typical systems the blade velocity is greatest at the distal end of the blade and drops off roughly sinusoidal moving proximally to the first waveguide node. The force at the tissue/blade interface is created by the compression of the tissue to the blade, by the clamp arm, which is a function of the pressure applied by the surgeon at the instrument interface. Therefore, if an instrument could vary the compression exerted upon the tissue across the cross section in a single cut, it could control the amount of inflowing energy and therefore, the tissue bio-effect.
Compression is important because tissue is visco-elastic. Therefore when it is compressed between two structures, such as the ultrasound blade and the clamp arm, it will demonstrate both viscous and elastic properties. Due to the viscous nature of the tissue it will flow out of the instrument jaws slightly. The elastic nature allows the tissue, when compressed, to act like a spring. This means that the force exerted by the tissue on both interfacing surfaces, clamp arm and instrument blade, is proportional to the distance that the tissue has been compressed. Therefore, as the compression distance of the tissue varies the energy delivered to the tissue varies and thus the achieved bio-effect varies. As the surgeon decreases the force of their grip the tissue is compressed a smaller distance and the energy delivered to the tissue is reduced, resulting in a reduced energy transfer during coagulation of the tissue. As the force and thus tissue compression are increased, the energy delivered to the tissue increases, and a cut is achieved. However, the cut will likely appear in the same vicinity as the coagulation, which may reduce the sealing effect.
It would be desirable to provide a ultrasonic clamp coagulator to optimize the tissue effects discussed herein. The present invention is particularly directed to an improved clamp arm arrangement, including a tissue pad having a varying height surface. The tissue pad and blade of the present invention have been developed to address this desire.
Disclosed is an ultrasonic surgical instrument that combines end effector geometry to best affect the multiple functions of an ultrasonic clamp coagulator. These end-effectors contain a combination of specially shaped ultrasonic blades and tissue clamping pads that can be used in combination or separately and that control the amount of cutting and coagulation that occurs during use. These combinations accomplish this by controlling the amount of compression that the tissue sees as it is pressed against the active blade, leading to a custom coagulation and cut zone.
In particular the invention presents a compression zone designed to control the amount of energy delivered to a specific part of the tissue by varying the compression on the tissue with a single application of clamping force. Since the compression force is directly proportional to the distance of compression the invention features a clamp arm with a tissue interface pad having a varied height to control the tissue effect. By placing the cut zone directly between two coagulation zones, a zone of coagulation is created on each side of the cut, increasing the reliability of the seal. In an alternate embodiment the blade may comprise a tissue interface surface having a varied height to control the tissue effect.
In one embodiment the invention controls both the cutting zone and the coagulation zone in the form of a tissue pad having compression cross-section similar to a step. The highest portion of the pad causes more energy to be directed to the tissue and causes cutting, while the lower portion of the pad causes less compression and causes the tissue coagulation. Alternatively, the tissue pad may have a varying cross-sectional height dimension instead of a step.
In an alternate embodiment, the dimensions of the tissue pad change from the distal end of the blade to the proximal end of the blade. In one embodiment the raised section of the tissue pad has a varying height from the distal end of the blade to the proximal end of the blade. Alternatively, the coagulation zone section of the pad has a varying height from the distal end to the proximal end of the blade. In another embodiment the width of the raised section of the tissue pad varies from the distal end to the proximal end of the tissue pad (or blade).
In still a further embodiment, a tissue pad with a continuously rounded tissue-contacting surface is opposed to a blade with a similar continuously rounded tissue-contacting surface such that when brought into contact, the center sections of the tissue pad and blade contact to create a cut zone, while the remainder of the two parts create two coagulation zones on either side of the cut zone. These coagulation zones, by the curved nature of the tissue pad and blade generate zones with compression that decrease as a function of the distance from the cut zone. This enables an improvement over the stepped tissue pad design in that this embodiment is accommodating to a wider range of tissue thickness.
A further embodiment of the invention employs a trough, or U-shaped clamping surface. This embodiment provides a much wider coagulation zone than conventional clamp/coagulator pad designs. The U-shaped clamping surface also insures that the tissue sample is “wrapped” to the ultrasonic blade in order to put the tissue in contact with the blade in compression mode, regardless of the instrument's orientation. Having the tissue cut surface in compression keeps the tissue in the jaw and allows for an improved sealing of tubular structures such as blood vessels.
As would be apparent to those skilled in the art, the present invention has, without limitation, application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
These and other features and advantages of the present invention will become apparent from the following more detailed description, when taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
a is a perspective view of an ultrasonic end-effector having a clamp tissue pad with a raised surface;
b is a perspective view of an ultrasonic end-effector and an alternate embodiment of a clamp tissue pad with a raised surface;
a-b are alternate embodiments of a clamp pad having a raised surface;
Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
It is also understood that any one or more of the following-described embodiments, expressions of embodiments, examples, methods, etc. can be combined with any one or more of the other following-described embodiments, expressions of embodiments, examples, methods, etc. For example, and without limitation, any of the energy directors can be used individually or in combination with the end-effectors described herein.
In addition, the dimensions given for the energy directors and other structures are exemplary in nature only, and are not intended to limit the scope of the invention.
Further, the present invention will be illustrated in the form of a straight blade and useful in the devices as exemplified in U.S. Pat. Nos. 5,322,055; 5,873,873; 5,954,746; 6,214,023 and 6,254,623, all of which are incorporated by reference herein in their entirety. The invention has equal application in ultrasonic devices having curved blades as exemplified in U.S. Pat. Nos. 6,283,981; 6,325,811 and 6,432,118, all of which are incorporated by reference herein in their entirety.
As is well known to those skilled in the art, the clamp pad 26 and raised portion 28 may be modified to include in combination or individually gripping teeth 25 to enhance the tissue-gripping capabilities of the end-effector as shown in
A further embodiment of the invention is shown in
A further embodiment of the invention is shown in
Preferably, the embodiments of
a and 12b illustrate alternate embodiments of an energy director 28 having a raised area in combination with a curved blade 22 that would provide the tissue effects shown in
The benefit of the U-shaped tissue pad is best understood by examination of the tissue effects when the tissue is compressed between the tissue pad and ultrasonic blade. Referring to
The foregoing description of several expressions of embodiments and methods of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise forms, dimensions and procedures disclosed, and obviously many modifications and variations are possible in light of the above teaching. For example, as would be apparent to those skilled in the art, the disclosures herein of the ultrasonic systems and methods have equal application in robotic assisted surgery taking into account the obvious modifications of the invention to be compatible with such a robotic system. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims the benefit and priority from U.S. provisional patent application, Ser. No. 60/338,271, filed on Nov. 8, 2001, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60338271 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10289787 | Nov 2002 | US |
Child | 11243585 | Oct 2005 | US |