This invention relates to medical diagnostic ultrasound systems and, in particular, to cMUT (capacitive micromachined ultrasonic transducer) arrays with suppressed acoustic coupling of reverberation energy to the substrate of the array.
MUTs, and cMUTs in particular, are ultrasonic transducer elements produced by semiconductor fabrication techniques. Unlike conventional piezoelectric materials such as PZT, MUTs may operate by other than strictly piezoelectric effects. In the case of a cMUT, a membrane is vibrated by a variable capacitive effect, in the manner of the diaphragm of a drum. The vibration of the membrane produces the transmitted ultrasonic energy. On reception, the membrane is vibrated by the returning echo and a capacitive variation is sensed to detect the received echo signal. A typical cMUT cell is shown in FIG. 1 of my U.S. Pat. No. 6,328,697. An electrical schematic for driving a cMUT cell with an a.c. signal at ultrasonic frequencies is shown in
When the membrane of the cMUT vibrates to transmit ultrasonic waves, the force of the vibration is supported, in accordance with Newton's third law, by the substrate on which the cMUT is fabricated. Known cMUT elements, according to Newton's third law, apply equal and opposite mechanical forces to their supporting substrates in relation to the acoustic pressure forces applied to the load medium in the desired direction of transmission. Furthermore, cMUT arrays, due to their periodic structure and construction with a support ring holding each top membrane separated from the substrate, and sometimes with a collapsed region in the center, apply this average force in a periodic way across the array. Forces applied to the substrate, typically a very low acoustic loss material such as silicon, generate one or more of several acoustic wave types such as longitudinal waves, shear waves, Lamb waves, and Rayleigh waves, which may propagate through the substrate and laterally along the substrate. In any of these cases, the results are similar. The waves carry energy in the substrate, which is received by reciprocal mechanisms of other cMUT elements on the substrate and interpreted by them as if an incoming signal, but after an inappropriate and sometimes very long time relative to the desired signals. This causes spurious electrical signals to be generated and interpreted by the attached imaging system as incoming signals, creating artifacts in the generated image. Acoustic coupling is so favorable, and acoustic losses so low in silicon, for example, that clutter in the image can decrease contrast severely. Energy transferred from one array element to neighboring elements can decrease the array acceptance angle sufficiently to seriously compromise lateral resolution and beam steering capabilities. These issues have contributed to the lack of commercial acceptance of cMUTs in the medical imaging field.
The prior art illustrates various attempts at preventing acoustic coupling into and through the MUT substrate. These efforts include the use of matched acoustic backing behind the substrate as illustrated by, inter alia, U.S. Pat. No. 6,862,254, U.S. Pat. No. 6,831,394, and U.S. Pat. No. 7,441,321, which tries to deaden unwanted acoustic energy from behind the substrate. Another approach is the thinning of the substrate as illustrated in U.S. Pat. No. 6,714,484 and U.S. Pat. No. 6,262,946, which attempts to prevent the travel of waves laterally along the substrate by removing the substrate to as great a degree as possible. Yet a further approach is the inclusion of various types of discontinuities in the substrate to scatter or block the propagation of spurious waves through the substrate as shown in US pat. appl. pub. US2009/0122651, U.S. Pat. No. 7,741,686, U.S. Pat. No. 7,545,075, and U.S. Pat. No. 6,669,644. What is needed is a simple and effective way to prevent the transmission of energy into the substrate which is the source of the unwanted artifacts.
In accordance with the principles of the present invention, a MUT array is provided with MUT elements acoustically isolated from the substrate. The acoustic force of transmission of a MUT element is opposed by a relatively significant mass which supports the MUT element. The support mass is mounted on the substrate by one or more support members of small size and/or low stiffness which provide low coupling from the support mass to the substrate.
In the drawings:
a is a schematic illustration of the coupling physics of a cMUT device of the present invention.
b is an exploded view of the schematic illustration of
Referring first to
As the top electrode 12 and membrane 22 oscillate when driven by a transmit signal, the desired acoustic signal is transmitted upward from the top surface of the top electrode. But the counter-forces to this force, the resistance to the force of the acoustic pressure wave by the substrate platform on which the cMUT cells are fabricated, cause acoustic waves to be coupled into the substrate 18 where they can travel backward through the substrate and be reverberated back into the cMUT cell where they cause clutter. Unwanted acoustic waves can also travel laterally to adjacent cMUT cells. The lateral waves can reach other cMUT cells during signal reception and be erroneously sensed as received echo signals by those cells. These unwanted signals from the substrate can be interpreted as clutter signals, degrading the quality of the resultant ultrasound image.
In the example of
A gap 14 is located between the top electrode 12 and a massive plate 24. The massive plate 24 is formed to have a high stiffness at the frequencies and thicknesses of interest. The plate 24 will then be considered small, e.g., one-tenth or less, compared to a wavelength of any important acoustic propagation mode at which the cMUT cell operates. For example, the mass and stiffness requirements can lead to use of a material having a high acoustic impedance such as an acoustic impedance greater than 40 MegaRayls (MRayl). Suitable materials for the massive plate include tantalum (55 MRayl) gold (64 MRayl), molybdenum (63 MRayl), tungsten (101 MRayl), copper (42 MRayl) or chromium (43 MRayl), as well as alloys of these materials. One practical material would be a titanium-tungsten alloy, which is readily available in most semiconductor fabs. The choice of an electrically conductive material such as tungsten enables the massive plate 24 to additionally serve as the bottom electrode of the cMUT.
The massive plate 24 is not fabricated directly on the substrate 26 but is supported by several end posts or edge supports 28. These small posts 28 are made of materials available in the semiconductor fabrication process such as silicon, silicon nitride, or silicon oxide. Conductive materials may also be used if appropriately electrically isolated. A typical height of the posts is 3 microns. The posts should be sufficient to resist static applied forces that would otherwise deform the massive plate, yet be small enough that the total stiffness added to support the plate is small compared to the inertial resistance supplied by the mass of the plate itself at acoustic frequencies of interest. Between the posts 28 is a second gap 26. This gap may be filled with a vacuum, open to the air, or filled with a compliant material such as silicone rubber (PDMS). By filling the second gap with a compliant material such as PDMS, contamination of the space with unwanted substances is avoided. An array of cMUT cells such as the one shown in
a and 3b illustrate the inventive concept of the present invention.
b shows an exploded view of this assembly and the acoustic forces involved in operation of the cMUT. The membrane 22 oscillates up and down during ultrasound transmission as indicated by arrow 34 and the curves above and below it. As the membrane oscillates it generates the pressure force of the transmitted sound wave with a pressure P. This pressure is exerted by the membrane area A, and consequently a force is developed which can be calculated as F=PA. The force of this pressure wave is directed downward through the lateral supports of the membrane. The body on which the supported membrane is mounted, in this case the massive plate 24, opposes the acoustic pressure force generated by the moving membrane. It does this with the inertia of its mass. This opposing force is F=Ma, composed of the larger mass M of the massive plate and the acceleration “a” associated with its oscillatory motion. As the two forces are equal and opposite and the plate is massive, the result is that the motional component of the massive plate exhibits a much smaller acceleration and movement, represented in the equation by “a”. Thus, the pressure force of the cMUT is not resisted by a large motion component in the substrate, but only a much smaller motion “d” associated with the acceleration “a” which must be contained. This is done in
An example with calculations for typical materials demonstrate how the performance of the cMUT cell isolation system can be calculated and the desired dimensions and properties of the massive plate and second gap filler can be determined. Assume, for example, that the cMUT cell, in transmission, generates a sound field of 1 MPa peak pressure level in a load medium equivalent to water, with acoustic impedance of 1.5 MRayl, oscillating at a frequency f=20 MHz, typical parameters for catheter-based imaging. If the cell has an area A, then the reaction force on the front surface of the cell is
1 MPa×A,
which would be applied directly to the substrate in a traditional cMUT assembly. The average motion amplitude at the front surface of the transducer is
1 MPa/(2*π*f*1.5 MRayl)=>5 nm.
The mass of the reaction plate is determined by its density, thickness, and area (generally about the same as the area of the cMUT cell). High density material is preferred for the massive plate because a smaller thickness of material is then required, simplifying the semiconductor processing. In this example Tungsten is chosen for the plate material. Now if we consider a 3 um thick layer of Tungsten acting as a massive plate, the mass per unit area is given by density times thickness,
19300 kg/m3*3*10−6 m=>58 g/m2,
and the resulting motion amplitude d of the plate, neglecting reaction from the compliant materials below it, is obtained from F=Ma, which for harmonic motion at a frequency f is given by
d=a/(4π2f2), and so
d=F/(4*π2*f2)=0.06 nm.
While the space between the massive layer and the substrate may be evacuated or air-filled, for ruggedness in manufacturing and use it is desirable to fill this gap with a soft solid material. Although the acoustic isolation with vacuum or air might be somewhat better, commonly available PDMS rubber is an acceptable choice. We may calculate the average pressure applied to the substrate by this motion through, for example, a 3 um layer of PDMS rubber with an acoustic impedance Za of 1 MRayl and a speed of sound va of 1000 m/sec.
The induced strain in the PDMS is the deformation divided by the thickness, in this case 0.06 nm/3000 nm=2*10−5, where the stiffness of the PDMS is so low as to not affect the amplitude of the motion of the massive plate significantly, and the longitudinal stiffness is
c
11
=Z
a
*v
a−1 GPa.
Therefore the stress, or pressure on the substrate is
P=c
11
*S=2*104 Pa,
which is a factor of 50 in amplitude smaller than the 1 MPa which would occur without the present invention. This level of performance results in a 34 dB attenuation of the substrate excitation force below that applied to the load medium by the cMUT. Different levels of performance may be desirable in other implementations. For example, attenuation levels of 50% (6 dB), 66.67% (10 dB), or 90% (20 dB) of the acoustic force on the substrate may be acceptable levels of performance in other embodiments of the present invention.
As long as the support structures occupy no more than about 1/50th of the surface area of comparable stiffness to the massive layer, or a value which can be considerably more if the support structures can be derated for their compliance, this level of substrate coupling performance can be expected. If a solid compliant layer is applied between the massive layer and the substrate, then the use of compliant supports is preferred, so that the acoustic force applied to the substrate will be uniformly applied over the entire surface under the cMUT cell by the solid layer, to decrease the likelihood of generating laterally propagating waves due to laterally periodic excitation through the support structures.
For the alternate case of a vacuum gap and multiple small support posts, we may do a similar calculation. Given a 3 um gap with 0.06 nm of motion at the top surface, and a desire to limit the transferred force to 2*104 Pa, with a post material of stiffness c11=290 GPa (typical for silicon nitride),
P=c
11
*S*A
f=2*104 Pa
where Af is the fraction of the surface area comprising posts, then
A
f=2*104 Pa/(290*109 Pa*2*10−5)≅0.3%
For a circular 30 um diameter cMUT cell, for example, this requirement would be satisfied with three 1 um diameter straight cylindrical posts, which would be marginal from a static support point of view. If a less stiff material were used, more posts could be provided. For example, with silicon dioxide at a stiffness of 80 GPa, with similar dimensions, more than 20 posts would be allowable, well more than needed.
Another example of a cMUT cell constructed in accordance with the principles of the present invention is shown in
Another example of a cMUT cell constructed in accordance with the principles of the present invention is shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB12/51173 | 3/13/2012 | WO | 00 | 8/22/2013 |
Number | Date | Country | |
---|---|---|---|
61466172 | Mar 2011 | US |