The system described herein relates to an ultrasonic cutter for the cutting of edge chamfers of plate-shaped workpieces with a cutter head which forms an axis of rotation and with a blade which extends from the cutter head and forms a cutting wedge, terminating in a straight cutting edge, between flank and contact faces determined by the wedge angle.
Conventional ultrasonic cutters, i.e. cutters that are excited to oscillate with the aid of ultrasound, have a cutter head that can be inserted into a cutter holder and are moved by a feed device along a predetermined contour shape tangentially to the contour line to trim a plate-shaped workpiece (US 2008/0083308 A1). The cutter head thereby forms an axis of rotation which, together with the feed direction, determines a cutting plane in which the cutting edges of the blade emanating from the cutter head are disposed. The blade is symmetrically formed both in relation to the cutting plane and in relation to a plane perpendicular to it by the axis of rotation, which not only leads to the formation of cutting edges inclined to each other on both sides, but also ensures that the cutting edge progression is not affected by transverse vibrations. However, these known ultrasonic cutters are only conditionally suitable for cutting edge chamfers of plate-shaped workpieces, because the chamfer faces, even with a non-straight edge progression, are to be determined by straight generatrices (point, curve or surface that, when moved along a given path, generates a new shape), which lie in a plane perpendicular to the edge progression at a constant angle of inclination, and the cutting edges, which are inclined with respect to the axis of rotation, extend outside these planes of the generatrices, which becomes increasingly important with increasing thickness of the plate-shaped workpieces and decreasing radius of curvature of the edge progression.
In addition, the cutting wedge, which ends in the cutting edge and is determined by a flank face and a contact face, also forms with the flank face a displacement surface inclined at half the wedge angle, along which the material is displaced from the cutting plane towards the workpiece, so that in the case of materials sensitive to this, such as materials with a honeycomb structure or a fibrous web, disturbances occur in the cut surface of these workpieces. Separate cutters are therefore used for chamfer cutting, which have a single-edged blade with two cutting edges inclined to each other and ending in a point with the disadvantage that the cutting edges are not in the direction of the generatrices of the edge chamfers to be cut.
In addition, it is known (DE 35 30 886 A1) to move the cutting edge of an ultrasonic cutter into the axis of rotation of the cutter head. Due to this circumstance, the blade can easily be guided in such a way that the cutting edge coincides with the generatrices of the nominal cutting face. If the cutting wedge is formed by two chamfers, the flank face represents a displacement surface acting on the cutting face. In the case of a cutting wedge with only one chamfer, the flank face is located in the cutting plane, but due to the resulting displacement of the center of gravity of the blade, vibrations occur transversely to the cutting plane, which impair the cutting accuracy and represent a considerable additional load for the blade, in particular with longer blades, as required for cutting edge chamfers of plate-shaped workpieces.
Thus, it is desirable to provide an ultrasonic cutter for the cutting of edge chamfers of plate-shaped workpieces in such a way that longer cutting edges can be used for chamfer cutting even thicker workpieces with a curved edge progression without having to fear any loss of cutting accuracy or overloading of the blade.
Based on an ultrasonic cutter of the type described above, the system described herein provides an axis of rotation that extends on the blade side of the flank face is at a distance from the flank face which is equal to or greater than the distance of the center of mass of the blade from the flank face, where the cutting edge extends in the direction of the axis of rotation and extends at a distance from the axis of rotation which corresponds at most to the blade thickness.
The progression of the flank face of the cutting wedge results in a blade that is asymmetrical in relation to the cutting plane and thus brings with it the danger that the blade is excited to transverse vibrations. This danger may be counteracted by ensuring that the feed of the cutter head is at least approximately in the direction of a straight line perpendicular to the axis of rotation and passing through the center of gravity of the blade. For the design of the blade, this means that the distance of the center of mass of the blade from the flank face is a distance equal to or less than the distance of the axis of rotation from the flank face, so that the flank face does not become a displacement surface protruding above the cutting plane. The axis of rotation extends on the blade side of the flank face, i.e. on the side, which faces away from the workpiece, of the flank face which faces the workpiece.
The displacement of the cutting plane towards the workpiece in relation to the axis of rotation which is linked to the eccentric progression of the flank face in relation to the axis of rotation may be easily taken into account by controlling the cutter head movement. However, the distance of the cutting edge from the axis of rotation may be limited to ensure simple cutter head control. A distance between the axis of rotation and the cutting edge of no more than the blade thickness is sufficient to meet this requirement, taking into account any displacement of the cutting edge caused by regrinding.
Since the cutting edge extends in the direction of the axis of rotation of the cutter head and the cutter head may be guided transversely to the feed direction with an orientation of the axis of rotation, the cutting edge is oriented in the area of a curvature of the edge progression in the direction of the generatrices of the conical surface determining the chamfer face, which is an essential prerequisite for precise machining of the chamfer faces of plate-shaped workpieces in the area of curved edge progressions, with a comparatively low control expenditure for the cutter head.
In order to ensure advantageous conditions with regard to mass distribution, the width of the blade may decrease towards the blade tip, which leads to a blade back tapered towards the blade tip while maintaining a constant wedge angle of the blade.
The requirement that the cutting edge should extend in the direction of the axis of rotation does not necessarily mean that the cutting edge is oriented exactly parallel to the axis of rotation. An inclination of the cutting edge with respect to the axis of rotation by a maximum of 5° around an axis perpendicular to a plane passing through the axis of rotation and the center of mass of the blade is perfectly permissible in view of the required accuracy of the machining of the chamfer faces and may bring advantages with respect to the cutting forces.
The subject matter of the invention is shown in the drawings by way of example, wherein:
An ultrasonic cutter according to the system described herein has a cutter head 1 with a blade 2 adjoining the cutter head 1, which blade 2 forms a cutting wedge between a flank face 3 and a contact face 4. The flank face 3 and the contact face 4 end in a straight cutting edge 5. The cutter head 1, which is inserted in a cutter holder, may be rotated through the cutter holder and forms an axis of rotation 6 for the blade 2.
As can be seen in particular in
The distance a between the cutting edge 5 and the axis of rotation 6 should take into account the position of the center of mass S in relation to the cutting plane 7 or the flank face 3 without jeopardizing the simple movement control of the cutter head 1. For this reason, the distance a between the cutting edge 5 and the axis of rotation 6 is to be limited and may not exceed the blade thickness d. With such a maximum distance a, later displacements of the cutting edge 5 may also be taken into account by regrinding the blade 2.
In order to achieve an advantageous mass distribution in the blade area, the width of the blade 2 may decrease towards the blade tip 9. At a constant wedge angle of the cutting wedge of the blade 2, this means that the blade back 10 tapers towards the blade tip 9, as shown in
Since the flank face 3 lies in the cutting plane 7 with the use of an ultrasonic cutter according to the system described herein and according to
During chamfer cutting in the area of concave edge progressions, a flank face 3 lying in the cutting plane 7 presses on the conical cut surface, but the resulting load on the cut surface remains in the elastic area of the material due to the comparatively small blade width, in particular if this material has a honeycomb structure or a fibrous web. If these elastic deformations of the material to be cut are also to be avoided, the blade 2 of the ultrasonic cutter may be guided in such a way that a corresponding clearance angle is maintained between the flank face 3 and the cutting plane 7, as shown in
In the drawing, the progression of the cutting edge 5 is always shown parallel to the axis of rotation 6, but this is not mandatory if only the cutting edge 5 extends at least approximately in the direction of the axis of rotation 6. The inclination of the cutting edge 5 in relation to the axis of rotation 6, however, is limited in order to ensure that the chamfer faces in the area of curved edge progressions of the workpiece are largely adapted to conical surfaces during chamfer cutting. For this reason, the cutting edge 5 may enclose an angle of at most 5°, preferably 3°, with the axis of rotation 6 in a normal projection on guide plane 8.
As can be seen from the above explanations, the positional allocation of the axis of rotation 6 in relation to the cutting edge 5, the flank face 3 and the center of mass S of the blade 2 in accordance with the system described herein creates an ultrasonic cutter that may also meet high requirements with regard to stability and cutting accuracy, if the feed direction v is chosen such that the feed direction v passing through the axis of rotation 6 and perpendicular to the axis of rotation 6 defines a guide plane 8 for the ultrasonic cutter which contains the center of mass S of the blade 2 or at least passes close to this center of mass S.
The system described herein is not restricted to the described embodiments. It may be varied within the scope of the claims, taking into account the knowledge of the relevant person skilled in the art. Other embodiments of the system described herein will be apparent to those skilled in the art from a consideration of the specification and/or an attempt to put into practice the system described herein. It is intended that the specification and examples be considered as illustrative only, with the true scope and spirit of the invention being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
A 50840/2018 | Oct 2018 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2019/060320 | 9/30/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/069544 | 4/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6575064 | Hart | Jun 2003 | B2 |
7614937 | Nydegger | Nov 2009 | B2 |
20080083308 | Evans et al. | Apr 2008 | A1 |
20140360325 | Heidlmayer | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
35 30 886 | Nov 1986 | DE |
198 55 803 | Jun 2000 | DE |
0 540 496 | May 1993 | EP |
0 754 992 | Jan 1997 | EP |
2 055 451 | May 2009 | EP |
2 810 752 | Dec 2014 | EP |
2 894 014 | Jul 2015 | EP |
3 078 432 | Oct 2016 | EP |
Number | Date | Country | |
---|---|---|---|
20210146564 A1 | May 2021 | US |