Ultrasonic endovascular catheter with a controllable sheath

Information

  • Patent Grant
  • 11638624
  • Patent Number
    11,638,624
  • Date Filed
    Tuesday, January 21, 2020
    4 years ago
  • Date Issued
    Tuesday, May 2, 2023
    a year ago
Abstract
A method for performing an endovascular procedure using ultrasonic energy includes providing a first sheath having a proximal end portion and a distal end portion, and having a first window in the distal end portion; positioning a wave guide in the first sheath for delivering the ultrasonic energy through the first window for performing the endovascular procedure; and selectively covering the first window with a cover.
Description
TECHNICAL FIELD

This document relates generally to the art of endovascular procedures and, more particularly, to an endovascular catheter using ultrasonic energy to perform a medical procedure, such as an atherectomy or crossing an occlusion, using a controllable sheath.


BACKGROUND

Ultrasonic catheters have been proposed. An example of such a catheter is shown in U.S. Pat. No. 7,540,852, the disclosure of which is fully incorporated herein by reference. While this catheter achieves the desired result of providing enhanced disruption of blood vessel obstructions, the present disclosure proposes certain modifications or improvements to enhance the results achieved during an endovascular procedure in terms of clearing an obstruction from a vessel (such as, for example, an atherectomy for removing atherosclerosis from a blood vessel, or for crossing an occlusion).


SUMMARY

According to a first aspect of the disclosure, an apparatus for performing an endovascular procedure using ultrasonic energy. The apparatus comprises a catheter including a proximal end portion and a distal end portion having a first window, which may be elongated in a longitudinal direction of the catheter. A wave guide is provided for delivering the ultrasonic energy for performing the endovascular procedure. A cover is also provided for selectively covering the window.


In one embodiment, the distal end portion of the catheter includes an opening through which the wave guide may pass. The catheter may comprise a first sheath including the first window. The cover may comprise a rotatable second sheath for covering the first window of the first sheath. The second sheath may include a second window for aligning with the first window, as well as an opening through which the wave guide may pass.


According to a further aspect of the disclosure, an apparatus for performing an endovascular procedure is provided. The apparatus includes a source of ultrasonic energy, and a wave guide for delivering the ultrasonic energy for performing the endovascular procedure. A catheter is provided for receiving the wave guide. The catheter includes a first window for transmitting ultrasonic energy from the wave guide and an opening at a distal end through which the wave guide may pass.


In one embodiment, a cover is provided for selectively covering the first window, which may be elongated in a longitudinal direction of the catheter. The catheter may comprise a first sheath including the window, and the cover may comprise a rotatable second sheath for covering the window of the first sheath. The second sheath may include a second window for aligning with the window of the first sheath. The second sheath may further include an opening through which the wave guide may pass.


Still a further aspect of the disclosure pertains to an apparatus for performing an endovascular procedure using ultrasonic energy. The apparatus comprises a wave guide for delivering the ultrasonic energy for performing the endovascular procedure. A catheter is adapted for selectively blocking or transmitting the ultrasonic energy from the wave guide.


In one embodiment, the catheter comprises a first window for exposing a portion of the wave guide. A cover is also provided for covering the first window. The catheter may comprise a first sheath including the first window and a second sheath forming the cover. The second sheath may also comprise a second window corresponding to the first window. One or both of the first and second sheaths may be rotatably mounted to the catheter. A source connected to the catheter may supply ultrasonic energy to the wave guide.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated herein and forming a part of the specification, illustrate several aspects of the ultrasonic endovascular catheter with a controllable sheath and, together with the description, serve to explain certain principles thereof. In the drawing figures:



FIG. 1 is a schematic view of a prior art catheter system including an ultrasonic catheter;



FIG. 2 is a side view illustrating a general layout of a prior art catheter;



FIG. 3 is a partially cross-sectional, partially cutaway view of a catheter including an ultrasonic wave guide;



FIG. 4 is a side view of a catheter with a controllable sheath according to one aspect of the disclosure;



FIG. 5 is a close-up view of the distal end portion of the catheter of FIG. 4; and



FIGS. 6 and 7 illustrate an alternate embodiment.





Reference will now be made in detail to the presently disclosed embodiments of the inventive aspects of the ultrasonic endovascular catheter with a controllable sheath, examples of which are illustrated in the accompanying drawing figures.


DETAILED DESCRIPTION

Ultrasound or ultrasonic catheters provide for disruption of occlusions in blood vessels, such as for example, plaques, clots, lesions, or like objects that hinder blood flow. Catheters generally include a catheter body (shaft), an ultrasonic energy transmission member disposed within the catheter body and a distal head coupled with the energy transmission member and disposed at or near the distal end of the catheter body. The ultrasonic wave guide transmits ultrasonic energy from an ultrasonic transducer to the distal end of the catheter, causing it to vibrate and, thus, disrupt, dissolve, or debulk vascular occlusions (which procedures are generally called atherectomies or thrombectomies). A number of improved features of such an ultrasonic catheter are outlined more fully in the following description.


Referring now to FIG. 1, one embodiment of an ultrasonic catheter system 20 includes an ultrasound or ultrasonic catheter 10 and an energy source 16 (which may comprise an ultrasonic generator). Catheter 10 includes a distal end 26 for disrupting occlusions, a catheter shaft or body 27, and a proximal connector 12 for coupling catheter 10 with an ultrasonic transducer 14. Ultrasonic transducer 14 is coupled with source 16 via a connector 28, and generator is coupled with a control, such as a foot-actuated on/off switch 18 via another connector 29. Source 16 provides energy to transducer 14 and, thus, to ultrasonic catheter 10.


Catheter 10 further includes an ultrasonic wave guide (or “core wire”—not shown in FIG. 1) that extends through the catheter body 27 and transmits energy from the transducer 14 to the distal end 26. Some embodiments of catheter 10 include a guidewire, which in FIG. 1 is shown as a so-called “rapid exchange” guidewire 13 and guidewire port, while other embodiments include a proximal guidewire port for over the wire guidewire delivery. In some embodiments, transducer 14 further includes a coupler 15 for coupling the catheter 10 to transducer 14. Connectors 28, 29 may comprise an electric cord or cable or any other suitable connecting devices for coupling on/off switch 18, source 16 and transducer 14. In an alternative embodiment, on/off switch 18 is located on source 16.


In addition to proximal connector 12, ultrasonic catheter 10 may include one or more other various components, such as a Y-connector 11 including a fluid inlet port 17 (or aperture) for passage of irrigation fluid. Inlet port 17 may be removably coupled with an irrigation tube 24, which in one embodiment may be coupled with a fluid refrigerator 30. The refrigerator 30 may, in turn, be coupled with a fluid container 32 via a connector tube 34. This arrangement may be used for introducing one or more fluids into catheter 10. Fluid may be used to cool any part of the device, such as the ultrasonic wave guide, thus helping reduce wear and tear on the catheter 10. In some embodiments, fluid inlet port 17 is located farther proximally on proximal connector 12, to allow fluid to be applied within connector 12. In some embodiments, refrigerated fluid is used, while in other embodiments irrigation fluid may be kept at room temperature. In various embodiments, oxygen supersaturated fluid, lubricious fluid, or any other suitable fluid or combination of fluids may be used, and again, such fluids may be refrigerated or kept room temperature. In an alternative embodiment to that shown in FIG. 1, refrigerator 30 and fluid container 32 are combined in one unit.


Generally, catheter 10 may include any suitable number of side-arms or ports for passage of a guidewire, application of suction, infusing and/or withdrawing irrigation fluid, dye and/or the like, or any other suitable ports or connections. Also, ultrasonic catheters 10 per the disclosure may be used with any suitable proximal devices, such as any suitable ultrasonic transducer 14, energy source 16, coupling device(s) and/or the like. Therefore, the exemplary embodiment shown in FIG. 1 and any following descriptions of proximal apparatus or systems for use with ultrasonic catheters 10 should not be interpreted to limit the scope of the appended claims.


Referring now to FIG. 2, an enlarged view of catheter 10 is shown. Proximal connector 12, Y-connector 11, inlet port 17, catheter body 27, distal end 26 and guidewire 13 are all shown. Catheter body 27 is generally a flexible, tubular, elongate member, having any suitable diameter and length for reaching a vascular occlusion for treatment. In one embodiment, for example, catheter body 27 preferably has an outer diameter of between about 0.5 mm and about 5.0 mm. In other embodiments, as in catheters intended for use in relatively small vessels, catheter body 27 may have an outer diameter of between about 0.25 mm and about 2.5 mm. Catheter body 27 may also have any suitable length. As discussed briefly above, for example, some ultrasonic catheters have a length in the range of about 150 cm. However, any other suitable length may be used without departing from the scope of the present disclosure.


Referring now to FIG. 3, a proximal portion of one embodiment of an ultrasonic catheter 110 is shown in cross-section. An ultrasonic wave guide 140 extends from a sonic connector 152 distally to a distal end (not shown) of catheter 110. A catheter body 127 of catheter 110 is shown only in part in this Figure, whereas catheter body may extend distally to (or near) the distal end of catheter 110, as shown in FIG. 4, with the wave guide 140 also extending a particularly long distance (e.g., 30 centimeters or greater, and typically between about 15 centimeters and 30 centimeters). The catheter body 127 may be a constant diameter, or may have a variable diameter from the proximal to the distal end (such as, for example, wider in diameter at the proximal end near the point of entering the vasculature than at the distal end).


Catheter 110 also includes a proximal housing 112 (or “proximal connector”), having an inner bore 144 (or “inner cavity”) in which sonic connector 152, a portion of ultrasonic wave guide 140 and one or more vibration absorbers 150 reside. Housing 112 is coupled with a Y-connector 111, which includes a fluid inlet port 117 (or aperture), and Y-connector 111 is coupled with catheter body 127.


In various embodiments, housing 112 may suitably include one or more surface features 142 for increasing the overall surface area of the outer surface of housing 112. Increased surface area enhances the ability of housing 112 to dissipate heat generated by ultrasonic wave guide 140 out of catheter 110. Surface features 142 may have any suitable size or shape, such as ridges, jags, undulations, grooves or the like, and any suitable number of surface features 142 may be used. Additionally, housing 112 may be made of one or more heat dissipating materials, such as aluminum, stainless steel, any other conductive metal(s), or any suitable non-metallic conductive material(s).


In most embodiments, ultrasonic wave guide 140, such as wire, extends longitudinally through a lumen of catheter body 127 to transmit ultrasonic energy from an ultrasonic transducer 14 (not shown in FIGS. 2 and 3), connected to the proximal end of proximal housing 112, to the distal end of catheter 110. Wave guide 140 may be formed of any material capable of effectively transmitting ultrasonic energy from the ultrasonic transducer 14 to the distal end of catheter body 127, including but not limited to metals such as pure titanium or aluminum, titanium or aluminum alloys, or shape memory materials (such as nitinol), and may be coated (such as using a polymeric material). Again, additional details of ultrasonic wave guides 140 may be found in the patent applications incorporated by reference. Similarly, reference may be made to the incorporated references for descriptions of housing 112, sonic connector 152, vibration absorbers 150, Y-connector 111 and the like. For example, housing 112 and other features are described in U.S. Pat. No. 7,335,180, the disclosure of which is incorporated herein by reference.


Ultrasonic wave guide 140 typically passes from a sonic connector 152, through bore 144 and Y-connector 111, and then through catheter body 127. Fluid inlet port 117 is in fluid communication with a lumen in Y-connector, which is in fluid communication with a lumen extending through catheter body 127. Thus, fluid introduced into fluid inlet port 117 is typically free to flow into and through catheter body 127 to contact ultrasonic wave guide 140. Fluid may flow out of catheter body 127 through apertures in the distal head (not shown) or through any other suitable apertures or openings, such as apertures located in catheter body 127 itself. Any suitable fluid may be passed through fluid inlet port 117 and catheter body 127, such as refrigerated fluid, lubricious fluid, super-saturated saline or contrast/saline mixture, or the like. Cooling and/or lubricating ultrasonic wave guide 140 may reduce friction and/or wear and tear of ultrasonic wave guide 140, thus prolonging the useful life of ultrasonic catheter 110 and enhancing its performance.


Referring now to FIG. 4, it can be understood that the catheter body 127 may take the form of a sheath 127a in which the wave guide 140 is at least partially positioned. The proximal end of the sheath 127a may be positioned adjacent to the housing 112, and may extend within the Y-connector 111, as shown in FIG. 3, or may be external to it, as shown in FIG. 4. In either case, the sheath 127a may be adapted to rotate relative to the wave guide 140, as indicated by action arrow R. Alternatively, the sheath 127a may be fixed in position relative to the connector 111 or housing 112.


The sheath 127a may also include a lateral or side opening, such as a window 127b, adjacent to a portion of the wave guide 140, and thus exposing it to the interior of a lumen or vessel when positioned therein. As indicated in FIG. 5, the sheath 127a may be rotated relative to the wave guide 140, such that the direction of the ultrasonic energy is controlled by the position of the window 127b (note action arrows E) or, alternatively, the entire catheter 110 may be rotated if the sheath is fixed. In either case, by selectively controlling the position of the window 127b through rotation, a focused or targeted treatment may be provided for a particular area of the vessel in which the catheter 110 is at least partially positioned, since only a portion of the wave guide 140 is exposed to the opening thus formed.


To allow for an enhanced level of control, the window 127b may also be selectively blocked. This may be achieved by providing a cover 128 for selectively covering the opening or window 127b in the sheath 127a. As indicated in FIGS. 6 and 7, the cover 128 may comprise a second sheath 128a over the first sheath 127a, such that the two structures are generally concentric about the wave guide 140. This second sheath 127a may also extend to the proximal end of the catheter 110, such as adjacent to or within the connector 111, and may include an open end 128c. The second sheath 128a may further include a lateral or side opening, such as a window 128b, which may have a size and shape matching or corresponding to window 127b in the first sheath 127a.


Thus, as indicated in FIG. 6, the second sheath 128a may be rotated relative to the first sheath 127a (which may be fixed or stationary, or also rotatable as noted above) such that the window 127b is covered by a portion of the second sheath. In this manner, the energy may be directed to wave guide 140 through the open end 127c of the sheaths 127a, 128a, and the catheter 110 may be used in crossing a chronic total occlusion (CTO) in this configuration.


When it is desired to allow for ultrasonic energy to be transmitted radially of the longitudinal axis of the catheter 110, the second sheath 128a may be rotated to align the windows 127b, 128b. This allows the energy (arrow E) to pass into the vessel through the opening thus formed, as shown in FIG. 7. The relative rotation may also be achieved such that the opening only partially exposes the wave guide 140, which may provide for a further level of control.


Control of the relative rotation may be achieved at the proximal end of the catheter by providing suitable markings on the sheaths 127a, 128a to indicate the aligned position of the openings or windows 127b, 128b. The markings may be in the form of printed indicia, but may also take the form of bosses or embosses (and may be arranged to interact to create a temporary locked condition). Alternatively, radiographic visualization may be used, such as by providing one or more radiopaque markers on the periphery of the windows 127b, 128b. Alignment of the markers under fluoroscopy may indicate the aligned position of the windows.


In summary, an improved ultrasonic catheter 110 includes a controllable sheath 127a or 128a. One or both of the sheaths 127a, 128a may include windows 127b, 128b and may be adapted for relative rotation. By aligning the windows 127b, 128b to form an opening, the transmission of energy from a wave guide 140 associated with the catheter 110 may result. Yet, the catheter 110 may also be used in a “crossing” mode, such as for crossing a CTO, by reorienting the sheaths 127a, 128a and thus closing the opening formed by the windows 127b, 128b and regulating the transmission of ultrasonic energy.


The foregoing description has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Obvious modifications and variations are possible in light of the above teachings. For instance, instead of rotatable sheaths 127a, 128a, one or both of the sheaths may be made to telescope relative to each other to selectively uncover or block the opening for transmitting energy radially from the wave guide 140. The size and shape of the opening formed by the window 127b or 128b may also be altered from what is shown in the drawings to suit a particular desire or need in terms of a treatment regimen. All modifications and variations are within the scope of the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

Claims
  • 1. A method for performing an endovascular procedure using ultrasonic energy, comprising: providing, within a vessel, a first sheath having a proximal end portion and a distal end portion, and having a first window in the distal end portion;positioning a wave guide in the first sheath for delivering the ultrasonic energy through the first window for performing the endovascular procedure; andselectively covering the first window with a cover, wherein the cover is a second sheath, the method comprising aligning a second window of the second sheath with the first window of the first sheath.
  • 2. The method of claim 1, wherein the distal end portion of the first sheath includes an opening through which the wave guide may pass.
  • 3. The method of claim 1, comprising rotating the second sheath to selectively cover the first window of the first sheath.
  • 4. The method of claim 1, wherein the second sheath includes an opening through which the wave guide may pass.
  • 5. The method of claim 1, wherein the first window is elongated in a longitudinal direction of the first sheath.
  • 6. The method of claim 1, wherein the act of aligning is effected by rotating one of the first sheath and the second sheath relative to the other of the second sheath and the first sheath.
  • 7. A method for performing an endovascular procedure, comprising: providing a source of ultrasonic energy;providing, within a vessel, a wave guide for delivering the ultrasonic energy;providing, within a vessel, a catheter for receiving the wave guide, the catheter including a first sheath having a first window to expose a portion of the wave guide; andmoving a second sheath to selectively cover the first window of the first sheath by selectively aligning or misaligning a second window of the second sheath with the first window of the first sheath.
  • 8. The method of claim 7, wherein the second sheath includes an opening through which the wave guide may pass.
  • 9. The method of claim 7, wherein the first window is elongated in a longitudinal direction of the first sheath.
  • 10. The od of claim 7, wherein the act of moving is effected by rotating one of the first sheath and the second sheath relative to the other of the second sheath and the first sheath.
  • 11. A method for performing an endovascular procedure, comprising: providing, within a vessel, a first sheath having a first window for exposing a portion of a wave guide for delivering ultrasonic energy through the first window for performing the endovascular procedure; andselectively covering at least a portion of the first window to vary an amount of ultrasonic energy that can be emitted through the first window, wherein the act of selectively covering comprises moving a second window of a second sheath to at least partially cover the first window of the first sheath.
  • 12. The method of claim 11, wherein the act of selectively covering comprises moving a second sheath relative to the first sheath to select an opening size of the first window.
  • 13. The method of claim 11, wherein the act of selectively covering comprises rotating the second sheath to selectively align or misalign the second window of the second sheath with the first window of the first sheath.
  • 14. The method of claim 13, wherein the second window is rotationally misaligned with the first window to at least partially cover the first window.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 15/425,321, filed Feb. 6, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (517)
Number Name Date Kind
3296620 Rodda Jan 1967 A
3433226 Boyd Mar 1969 A
3443226 Knight May 1969 A
3565062 Kurls Feb 1971 A
3585082 Siller Jun 1971 A
3612038 Halligan Oct 1971 A
3631848 Muller Jan 1972 A
3679378 Van Impe et al. Jul 1972 A
3719737 Vaillancourt et al. Mar 1973 A
3739460 Addis et al. Jun 1973 A
3754746 Thiele Aug 1973 A
3823717 Pohlman et al. Jul 1974 A
3835690 Leonhardt et al. Sep 1974 A
3839841 Amplatz Oct 1974 A
3896811 Storz Jul 1975 A
4016882 Broadwin et al. Apr 1977 A
4033331 Guss et al. Jul 1977 A
4136700 Broadwin et al. Jan 1979 A
4337090 Harrison Jun 1982 A
4368410 Hance et al. Jan 1983 A
4417578 Banko Nov 1983 A
4425115 Wuchinich Jan 1984 A
4449523 Szachowicz et al. May 1984 A
4453935 Newton Jun 1984 A
4486680 Bonnet et al. Dec 1984 A
4505767 Quin Mar 1985 A
4535759 Polk et al. Aug 1985 A
4545767 Suzuki et al. Oct 1985 A
4565589 Harrison Jan 1986 A
4565787 Bossle et al. Jan 1986 A
4572184 Stohl et al. Feb 1986 A
4664112 Kensey et al. May 1987 A
4665906 Jervis May 1987 A
4679558 Kensey et al. Jul 1987 A
4700705 Kensey et al. Oct 1987 A
4721117 Mar et al. Jan 1988 A
4750902 Wuchinich et al. Jun 1988 A
4781186 Simpson et al. Nov 1988 A
4808153 Parisi Feb 1989 A
4811743 Stevens Mar 1989 A
4827911 Broadwin et al. May 1989 A
4838853 Parisi Jun 1989 A
4854325 Stevens Aug 1989 A
4870953 DonMicheal et al. Oct 1989 A
4886060 Wiksell Dec 1989 A
4920954 Alliger et al. May 1990 A
4923462 Stevens May 1990 A
4924863 Sterzer May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936845 Stevens Jun 1990 A
4979952 Kubota et al. Dec 1990 A
5000185 Yock Mar 1991 A
5015227 Broadwin et al. May 1991 A
5026384 Farr et al. Jun 1991 A
5030201 Palestrant Jul 1991 A
5030357 Lowe Jul 1991 A
5046503 Schneiderman Sep 1991 A
5053008 Bajaj Oct 1991 A
5058570 Idemoto et al. Oct 1991 A
5076276 Sakurai et al. Dec 1991 A
5091205 Fan Feb 1992 A
5100423 Fearnot Mar 1992 A
5109859 Jenkins May 1992 A
5114414 Buchbinder May 1992 A
5116350 Stevens May 1992 A
5127917 Niederhauser et al. Jul 1992 A
5131393 Ishiguro et al. Jul 1992 A
5156143 Bocquet et al. Oct 1992 A
5163421 Bernstein et al. Nov 1992 A
5171216 Dasse et al. Dec 1992 A
5180363 Idemoto et al. Jan 1993 A
5183470 Wettermann Feb 1993 A
5195955 Don Michael Mar 1993 A
5215614 Wijkamp et al. Jun 1993 A
5217565 Kou et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5226421 Frisbie et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5236414 Takasu Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242385 Strukel Sep 1993 A
5243997 Uflacker et al. Sep 1993 A
5248296 Alliger Sep 1993 A
5255669 Kubota et al. Oct 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5269297 Weng et al. Dec 1993 A
5269793 Simpson Dec 1993 A
5279546 Mische et al. Jan 1994 A
5287858 Hammerslag et al. Feb 1994 A
5290229 Paskar Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5312328 Nita et al. May 1994 A
5318014 Carter Jun 1994 A
5318570 Hood et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5328004 Fannin et al. Jul 1994 A
5329927 Gardineer et al. Jul 1994 A
5341818 Abrams et al. Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5362309 Carter Nov 1994 A
5368557 Nita Nov 1994 A
5368558 Nita et al. Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5378234 Hammerslag et al. Jan 1995 A
5380274 Nita Jan 1995 A
5380316 Aita et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5389096 Aita et al. Feb 1995 A
5391144 Sakurai et al. Feb 1995 A
5397293 Alliger et al. Mar 1995 A
5397301 Pflueger et al. Mar 1995 A
5403324 Ciervo et al. Apr 1995 A
5405318 Nita Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417703 Brown et al. May 1995 A
5421923 Clarke et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431663 Carter Jul 1995 A
5443078 Uflacker Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449369 Imran Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451209 Ainsworth et al. Sep 1995 A
5462529 Simpson et al. Oct 1995 A
5465733 Hinohara et al. Nov 1995 A
5474530 Passafaro et al. Dec 1995 A
5474531 Carter Dec 1995 A
5480379 La Rosa Jan 1996 A
5484398 Stoddard Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5498236 Dubrul et al. Mar 1996 A
5507738 Ciervo Apr 1996 A
5516043 Manna et al. May 1996 A
5527273 Manna et al. Jun 1996 A
5538512 Zenzon et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5597497 Dean et al. Jan 1997 A
5597882 Schiller et al. Jan 1997 A
5607421 Jeevanandam et al. Mar 1997 A
5611807 O'Boyle Mar 1997 A
5618266 Liprie Apr 1997 A
5626593 Imran May 1997 A
5627365 Chiba et al. May 1997 A
5649935 Kremer et al. Jul 1997 A
5658282 Daw et al. Aug 1997 A
5665062 Houser Sep 1997 A
5685841 Mackool Nov 1997 A
5695460 Siegel et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5715825 Crowley Feb 1998 A
5720724 Ressemann et al. Feb 1998 A
5725494 Brisken Mar 1998 A
5728062 Brisken Mar 1998 A
5738100 Kagami et al. Apr 1998 A
5797876 Spears et al. Aug 1998 A
5816923 Milo et al. Oct 1998 A
5827203 Nita Oct 1998 A
5827971 Hale et al. Oct 1998 A
5830127 DeCastro Nov 1998 A
5830222 Makower Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5873835 Hastings Feb 1999 A
5876385 Ikari et al. Mar 1999 A
5893838 Daoud et al. Apr 1999 A
5895397 Jang et al. Apr 1999 A
5902287 Martin May 1999 A
5904667 Falwell May 1999 A
5916192 Nita et al. Jun 1999 A
5916912 Ames et al. Jun 1999 A
5935142 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5937301 Gardner et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5957882 Nita et al. Sep 1999 A
5957899 Spears et al. Sep 1999 A
5964223 Baran Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971949 Levin et al. Oct 1999 A
5976119 Spears et al. Nov 1999 A
5989208 Nita Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004280 Buck et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6007514 Nita Dec 1999 A
6022309 Celliers et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6030357 Daoud et al. Feb 2000 A
6036689 Tu et al. Mar 2000 A
6051010 DiMatteo et al. Apr 2000 A
6066135 Honda May 2000 A
6113558 Rosenschein et al. Sep 2000 A
6120515 Rogers et al. Sep 2000 A
6123698 Spears et al. Sep 2000 A
6142971 Daoud et al. Nov 2000 A
6149596 Bancroft Nov 2000 A
6159176 Broadwin et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6165127 Crowley Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6179809 Khairkhahan et al. Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6206842 Tu et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6217543 Anis et al. Apr 2001 B1
6217565 Cohen Apr 2001 B1
6217588 Jerger et al. Apr 2001 B1
6221015 Yock Apr 2001 B1
6231546 Milo et al. May 2001 B1
6231587 Makower May 2001 B1
6235007 Divino, Jr. et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6241703 Levin et al. Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6248087 Spears et al. Jun 2001 B1
6277084 Abele et al. Aug 2001 B1
6283983 Makower et al. Sep 2001 B1
6287271 Dubrul et al. Sep 2001 B1
6287285 Michal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6296620 Gesswein et al. Oct 2001 B1
6298620 Hatzinikolas Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6309358 Okubo Oct 2001 B1
6315741 Martin et al. Nov 2001 B1
6315754 Daoud et al. Nov 2001 B1
6331171 Cohen Dec 2001 B1
6346192 Buhr et al. Feb 2002 B2
6379378 Werneth et al. Apr 2002 B1
6387109 Davison et al. May 2002 B1
6387324 Patterson et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398736 Seward Jun 2002 B1
6409673 Yock Jun 2002 B2
6416533 Gobin et al. Jul 2002 B1
6423026 Gesswein et al. Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6433464 Jones Aug 2002 B2
6434418 Neal et al. Aug 2002 B1
6450975 Brennan et al. Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500141 Irion et al. Dec 2002 B1
6508781 Brennan et al. Jan 2003 B1
6508784 Shu Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6533766 Patterson et al. Mar 2003 B1
6544215 Bencini et al. Apr 2003 B1
6547754 Evans et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6551337 Rabiner et al. Apr 2003 B1
6554846 Hamilton et al. Apr 2003 B2
6555059 Myrick et al. Apr 2003 B1
6558502 Divino, Jr. et al. May 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6573470 Brown et al. Jun 2003 B1
6576807 Brunelot et al. Jun 2003 B1
6582387 Derek et al. Jun 2003 B2
6589253 Cornish et al. Jul 2003 B1
6595989 Schaer Jul 2003 B1
6596235 Divino, Jr. et al. Jul 2003 B2
6602467 Divino, Jr. et al. Aug 2003 B1
6602468 Patterson et al. Aug 2003 B2
6605217 Buhr et al. Aug 2003 B2
6607698 Spears et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6613280 Myrick et al. Sep 2003 B2
6615062 Ryan et al. Sep 2003 B2
6616617 Ferrera et al. Sep 2003 B1
6622542 Derek et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6635017 Moehring et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6660013 Rabiner et al. Dec 2003 B2
6676900 Divino, Jr. et al. Jan 2004 B1
6682502 Bond et al. Jan 2004 B2
6685657 Jones Feb 2004 B2
6689086 Nita et al. Feb 2004 B1
6695781 Rabiner et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6695810 Peacock, III et al. Feb 2004 B2
6702748 Nita et al. Mar 2004 B1
6702750 Yock Mar 2004 B2
6719715 Newman et al. Apr 2004 B2
6719725 Milo et al. Apr 2004 B2
6729334 Baran May 2004 B1
6733451 Rabiner et al. May 2004 B2
6758846 Goble et al. Jul 2004 B2
6761698 Shibata et al. Jul 2004 B2
6814727 Mansouri-Ruiz Nov 2004 B2
6855123 Nita Feb 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6936025 Evans et al. Aug 2005 B1
6936056 Nash et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6955680 Satou et al. Oct 2005 B2
7004173 Sparks et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7131983 Murakami Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7149587 Wardle et al. Dec 2006 B2
7150853 Lee et al. Dec 2006 B2
7166098 Steward et al. Jan 2007 B1
7220233 Nita et al. May 2007 B2
7267650 Chow et al. Sep 2007 B2
7297131 Nita Nov 2007 B2
7335180 Nita et al. Feb 2008 B2
7341569 Soltani et al. Mar 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7421900 Karasawa et al. Sep 2008 B2
7425198 Moehring et al. Sep 2008 B2
7494468 Rabiner et al. Feb 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7540852 Nita et al. Jun 2009 B2
7604608 Nita et al. Oct 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7628763 Noriega et al. Dec 2009 B2
7648478 Soltani et al. Jan 2010 B2
7758510 Nita et al. Jul 2010 B2
7771358 Moehring et al. Aug 2010 B2
7771452 Pal et al. Aug 2010 B2
7775994 Lockhart Aug 2010 B2
7776025 Bobo, Jr. Aug 2010 B2
7819013 Chan et al. Oct 2010 B2
7850623 Griffin et al. Dec 2010 B2
7918819 Karmarkar et al. Apr 2011 B2
7935108 Baxter et al. May 2011 B2
7938819 Kugler et al. May 2011 B2
7942809 Leban May 2011 B2
7955293 Nita et al. Jun 2011 B2
7993308 Rule et al. Aug 2011 B2
8038693 Allen Oct 2011 B2
8043251 Nita et al. Oct 2011 B2
8052607 Byrd Nov 2011 B2
8083727 Kugler et al. Dec 2011 B2
8133236 Nita Mar 2012 B2
8152753 Nita et al. Apr 2012 B2
8172758 Harhen May 2012 B2
8221343 Nita et al. Jul 2012 B2
8226566 Nita Jul 2012 B2
8246643 Nita Aug 2012 B2
8257378 O'connor Sep 2012 B1
8308677 Nita et al. Nov 2012 B2
8343134 Kost et al. Jan 2013 B2
8414543 Mcguckin, Jr. et al. Apr 2013 B2
8496669 Nita et al. Jul 2013 B2
8506519 Nita Aug 2013 B2
8613700 Ueno et al. Dec 2013 B2
8613751 Nita et al. Dec 2013 B2
8617096 Nita et al. Dec 2013 B2
8632560 Pal et al. Jan 2014 B2
8641630 Nita et al. Feb 2014 B2
8647293 Nita Feb 2014 B2
8647296 Moberg et al. Feb 2014 B2
8663259 Levine et al. Mar 2014 B2
8668709 Nita et al. Mar 2014 B2
8690818 Bennett et al. Apr 2014 B2
8690819 Nita et al. Apr 2014 B2
8702595 Ueki Apr 2014 B2
8708892 Sugiyama et al. Apr 2014 B2
8708994 Pettis et al. Apr 2014 B2
8725228 Koblish et al. May 2014 B2
8727993 Lee et al. May 2014 B2
8764700 Zhang et al. Jul 2014 B2
8768433 Jenkins et al. Jul 2014 B2
8790291 Nita et al. Jul 2014 B2
8974446 Nguyen et al. Mar 2015 B2
8978478 Ishioka Mar 2015 B2
9101387 Plowe et al. Aug 2015 B2
9107590 Hansmann et al. Aug 2015 B2
9216009 Akifumi Dec 2015 B2
9237837 Omoto et al. Jan 2016 B2
9265520 Nita Feb 2016 B2
9282984 Nita Mar 2016 B2
9314258 Nita et al. Apr 2016 B2
9381027 Nita et al. Jul 2016 B2
9421024 Nita et al. Aug 2016 B2
9433433 Nita et al. Sep 2016 B2
9603615 Sarge Mar 2017 B2
9770250 Nita et al. Sep 2017 B2
9955994 Nita May 2018 B2
10004520 Nita et al. Jun 2018 B2
20020022858 Demond et al. Feb 2002 A1
20020049409 Noda et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020188276 Evans et al. Dec 2002 A1
20020189357 Lai et al. Dec 2002 A1
20030008083 Harhen Jan 2003 A1
20030009153 Brisken et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040762 Dorros et al. Feb 2003 A1
20030199817 Thompson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20040019349 Fuimaono et al. Jan 2004 A1
20040024393 Nita et al. Feb 2004 A1
20040054367 Teodoro, Jr. et al. Mar 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040193033 Badehi et al. Sep 2004 A1
20050033311 Guldfeldt et al. Feb 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050165388 Bhola Jul 2005 A1
20050171527 Bhola Aug 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20060074441 Mcguckin, Jr. et al. Apr 2006 A1
20060149169 Nunomura et al. Jul 2006 A1
20060206039 Wilson et al. Sep 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20070032749 Overall et al. Feb 2007 A1
20070161945 Nita et al. Jul 2007 A1
20070167813 Lee Jul 2007 A1
20070167824 Lee Jul 2007 A1
20070167825 Lee Jul 2007 A1
20070178768 Harshman et al. Aug 2007 A1
20080033284 Hauck Feb 2008 A1
20080071343 Mayberry et al. Mar 2008 A1
20080208084 Horzewski et al. Aug 2008 A1
20080221506 Rodriguez et al. Sep 2008 A1
20080294037 Richter Nov 2008 A1
20090017293 Arai et al. Jan 2009 A1
20090143795 Robertson Jun 2009 A1
20100004558 Frankhouser et al. Jan 2010 A1
20100023037 Nita et al. Jan 2010 A1
20100069854 Okoh et al. Mar 2010 A1
20100076454 Bos Mar 2010 A1
20100121144 Farhadi May 2010 A1
20100217306 Raabe et al. Aug 2010 A1
20100268206 Manwaring et al. Oct 2010 A1
20110046522 Chan Feb 2011 A1
20110105960 Wallace May 2011 A1
20110130834 Wilson et al. Jun 2011 A1
20110196399 Robertson Aug 2011 A1
20110196403 Robertson Aug 2011 A1
20110237982 Wallace Sep 2011 A1
20110313328 Nita Dec 2011 A1
20120010506 Ullrich Jan 2012 A1
20120109021 Hastings et al. May 2012 A1
20120130475 Shaw May 2012 A1
20120165680 Akifumi Jun 2012 A1
20120217306 Morrill Webb et al. Aug 2012 A1
20120238916 Nita et al. Sep 2012 A1
20120238946 Nita et al. Sep 2012 A1
20120311844 Nita et al. Dec 2012 A1
20120330196 Nita Dec 2012 A1
20130046297 Lingeman et al. Feb 2013 A1
20130060169 Kamada Mar 2013 A1
20130331652 Okamoto Dec 2013 A1
20130338580 Yamatani et al. Dec 2013 A1
20140005706 Gelfand et al. Jan 2014 A1
20140012087 Omoto Jan 2014 A1
20140039491 Bakos et al. Feb 2014 A1
20140171804 Van Hoven Jun 2014 A1
20140236118 Unser et al. Aug 2014 A1
20140243712 Humayun et al. Aug 2014 A1
20140350401 Sinelnikov Nov 2014 A1
20140358028 Vetter et al. Dec 2014 A1
20140358029 Vetter et al. Dec 2014 A1
20150025544 Nita et al. Jan 2015 A1
20150073357 Bagwell et al. Mar 2015 A1
20150105621 Farhadi Apr 2015 A1
20150105715 Pikus et al. Apr 2015 A1
20150133918 Sachar May 2015 A1
20150148795 Amos et al. May 2015 A1
20150150571 Nita et al. Jun 2015 A1
20150157443 Hauser et al. Jun 2015 A1
20150190660 Sarge et al. Jul 2015 A1
20150297258 Escudero et al. Oct 2015 A1
20150359651 Wübbeling Dec 2015 A1
20160128717 Nita May 2016 A1
20160128767 Azamian et al. May 2016 A1
20160135835 Onuma May 2016 A1
20160183956 Nita Jun 2016 A1
20160271362 Van Liere Sep 2016 A1
20160328998 Nita et al. Nov 2016 A1
20160338722 Nita et al. Nov 2016 A1
20160367284 Nita et al. Dec 2016 A1
20170065288 Imai et al. Mar 2017 A1
20170128090 Sarge May 2017 A1
20170224375 Robertson et al. Aug 2017 A1
20170265879 Washburn, II et al. Sep 2017 A1
20170265886 Nita et al. Sep 2017 A1
20170354428 Nita et al. Dec 2017 A1
20180042636 Nita Feb 2018 A1
20180140321 Deepa May 2018 A1
20180168668 Zheng Jun 2018 A1
20180177515 Boyle et al. Jun 2018 A1
20180197856 Chou et al. Jul 2018 A1
20180280005 Parmentier Oct 2018 A1
20180280044 Nita et al. Oct 2018 A1
Foreign Referenced Citations (73)
Number Date Country
2007240154 Jan 2008 AU
2256127 May 1974 DE
2438648 Feb 1976 DE
8910040 Dec 1989 DE
3821836 Jan 1990 DE
4042435 Feb 1994 DE
10146011 Apr 2003 DE
0005719 Dec 1979 EP
0316789 May 1989 EP
0316796 May 1989 EP
0376562 Jul 1990 EP
0379156 Jul 1990 EP
0394583 Oct 1990 EP
0443256 Aug 1991 EP
0472368 Feb 1992 EP
0541249 May 1993 EP
0820728 Jan 1998 EP
1323481 Jul 2003 EP
1106957 Mar 1968 GB
H2-7150 Oct 1988 JP
01-099547 Apr 1989 JP
6086822 Mar 1994 JP
H07500752 Jan 1995 JP
7116260 May 1995 JP
9-503137 Mar 1997 JP
10-216140 Aug 1998 JP
2000-291543 Oct 2000 JP
2001-104356 Apr 2001 JP
2001-321388 Nov 2001 JP
2002-186627 Jul 2002 JP
2005-253874 Sep 2005 JP
2006-522644 Oct 2006 JP
2007512087 May 2007 JP
2007520255 Jul 2007 JP
8705739 Sep 1987 WO
8705793 Oct 1987 WO
8906515 Jul 1989 WO
9001300 Feb 1990 WO
9004362 May 1990 WO
9107917 Jun 1991 WO
9211815 Jul 1992 WO
9308750 May 1993 WO
9316646 Sep 1993 WO
9412140 Jun 1994 WO
9414382 Jul 1994 WO
9508954 Apr 1995 WO
9509571 Apr 1995 WO
9515192 Jun 1995 WO
9635469 Nov 1996 WO
9705739 Feb 1997 WO
9721462 Jun 1997 WO
9745078 Dec 1997 WO
9827874 Jul 1998 WO
9835721 Aug 1998 WO
9851224 Nov 1998 WO
9852637 Nov 1998 WO
9925412 May 1999 WO
0053341 Sep 2000 WO
0067830 Nov 2000 WO
02094103 Nov 2002 WO
03039381 May 2003 WO
2004012609 Feb 2004 WO
2004093736 Nov 2004 WO
2004112888 Dec 2004 WO
2005053769 Jun 2005 WO
2005112770 Dec 2005 WO
2006049593 May 2006 WO
2013109269 Jul 2013 WO
2014022716 Feb 2014 WO
2014105754 Jul 2014 WO
2014106847 Jul 2014 WO
2018097856 May 2018 WO
20180187159 Oct 2018 WO
Non-Patent Literature Citations (29)
Entry
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008.
Definition of the term “connected”, retrieved on Sep. 21, 2013. <www.thefreedictionary.com/connected> 1 page total.
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931.
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468.
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799.
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378.
Extended European Search Report for Patent Application No. 06718204.8, May 30, 2012.
International Search Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
International Preliminary Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Written Opinion dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Supplemental European Search Report dated Apr. 29, 2009 for European Application No. EP 04711207.3.
Office Action dated Aug. 3, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004.
Office Action dated Jan. 26, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004.
International Preliminary Report and Written Opinion dated Aug. 1, 2017 for PCT Application No. PCT/US2017/030675.
International Preliminary Report and Written Opinion dated Feb. 6, 2018 for PCT Application No. PCT/US2018/017022.
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total.
Definition of the term “coupled”, retrieved on May 18, 2013. <http://www.merriam-webster.com/dictionary/couple> 1 page total.
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total.
Office Action dated May 20, 2010 from Japanese Application No. 2006-541200 filed on Oct. 25, 2004.
Office Action dated Oct. 11, 2012 from Japanese Application No. 2010-181956.
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269.
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by therapeutic ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676.
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC.
Paul Yock et al., Catheter-Based Ultrasound Thrombolysis Shake, Rattle, and Reperfuse, https://doi.org/10.1161/01.CIR.95.6.1360 Circulation. 1997;95:1360-1362 Originally published Mar. 18, 1997.
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012.
Sehgal, et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943.
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351.
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>.
EP Extended Search Report dated Aug. 13, 2009; Application 04710537.5-1269, 5 pages.
Related Publications (1)
Number Date Country
20200155263 A1 May 2020 US
Continuations (1)
Number Date Country
Parent 15425321 Feb 2017 US
Child 16748073 US