Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness

Information

  • Patent Grant
  • 11460957
  • Patent Number
    11,460,957
  • Date Filed
    Monday, March 8, 2021
    3 years ago
  • Date Issued
    Tuesday, October 4, 2022
    2 years ago
Abstract
An ultrasonic sensor includes a two-dimensional array of ultrasonic transducers, a contact layer, a matching layer between the two-dimensional array and the contact layer, where the matching layer has a non-uniform thickness, and an array controller configured to control activation of ultrasonic transducers during an imaging operation for imaging a plurality of pixels within the two-dimensional array of ultrasonic transducers. During the imaging operation, the array controller is configured to activate different subsets of ultrasonic transducers associated with different regions of the two-dimensional array of ultrasonic transducers at different transmission frequencies, where the different frequencies are determined such that a thickness of the matching layer at a region is substantially equal to a quarter wavelength of the first transmission frequency for the region. The array controller is also configured to combine the plurality of pixels into a compound fingerprint image that compensates for the non-uniform thickness of the matching layer.
Description
BACKGROUND

Fingerprint sensors have become ubiquitous in mobile devices as well as other applications for authenticating a user's identity. They provide a fast and convenient way for the user to unlock a device, provide authentication for payments, etc. Current fingerprint sensors are typically area sensors that obtain a two-dimensional image of the user's finger area presented to the sensor. Different technologies can be used to image the finger such as capacitive, ultrasound, and optical sensing. Once an image is obtained, that image is processed by a matcher to extract features and to compare against stored images to authenticate the user. As such, accuracy of captured images is essential to the performance of image matching for user authentication.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the Description of Embodiments, illustrate various embodiments of the subject matter and, together with the Description of Embodiments, serve to explain principles of the subject matter discussed below. Unless specifically noted, the drawings referred to in this Brief Description of Drawings should be understood as not being drawn to scale. Herein, like items are labeled with like item numbers.



FIG. 1A is a diagram illustrating a piezoelectric micromachined ultrasonic transducer (PMUT) device having a center pinned membrane, according to some embodiments.



FIG. 1B is a diagram illustrating a PMUT device having an unpinned membrane, according to some embodiments.



FIG. 2 is a diagram illustrating an example of membrane movement during activation of a PMUT device, according to some embodiments.



FIG. 3 illustrates an example array of square-shaped PMUT devices, according to some embodiments.



FIG. 4 illustrates an example fingerprint sensor, in accordance with various embodiments.



FIGS. 5A and 5B illustrate cross section views of ultrasonic fingerprint sensors having matching layers of uniform thickness, according to embodiments.



FIG. 6A illustrates a cross section view of an ultrasonic fingerprint sensor having a matching layer of uniform thickness, according to an embodiment.



FIG. 6B illustrates a cross section view of an ultrasonic fingerprint sensor having a matching layer of non-uniform thickness, according to an embodiment.



FIGS. 7A, 7B, and 7C illustrate cross section views of ultrasonic fingerprint sensors having matching layers of non-uniform thickness, according to embodiments.



FIG. 8 illustrates an example graph of transmission versus matching layer thickness of an ultrasonic fingerprint sensor for different materials, according to embodiments.



FIGS. 9A, 9B, 9C, and 9D illustrate examples of transmission frequency regions for use by an ultrasonic fingerprint sensor underlying a matching layer of non-uniform thickness, according to embodiments.



FIG. 10 illustrates a flow diagram of an example method for operating an ultrasonic sensor including a two-dimensional array of ultrasonic transducers, according to embodiments.



FIG. 11 illustrates a flow diagram of an example method for calibrating an ultrasonic sensor including a two-dimensional array of ultrasonic transducers, according to embodiments.





DESCRIPTION OF EMBODIMENTS

The following Description of Embodiments is merely provided by way of example and not of limitation. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding background or in the following Description of Embodiments.


Reference will now be made in detail to various embodiments of the subject matter, examples of which are illustrated in the accompanying drawings. While various embodiments are discussed herein, it will be understood that they are not intended to limit to these embodiments. On the contrary, the presented embodiments are intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope the various embodiments as defined by the appended claims. Furthermore, in this Description of Embodiments, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present subject matter. However, embodiments may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the described embodiments.


Notation and Nomenclature

Some portions of the detailed descriptions which follow are presented in terms of procedures, logic blocks, processing and other symbolic representations of operations on data within an electrical device. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be one or more self-consistent procedures or instructions leading to a desired result. The procedures are those requiring physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of acoustic (e.g., ultrasonic) signals capable of being transmitted and received by an electronic device and/or electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in an electrical device.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the description of embodiments, discussions utilizing terms such as “performing,” “controlling,” “capturing,” “activating,” “generating,” “combining,” “transmitting,” “receiving,” “activating,” “combining,” “determining,” or the like, refer to the actions and processes of an electronic device such as an electrical device.


Embodiments described herein may be discussed in the general context of processor-executable instructions residing on some form of non-transitory processor-readable medium, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or distributed as desired in various embodiments.


In the figures, a single block may be described as performing a function or functions; however, in actual practice, the function or functions performed by that block may be performed in a single component or across multiple components, and/or may be performed using hardware, using software, or using a combination of hardware and software. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, logic, circuits, and steps have been described generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Also, the example fingerprint sensing system and/or mobile electronic device described herein may include components other than those shown, including well-known components.


Various techniques described herein may be implemented in hardware, software, firmware, or any combination thereof, unless specifically described as being implemented in a specific manner. Any features described as modules or components may also be implemented together in an integrated logic device or separately as discrete but interoperable logic devices. If implemented in software, the techniques may be realized at least in part by a non-transitory processor-readable storage medium comprising instructions that, when executed, perform one or more of the methods described herein. The non-transitory processor-readable data storage medium may form part of a computer program product, which may include packaging materials.


The non-transitory processor-readable storage medium may comprise random access memory (RAM) such as synchronous dynamic random access memory (SDRAM), read only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), FLASH memory, other known storage media, and the like. The techniques additionally, or alternatively, may be realized at least in part by a processor-readable communication medium that carries or communicates code in the form of instructions or data structures and that can be accessed, read, and/or executed by a computer or other processor.


Various embodiments described herein may be executed by one or more processors, such as one or more motion processing units (MPUs), sensor processing units (SPUs), host processor(s) or core(s) thereof, digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), application specific instruction set processors (ASIPs), field programmable gate arrays (FPGAs), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein, or other equivalent integrated or discrete logic circuitry. The term “processor,” as used herein may refer to any of the foregoing structures or any other structure suitable for implementation of the techniques described herein. As it employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Moreover, processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor may also be implemented as a combination of computing processing units.


In addition, in some aspects, the functionality described herein may be provided within dedicated software modules or hardware modules configured as described herein. Also, the techniques could be fully implemented in one or more circuits or logic elements. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of an SPU/MPU and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with an SPU core, MPU core, or any other such configuration.


Overview of Discussion

Discussion begins with a description of an example piezoelectric micromachined ultrasonic transducer (PMUT), in accordance with various embodiments. Example arrays including PMUT devices are then described. Examples of the ultrasonic fingerprint sensors having a matching layer with a thickness substantially equal to a quarter wavelength of the first transmission frequency are then described. Examples of operations for operating an ultrasonic fingerprint sensor are then described.


Fingerprint sensors, in accordance with the described embodiments, are used for capturing fingerprint images that are used for performing fingerprint authentication. As the use of fingerprint sensors proliferates, there is a desire to include fingerprint sensors in devices having varying form factors. In many potential use cases, an ultrasonic fingerprint sensor is overlaid with a contact layer that is not flat (e.g., has a curved profile, a sloped profile, rounded edges, etc.) In other situations, the contact layer can be comprised of materials having varying acoustic impedances, where the acoustic impedance of a material may impact the amount of acoustic signal that can be transmitted through the contact layer. In such use cases, a matching layer between the contact layer and the fingerprint sensor is used to provide a transmission medium for ultrasonic signals between the contact layer and the fingerprint sensor. For example, the matching layer may be an adhesive layer (e.g., epoxy) for bonding the contact layer to the fingerprint sensor. Where the contact layer is not flat, the variation in material thickness (contact layer and matching layer combined) may result in a reduction of signal strength. Moreover, a matching layer having a non-uniform thickness will have inconsistent signal strength associated with a constant transmission frequency. Embodiments described herein account for the non-uniform thickness of the matching layer.


Embodiments described herein provide a sensor device including a two-dimensional array of ultrasonic transducers, a contact layer, a matching layer between the two-dimensional array and the contact layer, where the matching layer has a non-uniform thickness, and an array controller configured to control activation of ultrasonic transducers during an imaging operation for imaging a plurality of pixels within the two-dimensional array of ultrasonic transducers. In some embodiments, the matching layer is an adhesive layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer.


In some embodiments, the matching layer has an acoustic impedance between an acoustic impedance of the two-dimensional array of ultrasonic transducers and an acoustic impedance of the contact layer. In some embodiments, the ultrasonic sensor further includes a packaging epoxy overlying the two-dimensional array of ultrasonic transducers, such that the matching layer is connected to the packaging epoxy and the contact layer. In some embodiments, a first thickness of the matching layer at a first region is substantially equal to a quarter wavelength of the first transmission frequency plus or minus a one-eighth wavelength of the first transmission frequency and a second thickness of the matching layer at a second region is substantially equal to a quarter wavelength of the second transmission frequency plus or minus a one-eighth wavelength of the second transmission frequency.


During the imaging operation, the array controller is configured to activate different subsets of ultrasonic transducers associated with different regions of the two-dimensional array of ultrasonic transducers at different transmission frequencies, where the different frequencies are determined such that a thickness of the matching layer at a region is substantially equal to a quarter wavelength of the first transmission frequency for the region. The array controller is also configured to combine the plurality of pixels into a compound fingerprint image that compensates for the non-uniform thickness of the matching layer. In some embodiments, a first region and a second region are associated with different blocks of ultrasonic transducers of the two-dimensional array of ultrasonic transducers. In some embodiments, a first region and a second region are associated with different columns of ultrasonic transducers of the two-dimensional array of ultrasonic transducers. In some embodiments, a first region and a second region are associated with different rows of ultrasonic transducers of the two-dimensional array of ultrasonic transducers.


Embodiments described herein also provide a method for calibrating an ultrasonic sensor including a two-dimensional array of ultrasonic transducers, a contact layer overlying the two-dimensional array of ultrasonic transducers, and a matching layer between the two-dimensional array of ultrasonic transducers and the contact layer, where the matching layer has a non-uniform thickness overlying the two-dimensional array of ultrasonic transducers.


In some embodiments, a thickness of the matching layer at each region is substantially equal to a quarter wavelength of a transmission frequency for the region. In some embodiments, the thickness of the matching layer at each region is substantially equal to a quarter wavelength of the transmission frequency plus or minus a one-eighth wavelength of the transmission frequency at the region. In some embodiments, the matching layer is an adhesive layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer. In some embodiments, the matching layer has an acoustic impedance between an acoustic impedance of the two-dimensional array of ultrasonic transducers and an acoustic impedance of the contact layer.


Ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a plurality of regions of the two-dimensional array of ultrasonic transducers are activated at a plurality of transmission frequencies, where the plurality of regions are non-overlapping. A signal for each of the plurality of transmission frequencies at the plurality of regions is monitored. For the plurality of regions, a transmission frequency of the plurality of transmission frequencies having a highest signal for a region is set as the transmission frequency for the region.


Piezoelectric Micromachined Ultrasonic Transducer (PMUT)

Systems and methods disclosed herein, in one or more aspects provide efficient structures for an acoustic transducer (e.g., a piezoelectric micromachined actuated transducer or PMUT). One or more embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It may be evident, however, that the various embodiments can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the embodiments in additional detail.


As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. In addition, the word “coupled” is used herein to mean direct or indirect electrical or mechanical coupling. In addition, the word “example” is used herein to mean serving as an example, instance, or illustration.


Embodiments described herein provide ultrasonic fingerprint sensors having non-uniform contact layers. It should be appreciated that different types of ultrasonic fingerprint sensors having different architectures may be utilized herein. For instance, some architectures include an array of ultrasonic transducers (e.g., PMUTs), embodiments of which are described herein. In some embodiments, the ultrasonic transducers may be bulk piezo actuator elements, e.g., lead zirconate titanate (PZT). Other architectures may utilize a film-based design. Although embodiments are described herein with respect to an array of ultrasonic transducers, the methods and techniques may be applied to other ultrasonic sensing architectures where the control of the operating parameters of different segments of the sensors can be adjusted separately to correct for the non-uniform contact surface. The embodiments described herein are with respect to sensors with a non-uniform contact layer, but the techniques and principles discussed may in some situations also be used to improve performance of sensors with uniform contact surfaces.



FIG. 1A is a diagram illustrating a PMUT device 100 having a center pinned membrane, according to some embodiments. PMUT device 100 includes an interior pinned membrane 120 positioned over a substrate 140 to define a cavity 130. In one embodiment, membrane 120 is attached both to a surrounding edge support 102 and interior support 104. In one embodiment, edge support 102 is connected to an electric potential. Edge support 102 and interior support 104 may be made of electrically conducting materials, such as and without limitation, aluminum, molybdenum, or titanium. Edge support 102 and interior support 104 may also be made of dielectric materials, such as silicon dioxide, silicon nitride or aluminum oxide that have electrical connections on the sides or in vias through edge support 102 or interior support 104, electrically coupling lower electrode 106 to electrical wiring in substrate 140.


In one embodiment, both edge support 102 and interior support 104 are attached to a substrate 140. In various embodiments, substrate 140 may include at least one of, and without limitation, silicon or silicon nitride. It should be appreciated that substrate 140 may include electrical wirings and connection, such as aluminum or copper. In one embodiment, substrate 140 includes a CMOS logic wafer bonded to edge support 102 and interior support 104. In one embodiment, the membrane 120 comprises multiple layers. In an example embodiment, the membrane 120 includes lower electrode 106, piezoelectric layer 110, and upper electrode 108, where lower electrode 106 and upper electrode 108 are coupled to opposing sides of piezoelectric layer 110. As shown, lower electrode 106 is coupled to a lower surface of piezoelectric layer 110 and upper electrode 108 is coupled to an upper surface of piezoelectric layer 110. It should be appreciated that, in various embodiments, PMUT device 100 is a microelectromechanical (MEMS) device.


In one embodiment, membrane 120 also includes a mechanical support layer 112 (e.g., stiffening layer) to mechanically stiffen the layers. In various embodiments, mechanical support layer 112 may include at least one of, and without limitation, silicon, silicon oxide, silicon nitride, aluminum, molybdenum, titanium, etc. In one embodiment, PMUT device 100 also includes an acoustic coupling layer 114 above membrane 120 for supporting transmission of acoustic signals. It should be appreciated that acoustic coupling layer can include air, liquid, gel-like materials, epoxy, or other materials for supporting transmission of acoustic signals. In one embodiment, PMUT device 100 also includes platen layer 116 above acoustic coupling layer 114 for containing acoustic coupling layer 114 and providing a contact surface for a finger or other sensed object with PMUT device 100. It should be appreciated that, in various embodiments, acoustic coupling layer 114 provides a contact surface, such that platen layer 116 is optional. Moreover, it should be appreciated that acoustic coupling layer 114 and/or platen layer 116 may be included with or used in conjunction with multiple PMUT devices. For example, an array of PMUT devices may be coupled with a single acoustic coupling layer 114 and/or platen layer 116. It should be appreciated that platen layer 116 can include one or more materials, including without limitation: glass, plastic, metal (e.g., aluminum, titanium, stainless steel), etc. In some embodiments, platen 116 is a display device (e.g., an organic light emitting diode (OLED) display device) overlying one or more PMUT devices. In such an embodiment, platen 116 includes multiple layers of the display device.



FIG. 1B is identical to FIG. 1A in every way, except that the PMUT device 100′ of FIG. 1B omits the interior support 104 and thus membrane 120 is not pinned (e.g., is “unpinned”). There may be instances in which an unpinned membrane 120 is desired. However, in other instances, a pinned membrane 120 may be employed.



FIG. 2 is a diagram illustrating an example of membrane movement during activation of PMUT device 100, according to some embodiments. As illustrated with respect to FIG. 2, in operation, responsive to an object proximate platen layer 116, the electrodes 106 and 108 deliver a high frequency electric charge to the piezoelectric layer 110, causing those portions of the membrane 120 not pinned to the surrounding edge support 102 or interior support 104 to be displaced upward into the acoustic coupling layer 114. This generates a pressure wave that can be used for signal probing of the object. Return echoes can be detected as pressure waves causing movement of the membrane, with compression of the piezoelectric material in the membrane causing an electrical signal proportional to amplitude of the pressure wave.


The described PMUT device 100 can be used with almost any electrical device that converts a pressure wave into mechanical vibrations and/or electrical signals. In one aspect, the PMUT device 100 can comprise an acoustic sensing element (e.g., a piezoelectric element) that generates and senses ultrasonic sound waves. An object in a path of the generated sound waves can create a disturbance (e.g., changes in frequency or phase, reflection signal, echoes, etc.) that can then be sensed. The interference can be analyzed to determine physical parameters such as (but not limited to) distance, density and/or speed of the object. As an example, the PMUT device 100 can be utilized in various applications, such as, but not limited to, fingerprint or physiologic sensors suitable for wireless devices, industrial systems, automotive systems, robotics, telecommunications, security, medical devices, etc. For example, the PMUT device 100 can be part of a sensor array comprising a plurality of ultrasonic transducers deposited on a wafer, along with various logic, control and communication electronics. A sensor array may comprise homogenous or identical PMUT devices 100, or a number of different or heterogonous device structures.


In various embodiments, the PMUT device 100 employs a piezoelectric layer 110, comprised of materials such as, but not limited to, aluminum nitride (AlN), scandium doped aluminum nitride (ScAlN), lead zirconate titanate (PZT), quartz, polyvinylidene fluoride (PVDF), and/or zinc oxide, to facilitate both acoustic signal production and sensing. The piezoelectric layer 110 can generate electric charges under mechanical stress and conversely experience a mechanical strain in the presence of an electric field. For example, the piezoelectric layer 110 can sense mechanical vibrations caused by an ultrasonic beam and produce an electrical charge at the frequency (e.g., ultrasonic frequency) of the vibrations. Additionally, the piezoelectric layer 110 can generate an ultrasonic wave by vibrating in an oscillatory fashion that might be at the same frequency (e.g., ultrasonic frequency) as an input current generated by an alternating current (AC) voltage applied across the piezoelectric layer 110. It should be appreciated that the piezoelectric layer 110 can include almost any material (or combination of materials) that exhibits piezoelectric properties, such that the structure of the material does not have a center of symmetry and a tensile or compressive stress applied to the material alters the separation between positive and negative charge sites in a cell causing a polarization at the surface of the material. The polarization is directly proportional to the applied stress and is direction dependent so that compressive and tensile stresses results in electric fields of opposite polarizations.


Further, the PMUT device 100 comprises electrodes 106 and 108 that supply and/or collect the electrical charge to/from the piezoelectric layer 110. It should be appreciated that electrodes 106 and 108 can be continuous and/or patterned electrodes (e.g., in a continuous layer and/or a patterned layer). For example, as illustrated, electrode 106 is a patterned electrode and electrode 108 is a continuous electrode. As an example, electrodes 106 and 108 can be comprised of almost any metal layers, such as, but not limited to, Aluminum (Al)/Titanium (Ti), Molybdenum (Mo), etc., which are coupled with and on opposing sides of the piezoelectric layer 110. In one embodiment, PMUT device also includes a third electrode, as illustrated in FIG. 10 and described below.


According to an embodiment, the acoustic impedance of acoustic coupling layer 114 is selected to be similar to the acoustic impedance of the platen layer 116, such that the acoustic wave is efficiently propagated to/from the membrane 120 through acoustic coupling layer 114 and platen layer 116. As an example, the platen layer 116 can comprise various materials having an acoustic impedance in the range between 0.8 to 4 MRayl, such as, but not limited to, plastic, resin, rubber, Teflon, epoxy, etc. In another example, the platen layer 116 can comprise various materials having a high acoustic impedance (e.g., an acoustic impendence greater than 10 MRayl), such as, but not limited to, glass, aluminum-based alloys, sapphire, etc. Typically, the platen layer 116 can be selected based on an application of the sensor. For instance, in fingerprinting applications, platen layer 116 can have an acoustic impedance that matches (e.g., exactly or approximately) the acoustic impedance of human skin (e.g., 1.6×106 Rayl). Further, in one aspect, the platen layer 116 can further include a thin layer of anti-scratch material. In various embodiments, the anti-scratch layer of the platen layer 116 is less than the wavelength of the acoustic wave that is to be generated and/or sensed to provide minimum interference during propagation of the acoustic wave. As an example, the anti-scratch layer can comprise various hard and scratch-resistant materials (e.g., having a Mohs hardness of over 7 on the Mohs scale), such as, but not limited to sapphire, glass, MN, Titanium nitride (TiN), Silicon carbide (SiC), diamond, etc. As an example, PMUT device 100 can operate at 20 MHz and accordingly, the wavelength of the acoustic wave propagating through the acoustic coupling layer 114 and platen layer 116 can be 70-150 microns. In this example scenario, insertion loss can be reduced and acoustic wave propagation efficiency can be improved by utilizing an anti-scratch layer having a thickness of 1 micron and the platen layer 116 as a whole having a thickness of 1-2 millimeters. It is noted that the term “anti-scratch material” as used herein relates to a material that is resistant to scratches and/or scratch-proof and provides substantial protection against scratch marks.


In accordance with various embodiments, the PMUT device 100 can include metal layers (e.g., Aluminum (Al)/Titanium (Ti), Molybdenum (Mo), etc.) patterned to form electrode 106 in particular shapes (e.g., ring, circle, square, octagon, hexagon, etc.) that are defined in-plane with the membrane 120. Electrodes can be placed at a maximum strain area of the membrane 120 or placed at close to either or both the surrounding edge support 102 and interior support 104. Furthermore, in one example, electrode 108 can be formed as a continuous layer providing a ground plane in contact with mechanical support layer 112, which can be formed from silicon or other suitable mechanical stiffening material. In still other embodiments, the electrode 106 can be routed along the interior support 104, advantageously reducing parasitic capacitance as compared to routing along the edge support 102.


For example, when actuation voltage is applied to the electrodes, the membrane 120 will deform and move out of plane. The motion then pushes the acoustic coupling layer 114 it is in contact with and an acoustic (ultrasonic) wave is generated. Oftentimes, vacuum is present inside the cavity 130 and therefore damping contributed from the media within the cavity 130 can be ignored. However, the acoustic coupling layer 114 on the other side of the membrane 120 can substantially change the damping of the PMUT device 100. For example, a quality factor greater than 20 can be observed when the PMUT device 100 is operating in air with atmosphere pressure (e.g., acoustic coupling layer 114 is air) and can decrease lower than 2 if the PMUT device 100 is operating in water (e.g., acoustic coupling layer 114 is water).



FIG. 3 illustrates an example two-dimensional array 300 of square-shaped PMUT devices 301 formed from PMUT devices having a substantially square shape similar to that discussed in conjunction with FIGS. 1A, 1B, and 2. Layout of square surrounding edge support 302, interior support 304, and square-shaped lower electrode 306 surrounding the interior support 304 are illustrated, while other continuous layers are not shown for clarity. As illustrated, array 300 includes columns of square-shaped PMUT devices 301 that are in rows and columns. It should be appreciated that rows or columns of the square-shaped PMUT devices 301 may be offset. Moreover, it should be appreciated that square-shaped PMUT devices 301 may contact each other or be spaced apart. In various embodiments, adjacent square-shaped PMUT devices 301 are electrically isolated. In other embodiments, groups of adjacent square-shaped PMUT devices 301 are electrically connected, where the groups of adjacent square-shaped PMUT devices 301 are electrically isolated.


In operation, during transmission, selected sets of PMUT devices in the two-dimensional array can transmit an acoustic signal (e.g., a short ultrasonic pulse) and during sensing, the set of active PMUT devices in the two-dimensional array can detect an interference of the acoustic signal with an object (in the path of the acoustic wave). The received interference signal (e.g., generated based on reflections, echoes, etc. of the acoustic signal from the object) can then be analyzed. As an example, an image of the object, a distance of the object from the sensing component, a density of the object, a motion of the object, etc., can all be determined based on comparing a frequency and/or phase of the interference signal with a frequency and/or phase of the acoustic signal. Moreover, results generated can be further analyzed or presented to a user via a display device (not shown).



FIG. 4 illustrates an example fingerprint sensor 415, in accordance with various embodiments. In one embodiment, fingerprint sensor 415 includes an array 450 of ultrasonic transducers (e.g., PMUT devices), a processor 460, and a memory 470. It should be appreciated that some or all operations can be performed a processor external to fingerprint sensor 415 (e.g., a host processor or an application processor) In various embodiments, processor 460 performs certain operations in accordance with instructions stored within memory 470. It should be appreciated that components of fingerprint sensor 415 are examples, and that certain components, such as processor 460 and/or memory 470 may not be located within fingerprint sensor 415.


In one embodiment, fingerprint sensor 415 includes processor 460 for performing the pixel capture, where pixel capture is performed using subsets of ultrasonic transducers (e.g., PMUTs) of fingerprint sensor 415. In some embodiments, pixel capture for groups of pixels is handled the same, such that the groups of pixels utilize same imaging operations (e.g., utilize a same relative activation of the first subset of ultrasonic transducers and the second subset of ultrasonic transducers according to a same local angle). In other embodiments, processor 460 can perform at least some signal analysis, e.g., thresholding, to determine whether an object has interacted with fingerprint sensor 415. In other embodiments, processor 460 can analyze captured pixels and determine whether the object has characteristics of finger, e.g., a pattern resembling the ridge/valley pattern of a fingerprint. In other embodiments, processor 460 can capture an image of the fingerprint and forward it to a processor of system circuitry for further analysis.


In accordance with embodiments, processor 460 is configured to control the activation of the subsets of ultrasonic transducers to generate an ultrasonic signal, also referred to herein as an ultrasonic beam. Using multiple ultrasonic transducers, some of which are time delayed with respect to other ultrasonic transducers, embodiments described herein provide for focusing a transmit beam (e.g., forming a beam) of an ultrasonic signal to a desired point, allowing for high resolution sensing of a fingerprint, or other object. For instance, transmitting an ultrasonic signal from multiple PMUTs, where some PMUTs transmit at a time delay relative to other PMUTs, provides for focusing the ultrasonic beam to a contact point of a fingerprint sensing system (e.g., a top of a contact layer) for sensing a high resolution image of a pixel associated with the transmitting PMUTs. In some embodiments, the activation includes transmitting ultrasonic signals from a first group of ultrasonic transducers of the plurality of ultrasonic transducers, wherein at least some ultrasonic transducers of the first group of ultrasonic transducers are phase delayed with respect to other ultrasonic transducers of the first group of ultrasonic transducers, the first group of ultrasonic transducers for forming a focused ultrasonic beam. The activation also includes receiving reflected ultrasonic signals at a second group of ultrasonic transducers of the plurality of ultrasonic transducers.


While the embodiment of FIG. 4 includes processor 460 and memory 470, as described above, it should be appreciated that various functions of processor 460 and memory 470 may reside in other components of an electronic device. Moreover, it should be appreciated that processor 460 may be any type of processor for performing any portion of the described functionality (e.g., custom digital logic).


Example Ultrasonic Sensor Having a Transmission Frequency Tuned to a Matching Layer

Fingerprint sensors are used in electronic devices for user authentication, such as mobile electronic devices, building locks, automobile locks, etc. In many situations, the surface area of the fingerprint sensor needs to be as flat and as uniform as possible in order to obtain a good fingerprint. However, in some situation it may be desirable to have a non-flat or non-uniform fingerprint surface. For example, when a fingerprint sensor is mounted on the back of a mobile phone, a concave form or structured surface may help guide the user's finger to the correct position on the FP sensor. In other situations, the design employs a non-flat form factor, such as a convex button, a rounded door knob or automobile handle. The design may also employ cover materials of different hardness, such as stainless steel, plastic, ceramic, aluminum, etc. Some designs may require a smooth surface, while other designs may require a rough or textured surface. In further situations, the fingerprint sensor may be integrated in a wearable device, e.g., a smart watch, either on the face of the watch (e.g., behind the display), or on the side of the body. While in the former placement the surface can be relatively flat, in the latter placement the sensor surface may have a small radius of curvature. In general, the smaller the device, or section of the device, where the sensor is integrated, the smaller the radius of curvature, i.e., the more curved the surface is.


Embodiments described herein provide a sensor device including a two-dimensional array of ultrasonic transducers, a contact layer, a matching layer between the two-dimensional array and the contact layer, where the matching layer has a uniform or non-uniform thickness, and an array controller configured to control activation of ultrasonic transducers during an imaging operation for imaging a plurality of pixels within the two-dimensional array of ultrasonic transducers. In some embodiments, the matching layer is an adhesive layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer. During the imaging operation, the array controller is configured to activate different subsets of ultrasonic transducers associated with different regions of the two-dimensional array of ultrasonic transducers at different transmission frequencies, where the different frequencies are determined such that a thickness of the matching layer at a region is substantially equal to a quarter wavelength of the first transmission frequency for the region. The array controller is also configured to combine the plurality of pixels into a compound fingerprint image that compensates for the non-uniform thickness of the matching layer.


Although embodiments are described with respect to an array of ultrasonic transducers, the methods and techniques may be applied to other ultrasound sensing architectures where the control of the operating parameters of different segments of the sensors can be adjusted separately to correct for the non-uniform thickness of the matching layer. Moreover, the methods and techniques may be applied to ultrasonic sensors having matching layers of uniform thickness.



FIGS. 5A and 5B illustrate cross section views of ultrasonic fingerprint sensors having matching layers of uniform thickness, according to embodiments. FIG. 5A illustrates a cross section view of an ultrasonic fingerprint sensor 500, according to an embodiment. As illustrated, ultrasonic fingerprint sensor 500 includes several different layers. Ultrasonic fingerprint sensor 500 includes an active sensing layer 520 on top of a substrate 510. The active sensing layer 520 may use various techniques to sense or detect the fingerprint, e.g., acoustic or ultrasonic techniques. It should be appreciated that active sensing layer 520 may not extend to the edges of contact layer 530. For an ultrasonic fingerprint sensor, the sensing layer may comprise an array of ultrasonic transducers (e.g., PMUTs 100 of FIG. 1A, PMUTs 100′ of FIG. 1B), or bulk piezo actuator elements, or piezoelectric film (e.g., PVDF) that may be used emit and detect ultrasonic waves. In some embodiments, sensing layer 520 includes a transmission layer for transmitting ultrasonic signals and a detection layer for receiving reflected ultrasonic signals. Matching layer 530 overlays sensing layer 520. Contact layer 540 overlays matching layer 530, where the outer surface of contact layer 540 is contact surface 545. In some embodiments, matching layer 530 is an adhesive layer (e.g., an epoxy) for bonding contact layer 540 to sensing layer 520. Contact surface 545 of contact layer 540 is substantially flat and parallel to sensing layer 520. For example, a user using ultrasonic fingerprint sensor 500 places his or her finger in contact with contact surface 545.


In some embodiments, other layers such as display devices, (not shown) may be used between sensing layer 520 and contact layer 540, above or below matching layer 530. In some embodiments, matching layer 530 is an acoustic coupling layer. It should be appreciated that in some embodiments, contact layer 540 and the acoustic coupling layer are a single layer. It should be further appreciated that ultrasonic fingerprint sensor 500 may include other layers, such as other bonding layers and laminate layers, and is not intended to be limited to the specific layers shown. In other embodiments, an ultrasonic fingerprint sensor including separate signal transmission and signal detection layers may be used (e.g., within sensing layer 520).


In an ultrasonic fingerprint sensor 500, the acoustic waves travel from the sensing layer 520 through matching layer 530 and contact layer 540 to contact surface 545, interact with the object on the surface (e.g., a finger), and may then be reflected back to the sensing layer 520, thereby again traversing matching layer 530 and contact layer 540. In some embodiments, matching layer 530 has an acoustic impedance between an acoustic impedance of sensing layer 520 and an acoustic impedance of contact layer 540. In some embodiments, matching layer 530 has a hardness between a hardness of sensing layer 520 and a hardness of contact layer 540. In some embodiments, a thickness of matching layer 530 is substantially equal to a quarter wavelength (or N wavelengths plus a quarter wavelength, where N is an integer) of the transmission frequency of sensing layer 520. Matching layer 530 operates as an acoustic coupling layer between sensing layer 520 and contact layer 540. Embodiments herein aim to optimize the transmission signal and reflection signal to provide a high signal through contact layer 540. In some embodiments, a thickness of matching layer 530 is substantially equal to a quarter wavelength of the transmission frequency of sensing layer 520 plus or minus a one-eighth wavelength of the transmission frequency.



FIG. 5B illustrates a cross section view of an ultrasonic fingerprint sensor 550, according to another embodiment. Ultrasonic fingerprint sensor 550 operates in a similar manner to, and includes the components of, ultrasonic fingerprint sensor 500 of FIG. 5A, with the exception of the composition of sensing layer 520. As illustrated, sensing layer 520 includes piezoelectric layer 552 and packaging layer 554 overlaying piezoelectric layer 552. In some embodiments, sensing layer 520 is a packaged sensing device such that packaging layer 554 is a packaging epoxy overlaying piezoelectric layer 552. In some embodiments, piezoelectric layer 552 includes a two-dimensional array of ultrasonic transducers (e.g., PMUTs 100 of FIG. 1A, PMUTs 100′ of FIG. 1B, or bulk piezo actuator elements). In some embodiments, packaging layer 554 is an epoxy, also referred to as a packaging epoxy. Packaging layer 554 overlaying piezoelectric layer 552 is an example of a packaged ultrasonic sensor, where the piezoelectric layer 552 (e.g., a two-dimensional array of ultrasonic transducers) is packaged into a sensor unit by sealing piezoelectric layer 552 with packaging layer 554. It should be appreciated that a sensing layer including a packaging layer overlaying a piezoelectric layer can be utilized in the other embodiments of ultrasonic sensors described herein.


Referring back now to FIGS. 1A, 1B, 5A, and 5B, and matching layer 530 (e.g., acoustic coupling layer 114). Acoustic coupling layer 114 and matching layer 530 may have different thicknesses depending on the application, and the material may be selected to help transmit acoustic energy from the sensing layer 520 to contact layer 540. In some embodiments, the thickness of matching layer 530 may be selected to increase the coupling of acoustic energy into contact layer 540. For example, matching layer 530 may have a thickness of approximately a quarter (¼) wavelength, also referred to as a quarter lambda layer or quarter wavelength layer. Although the term quarter wavelength layer is used, the layer may also be thicker as long as it is an nth order quarter wavelength, meaning any integer value+quarter lambda. Internal reflection and constructive interference effects may then increase the transmitted acoustic energy into the contact layer.


In embodiments where a quarter wavelength layer is used, the thickness of the layer may have to be tuned depending on the frequency of the acoustic waves and the speed of sound of the material. For example, take matching layer 530 made of epoxy with a speed of sound of 2700 m/s. At an acoustic frequency of 50 Mhz, the matching layer 530 should have a thickness of approximately 13.5 μm. Care should be taken that the thickness variation of the acoustic coupling layer is not too large to have an opposite effect of destructive interference. Destructive interference occurs when the layer thickness is close the half (½) wavelength. This means that the tolerance of the quarter wavelength layer thickness is one-eight (⅛) wavelength. If the difference in thickness is larger, negative destructive interference effects start to occur. In the above example, the one eighth wavelength is approximately 7 μm, which means that the thickness variation in the 13.5 μm layer should not be more than plus or minus 7 μm. In situations and devices where the thickness of the matching layer 530 cannot be controlled to within the desired specification, the wavelength can be adapted through frequency tuning to obtain the constructive interference effects of the quarter wavelength layer.


In some embodiments, the frequency of the acoustic waves is adapted to the local thickness of the matching layer 530, or any other layer used for creating constructive interference. Frequency grouping maps similar to those described in relation to FIGS. 9A through 9D below may be used for this purpose. The frequency for each transducer or group of transducers may be determined in a calibration phase, where the frequency is varied and the effect on the signal strength is observed. As the frequency is varied, the signal will go through maxima and minima, corresponding to quarter wavelength and half wavelength effects, respectively. A frequency corresponding to a maximum may then be selected for optimum quarter wavelength effect. The use of the quarter wavelength layer may be used with flat surface or surfaces of non-uniform thickness. The use of the quarter wavelength layer may be especially important in combination with materials with a large acoustic impedance mismatch, e.g., stainless steel.



FIG. 6A illustrates a cross section view of an ultrasonic fingerprint sensor 600 having a matching layer 620 of uniform thickness, according to an embodiment. Ultrasonic fingerprint sensor 600 includes cover layer 630 over piezoelectric layer 610, where matching laying 620 is between cover layer 630 over piezoelectric layer 610. In some embodiments, matching layer 620 is an adhesive layer (e.g., an epoxy) for bonding cover layer 630 to piezoelectric layer 610. As illustrated, matching layer 620 has a thickness that is substantially equal to a quarter wavelength of the transmission frequency of piezoelectric layer 610.



FIG. 6B illustrates a cross section view of an ultrasonic fingerprint sensor 650 having a matching layer 670 of non-uniform thickness, according to an embodiment. Ultrasonic fingerprint sensor 650 includes cover layer 680 over piezoelectric layer 660, where matching laying 670 is between cover layer 680 over piezoelectric layer 660. In some embodiments, matching layer 670 is an adhesive layer (e.g., an epoxy) for bonding cover layer 680 to piezoelectric layer 660.


As illustrated, matching layer 670 has a non-uniform thickness. In accordance with various embodiments, piezoelectric layer 660 is operable to transmit at different frequencies associated with different regions of thickness of matching layer 670, where a thickness at each region is substantially equal to a quarter wavelength of the transmission frequency of piezoelectric layer 660. In some embodiments, the thickness at each region is substantially equal to a quarter wavelength of the transmission frequency of piezoelectric layer 660 plus or minus a one-eighth wavelength (or the required accuracy) of the transmission frequency at the region. It should be appreciated that ultrasonic fingerprint sensor 650 can have any number of transmission regions of piezoelectric layer 660, ranging from individual transducers to large regions of transducers. While matching layer 670 is shown as having various thickness at the two-dimensional cross section view, it should be appreciated that matching layer 670 can have varying frequency over the entire three-dimensional volume of matching layer 620.



FIGS. 7A, 7B, and 7C illustrate cross section views of ultrasonic fingerprint sensors having matching layers of non-uniform thickness, according to embodiments. FIG. 7A illustrates a cross section view of ultrasonic fingerprint sensor 700 having a matching layer 714 of linear non-uniform thickness, according to an embodiment. As illustrated, ultrasonic fingerprint sensor 700 includes an active sensing layer 712 on top of a substrate 710, matching layer 714 on top of sensing layer 712, and contact layer 716 on top of matching layer 714. In some embodiments, sensing layer 712 may comprise an array of ultrasonic transducers (e.g., PMUTs 100 of FIG. 1A, PMUTs 100′ of FIG. 1B, or bulk piezo actuator elements) that may be used emit and detect ultrasonic waves. In some embodiments, matching layer 714 is an adhesive layer (e.g., an epoxy) for bonding contact layer 716 to sensing layer 712. Contact layer 716 has contact surface 718. For example, a user using ultrasonic fingerprint sensor 700 places his or her finger in contact with contact surface 718.


As illustrated, matching layer 714 includes two regions 714a and 714b, where the thickness of each region 714a and 714b is within a tolerance range of a quarter wavelength, or substantially a quarter wavelength, of the transmission frequency of each corresponding region 712a and 712b of sensing layer 712. In some embodiments, the thickness at each corresponding region 714a and 714b is substantially equal to a quarter wavelength of the transmission frequency of the corresponding region 712a and 712b of sensing layer 712 plus or minus a one-eighth wavelength of the transmission frequency at the region (e.g., a range of a quarter wavelength plus or minus a one-eighth wavelength of the transmission frequency). In some embodiments, the transmission frequency is tuned such that a quarter wavelength of the transmission frequency is substantially equal to a thickness of regions 714a and 714b. The thickness of region 714a of matching layer 714 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 712a of sensing layer 712 and the thickness of region 714b of matching layer 714 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 712b of sensing layer 712, such that the thickness of region 714a is different than regions 714b.


It should be appreciated that the slope of matching layer 714 may dictate or influence the number of different regions of matching layer 714, and that the two regions 714a and 714b of matching layer 714 are examples. The number of different regions may vary based on the tolerance for accuracy, the slope of the linear non-uniform thickness, the number of available transmission frequencies, the control of the available transmission frequencies, the applications utilizing the fingerprint sensor, etc. For example, where a system has a certain number of adjustable or selectable transmission frequencies, embodiments herein are configured to group ultrasonic transducers to best fit the available transmission frequencies, within an acceptable tolerance, into regions of sensing layer 712, corresponding to the regions of matching layer 714.



FIG. 7B illustrates a cross section view of ultrasonic fingerprint sensor 720 having a matching layer 734 of convex non-uniform thickness, according to an embodiment. As illustrated, ultrasonic fingerprint sensor 720 includes an active sensing layer 732 on top of a substrate 730, matching layer 734 on top of sensing layer 732, and contact layer 736 on top of matching layer 734. In some embodiments, sensing layer 732 may comprise an array of ultrasonic transducers (e.g., PMUTs 100 of FIG. 1A, PMUTs 100′ of FIG. 1B, or bulk piezo actuator elements) that may be used emit and detect ultrasonic waves. In some embodiments, matching layer 734 is an adhesive layer (e.g., an epoxy) for bonding contact layer 736 to sensing layer 732. Contact layer 736 has contact surface 738. For example, a user using ultrasonic fingerprint sensor 720 places his or her finger in contact with contact surface 738.


As illustrated, matching layer 734 includes five regions 734a through 734e, where the thickness of each region 734a through 734e is substantially equal to a quarter wavelength of the transmission frequency of each corresponding region 732a through 732e of sensing layer 732. In some embodiments, the thickness at each corresponding region 734a through 734e is substantially equal to a quarter wavelength of the transmission frequency of the corresponding region 732a through 732e of sensing layer 732 plus or minus a one-eighth wavelength of the transmission frequency at the region (e.g., a range of a quarter wavelength plus or minus a one-eighth wavelength of the transmission frequency). As illustrated, the thickness of region 734a of matching layer 734 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 732a of sensing layer 732, the thickness of region 734b of matching layer 734 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 732b of sensing layer 732, the thickness of region 734c of matching layer 734 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 732c of sensing layer 732, the thickness of region 734d of matching layer 734 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 732d of sensing layer 732, and the thickness of region 734e of matching layer 734 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 732e of sensing layer 732. It should be appreciated that the thickness of at least two regions 734a through 734e are different. As illustrated, the thickness of regions 734a and 734e are substantially equal and the thickness of regions 734b and 734d are substantially equal.


It should be appreciated that the slope or curve of matching layer 734 may dictate or influence the number of different regions of matching layer 734, and that the five regions 734a through 734b of matching layer 734 are examples. The number of different regions may vary based on the tolerance for accuracy, the slope of the convex non-uniform thickness, the number of available transmission frequencies, the control of the available transmission frequencies, the applications utilizing the fingerprint sensor, etc. For example, where a system has a certain number of adjustable or selectable transmission frequencies, embodiments herein are configured to group ultrasonic transducers to best fit the available transmission frequencies, within an acceptable tolerance, into regions of sensing layer 732, corresponding to the regions of matching layer 734.



FIG. 7C illustrates a cross section view of ultrasonic fingerprint sensor 740 having a matching layer 754 of concave non-uniform thickness, according to an embodiment. As illustrated, ultrasonic fingerprint sensor 740 includes an active sensing layer 752 on top of a substrate 750, matching layer 754 on top of sensing layer 752, and contact layer 756 on top of matching layer 754. In some embodiments, sensing layer 752 may comprise an array of ultrasonic transducers (e.g., PMUTs 100 of FIG. 1A, PMUTs 100′ of FIG. 1B, or bulk piezo actuator elements) that may be used emit and detect ultrasonic waves. In some embodiments, matching layer 754 is an adhesive layer (e.g., an epoxy) for bonding contact layer 756 to sensing layer 752. Contact layer 756 has contact surface 758. For example, a user using ultrasonic fingerprint sensor 740 places his or her finger in contact with contact surface 758.


As illustrated, matching layer 754 includes five regions 754a through 754e, where the thickness of each region 754a through 754e is substantially equal to a quarter wavelength of the transmission frequency of each corresponding region 752a through 752e of sensing layer 752. In some embodiments, the thickness at each corresponding region 754a through 754e is substantially equal to a quarter wavelength of the transmission frequency of the corresponding region 752a through 752e of sensing layer 752 plus or minus a one-eighth wavelength of the transmission frequency at the region (e.g., a range of a quarter wavelength plus or minus a one-eighth wavelength of the transmission frequency). As illustrated, the thickness of region 754a of matching layer 754 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 752a of sensing layer 752, the thickness of region 754b of matching layer 754 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 752b of sensing layer 752, the thickness of region 754c of matching layer 754 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 752c of sensing layer 752, the thickness of region 754d of matching layer 754 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 752d of sensing layer 752, and the thickness of region 754e of matching layer 754 is substantially equal to a quarter wavelength of the transmission frequency of corresponding region 752e of sensing layer 752. It should be appreciated that the thickness of at least two regions 754a through 754e are different. As illustrated, the thickness of regions 754a and 754e are substantially equal and the thickness of regions 754b and 754d are substantially equal.


It should be appreciated that the slope or curve of matching layer 754 may dictate or influence the number of different regions of matching layer 754, and that the five regions 754a through 754b of matching layer 754 are examples. The number of different regions may vary based on the tolerance for accuracy, the slope of the concave non-uniform thickness, the number of available transmission frequencies, the control of the available transmission frequencies, the applications utilizing the fingerprint sensor, etc. For example, where a system has a certain number of adjustable or selectable transmission frequencies, embodiments herein are configured to group ultrasonic transducers to best fit the available transmission frequencies, within an acceptable tolerance, into regions of sensing layer 752, corresponding to the regions of matching layer 754.


In some embodiments, the frequency of the acoustic waves is adapted to the local thickness of the matching layer, or any other layer used for creating constructive interference. Frequency grouping maps similar to those described in relation to FIGS. 9A through 9D may be used for this purpose. The frequency for each transducer or group of transducers may be determined in a calibration phase, where the frequency is varied and the effect on the signal strength is observed. As the frequency is varied, the signal will go through maxima and minima, corresponding to quarter wavelength and half wavelength effects, respectively. A frequency corresponding to a maximum may then be selected for optimum quarter wavelength effect, e.g., as illustrated in FIG. 8. The use of the quarter wavelength layer may be used with flat surface or surfaces of non-uniform thickness. The use of the quarter wavelength layer may be especially important in combination with materials with a large acoustic impedance mismatch, such as e.g. stainless steel



FIG. 8 illustrates an example graph 800 of transmission versus matching layer thickness of an ultrasonic fingerprint sensor for different contact layer materials, according to embodiments. Graph 800 illustrates that for various contact layer materials (e.g., aluminum, titanium, and stainless steel), the transmission frequency signal is highest at a matching layer having a thickness of a quarter wavelength of the transmission frequency. For example, an aluminum cover has an impedance ZL of approximately 15. At a transmission frequency of 50 MHz, as shown at line 805, the thickness of a matching layer that provides the highest signal is approximately 14 μm, as indicated by arrow 810 (as well as approximately 42 μm, approximately 70 μm, etc.) This highest signal at approximately 14 μm corresponds to substantially a quarter wavelength of the transmission frequency of 50 MHz. Moreover, as can be seen in FIG. 8, the thickness of a matching layer that provides the highest signal is also approximately 14 μm for titanium and stainless steel covers. While the signal strength varies for all cover materials (e.g., based on material acoustic impedance), the thickness of the matching layer for a given transmission frequency is the same.


As can be seen in graph 800 at range 820, the thickness of a matching layer that provides the highest signal is approximately 14 μm, the range 820 at which a signal strength is at or close to the highest is substantially a quarter wavelength plus or minus a one-eighth wavelength of the transmission frequency. Beyond range 820, at the flexion point of the curve, the signal strength decreases. In some embodiment, a narrower range 830 is used (e.g., a quarter wavelength plus or minus a one-sixteenth wavelength of the transmission frequency) for providing an smaller tolerance of signal.


In some embodiments, the thickness of the matching layer is selected based on the transmission frequency of the underlying sensor and the cover material. In some embodiments, the transmission frequency is tuned according to the thickness of the matching layer that provides the highest signal. In some embodiments, a thickness of a matching layer is selected based on a desired transmission frequency, and the transmission frequency is then tuned or slightly adjusted to achieve a transmission frequency where the thickness is substantially equal to a quarter wavelength. This then compensates for the fact that the actual thickness may not be exactly equal to the desired thickness.



FIGS. 9A, 9B, 9C, and 9D illustrate examples of transmission frequency regions for use by ultrasonic transducers of an ultrasonic fingerprint sensor underlying a matching layer of non-uniform thickness, according to embodiments. As the thickness of the matching layer varies over the surface of the ultrasonic sensor layer, different regions of the matching layer correspond to different transmission frequencies for the underlying ultrasonic transducers for generating ultrasonic signals that have the highest signal strength. It should be appreciated that the regions can cover a range of signal strengths corresponding to a quarter wavelength plus or minus a one-eighth wavelength of the transmission frequency. The grouping of ultrasonic transducers into regions allows for the collective control of ultrasonic transducers, and is useful in selecting regions where the tolerance of the signal strength can be collectively controlled within the appropriate signal strength range.



FIG. 9A illustrates an example of block transmission frequency regions 910a through 910n (generically referred to as a region 910) for use by an ultrasonic fingerprint sensor 900 underlying a matching layer of non-uniform thickness, according to an embodiment. As illustrated, ultrasonic fingerprint sensor 900 has 5×5 regions having varying transmission frequencies. It should be appreciated that a region 910 can include one or more ultrasonic transducers. It should also be appreciated that some regions 910 can have the same operating transmission frequency of ultrasonic transducers. Although the regions are shown with substantially equivalent sizes, the size of the different regions may vary, depending on the thickness of the matching layer and/or selected frequencies.



FIG. 9B illustrates an example of ring-shaped transmission frequency regions 930a through 930n (generically referred to as a region 930) for use by an ultrasonic fingerprint sensor 920 underlying a matching layer of non-uniform thickness, according to an embodiment. For example, ring-shaped transmission frequency regions 930 of FIG. 9B may be used in a dimple or curved (e.g., concave or convex) shaped matching layer. As illustrated, ultrasonic fingerprint sensor 920 four regions having varying transmission frequencies where region 930d is circular, regions 930b and 930c are ring-shaped, and region 930a is square shaped with a circular cutout. It should be appreciated that a region 930 can include one or more ultrasonic transducers. It should also be appreciated that some regions 930 can have the same operating transmission frequency of ultrasonic transducers.



FIG. 9C illustrates an example of column-shaped transmission frequency regions 950a through 950n (generically referred to as a region 950) for use by an ultrasonic fingerprint sensor 940 underlying a matching layer of non-uniform thickness, according to an embodiment. For example, column-shaped transmission frequency regions 950 of FIG. 9C may be used in a matching layer having a thickness change in the horizontal direction. As illustrated, ultrasonic fingerprint sensor 940 has five column-shaped regions having varying transmission frequencies. It should be appreciated that a region 950 can include one or more ultrasonic transducers. It should also be appreciated that some regions 950 can have the same operating transmission frequency of ultrasonic transducers.



FIG. 9D illustrates an example of row-shaped transmission frequency regions 970a through 970n (generically referred to as a region 970) for use by an ultrasonic fingerprint sensor 960 underlying a matching layer of non-uniform thickness, according to an embodiment. For example, row-shaped transmission frequency regions 970 of FIG. 9D may be used in a matching layer having a thickness change in the vertical direction. As illustrated, ultrasonic fingerprint sensor 960 has five row-shaped regions having varying transmission frequencies. It should be appreciated that a region 970 can include one or more ultrasonic transducers. It should also be appreciated that some regions 970 can have the same operating transmission frequency of ultrasonic transducers.


During imaging, different portions of an image are captured using the different transmission frequencies at the different regions. Pixels of the frequency regions may be captured based on the order of the frequency regions, for example with reference to FIG. 9A, starting with region 910a, then 910b, etc. Alternatively, pixels of the frequency regions may be captured in order of frequency, going from a low frequency to a high frequency, or vice-versa. It should be appreciated that portions can be individually captured or all portions using the same transmission frequency can be captured at the same imaging operation. In other embodiments, entire images may be captured using particular transmission frequencies, and the pertinent pixels may be extracted from these images for use in the final output image. The pixels corresponding to the frequency regions are then combined into a single output image.


It should be appreciated that each frequency region may operate to capture pixels during an imaging process in parallel, in series, or concurrently. Where the pixels are captured in series, the image capture may have latency, so the decision as to whether to capture pixels of different frequency regions in parallel, in series, or concurrently may be device or application specific. For example, different applications may have a requirement for higher resolution images (e.g., security applications). Accordingly, security applications may utilize in series pixel capture to capture a high resolution image, accepting the additional latency, while other applications may utilize different pixel capture ordering in parallel or concurrently to capture images with lower latency.



FIGS. 10 and 11 illustrate flow diagrams of example methods for operating a fingerprint sensor comprised of ultrasonic transducers, according to various embodiments. Procedures of these methods will be described with reference to elements and/or components of various figures described herein. It is appreciated that in some embodiments, the procedures may be performed in a different order than described, that some of the described procedures may not be performed, and/or that one or more additional procedures to those described may be performed. The flow diagrams include some procedures that, in various embodiments, are carried out by one or more processors (e.g., a host processor or a sensor processor) under the control of computer-readable and computer-executable instructions that are stored on non-transitory computer-readable storage media. It is further appreciated that one or more procedures described in the flow diagrams may be implemented in hardware, or a combination of hardware with firmware and/or software.



FIG. 10 illustrates a flow diagram 1000 of an example method for operating an ultrasonic sensor including a two-dimensional array of ultrasonic transducers, according to embodiments. The ultrasonic sensor includes a two-dimensional array of ultrasonic transducers, a contact layer overlying the two-dimensional array of ultrasonic transducers, and a matching layer between the two-dimensional array of ultrasonic transducers and the contact layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer, where the matching layer has a non-uniform thickness overlying the two-dimensional array of ultrasonic transducers.


In some embodiments, the matching layer has an acoustic impedance between an acoustic impedance of the two-dimensional array of ultrasonic transducers and an acoustic impedance of the contact layer. In some embodiments, the ultrasonic sensor further includes a packaging epoxy overlying the two-dimensional array of ultrasonic transducers, such that the matching layer is connected to the packaging epoxy and the contact layer. In some embodiments, a first thickness of the matching layer at a first region is substantially equal to a quarter wavelength of the first transmission frequency plus or minus a one-eighth wavelength of the first transmission frequency and a second thickness of the matching layer at a second region is substantially equal to a quarter wavelength of the second transmission frequency plus or minus a one-eighth wavelength of the second transmission frequency.


At procedure 1010 of flow diagram 1000, a first subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a first region of the two-dimensional array of ultrasonic transducers is activated at a first transmission frequency to image a first subset of pixels, wherein the first transmission frequency is determined such that a first thickness of the matching layer at the first region is substantially equal to a quarter wavelength of the first transmission frequency.


At procedure 1020, a second subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a second region of the two-dimensional array of ultrasonic transducers is activated at a second transmission frequency to image a second subset of pixels, where the second transmission frequency is determined such that a second thickness of the matching layer at the second region is substantially equal to a quarter wavelength of the second transmission frequency, wherein the first region and the second region are non-overlapping regions of the two-dimensional array of ultrasonic transducers and wherein the first thickness and the second thickness are different. It should be appreciated that procedure 1020 can be performed sequential to, parallel to, or concurrent to procedure 1010.


In some embodiments, as shown at procedure 1030, a third subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a third region of the two-dimensional array of ultrasonic transducers is activated at a third transmission frequency to image a third subset of pixels, wherein a third thickness of the matching layer at the third region is substantially equal to a quarter wavelength of the third transmission frequency, wherein the first region, the second region, and the third region are non-overlapping regions of the two-dimensional array of ultrasonic transducers. It should be appreciated that procedure 1030 can be performed sequential to, parallel to, or concurrent to procedures 1010 and/or 1020.


At procedure 1040, the first subset of pixels and the second subset of pixels are combined into a compound fingerprint image, wherein the compound fingerprint image compensates for the non-uniform thickness of the matching layer. In one embodiment, the third subset is also combined into the compound fingerprint image.



FIG. 11 illustrates a flow diagram 1100 of an example method for calibrating an ultrasonic sensor including a two-dimensional array of ultrasonic transducers, according to embodiments. The ultrasonic sensor includes a two-dimensional array of ultrasonic transducers, a contact layer overlying the two-dimensional array of ultrasonic transducers, and a matching layer between the two-dimensional array of ultrasonic transducers and the contact layer, where the matching layer has a non-uniform thickness overlying the two-dimensional array of ultrasonic transducers. In some embodiments, a thickness of the matching layer at each region is substantially equal to a quarter wavelength of a transmission frequency for the region. In some embodiments, the thickness of the matching layer at each region is substantially equal to a quarter wavelength of the transmission frequency plus or minus a one-eighth wavelength of the transmission frequency at the region. In some embodiments, the matching layer is an adhesive layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer. In some embodiments, the matching layer has an acoustic impedance between an acoustic impedance of the two-dimensional array of ultrasonic transducers and an acoustic impedance of the contact layer.


At procedure 1110 of flow diagram 1100, ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a plurality of regions of the two-dimensional array of ultrasonic transducers are activated at a plurality of transmission frequencies, where the plurality of regions are non-overlapping. At procedure 1120 of flow diagram 1100, a signal for each of the plurality of transmission frequencies at the plurality of regions is monitored.


In one embodiment, as shown at procedure 1130, it is determined how ultrasonic transducers are grouped with the available frequencies. In one embodiment, where there are a certain number of fixed transmission frequencies, it is determined which ultrasonic transducers are grouped with which transmission frequency, where the frequency is chosen such that the matching layer thickness is closest to a quarter wavelength. In another embodiment, where there are a certain number of flexible transmission frequencies, it is determined which ultrasonic transducers are grouped with which transmission frequency. For example, a distribution of transmission frequencies and groups is determined to get the best result, e.g., optimizing a loss function for the total sensor, where a loss function depends on deviation from ideal quarter wavelength setting. In another embodiment, where there are unlimited or individually controllable transmission frequencies, each ultrasonic transducers is assigned a transmission frequency. At procedure 1140, for the plurality of regions, a transmission frequency of the plurality of transmission frequencies having a highest signal for a region is set as the transmission frequency for the region.


What has been described above includes examples of the subject disclosure. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject matter, but it is to be appreciated that many further combinations and permutations of the subject disclosure are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.


In particular and in regard to the various functions performed by the above described components, devices, circuits, systems and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the claimed subject matter.


The aforementioned systems and components have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it should be noted that one or more components may be combined into a single component providing aggregate functionality or divided into several separate sub-components. Any components described herein may also interact with one or more other components not specifically described herein.


In addition, while a particular feature of the subject innovation may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” “including,” “has,” “contains,” variants thereof, and other similar words are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.


Thus, the embodiments and examples set forth herein were presented in order to best explain various selected embodiments of the present invention and its particular application and to thereby enable those skilled in the art to make and use embodiments of the invention. However, those skilled in the art will recognize that the foregoing description and examples have been presented for the purposes of illustration and example only. The description as set forth is not intended to be exhaustive or to limit the embodiments of the invention to the precise form disclosed.

Claims
  • 1. An ultrasonic sensor comprising: a two-dimensional array of ultrasonic transducers, wherein the two-dimensional array of ultrasonic transducers is substantially flat;a contact layer overlying the two-dimensional array of ultrasonic transducers;a matching layer between the two-dimensional array of ultrasonic transducers and the contact layer, wherein the matching layer has a non-uniform thickness overlying the two-dimensional array of ultrasonic transducers; andan array controller configured to control activation of ultrasonic transducers during an imaging operation for imaging a plurality of pixels at a plurality of positions within the two-dimensional array of ultrasonic transducers, such that during the imaging operation, the array controller is configured to: activate a first subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a first region of the two-dimensional array of ultrasonic transducers at a first transmission frequency, wherein the first transmission frequency is determined such that a first thickness of the matching layer at the first region is substantially equal to a quarter wavelength of the first transmission frequency;activate a second subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a second region of the two-dimensional array of ultrasonic transducers at a second transmission frequency, wherein the second transmission frequency is determined such that a second thickness of the matching layer at the second region is substantially equal to a quarter wavelength of the second transmission frequency, wherein the first region and the second region are non-overlapping regions of the two-dimensional array of ultrasonic transducers and wherein the first thickness and the second thickness are different; andcombine the plurality of pixels into a compound fingerprint image, wherein the compound fingerprint image compensates for the non-uniform thickness of the matching layer.
  • 2. The ultrasonic sensor of claim 1, wherein the first region and the second region are associated with different blocks of ultrasonic transducers of the two-dimensional array of ultrasonic transducers.
  • 3. The ultrasonic sensor of claim 1, wherein the first region and the second region are associated with different columns of ultrasonic transducers of the two-dimensional array of ultrasonic transducers.
  • 4. The ultrasonic sensor of claim 1, wherein the first region and the second region are associated with different rows of ultrasonic transducers of the two-dimensional array of ultrasonic transducers.
  • 5. The ultrasonic sensor of claim 1, wherein the first thickness of the matching layer at the first region is substantially equal to a quarter wavelength of the first transmission frequency plus or minus a one-eighth wavelength of the first transmission frequency and the second thickness of the matching layer at the second region is substantially equal to a quarter wavelength of the second transmission frequency plus or minus a one-eighth wavelength of the second transmission frequency.
  • 6. The ultrasonic sensor of claim 1, wherein during the imaging operation, the array controller is configured to: activate a third subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a third region of the two-dimensional array of ultrasonic transducers at a third transmission frequency, wherein a third thickness of the matching layer at the third region is substantially equal to a quarter wavelength of the third transmission frequency, wherein the first region, the second region, and the third region are non-overlapping regions of the two-dimensional array of ultrasonic transducers.
  • 7. The ultrasonic sensor of claim 6, wherein the first thickness, the second thickness, and the third thickness are different.
  • 8. The ultrasonic sensor of claim 1, wherein the matching layer has an acoustic impedance between an acoustic impedance of the two-dimensional array of ultrasonic transducers and an acoustic impedance of the contact layer.
  • 9. The ultrasonic sensor of claim 1, further comprising a packaging epoxy overlying the two-dimensional array of ultrasonic transducers, such that the matching layer is connected to the packaging epoxy and the contact layer.
  • 10. The ultrasonic sensor of claim 1, wherein the matching layer is an adhesive layer for bonding the two-dimensional array of ultrasonic transducers to the contact layer.
  • 11. A method for operating an ultrasonic sensor comprising a two-dimensional array of ultrasonic transducers, a contact layer overlying the two-dimensional array of ultrasonic transducers, and a matching layer between the two-dimensional array of ultrasonic transducers and the contact layer, wherein the matching layer has a non-uniform thickness overlying the two-dimensional array of ultrasonic transducers, the method comprising: activating a first subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a first region of the two-dimensional array of ultrasonic transducers at a first transmission frequency to image a first subset of pixels, wherein the first transmission frequency is determined such that a first thickness of the matching layer at the first region is substantially equal to a quarter wavelength of the first transmission frequency;activating a second subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a second region of the two-dimensional array of ultrasonic transducers at a second transmission frequency to image a second subset of pixels, wherein the second transmission frequency is determined such that a second thickness of the matching layer at the second region is substantially equal to a quarter wavelength of the second transmission frequency, wherein the first region and the second region are non-overlapping regions of the two-dimensional array of ultrasonic transducers and wherein the first thickness and the second thickness are different; andcombining the first subset of pixels and the second subset of pixels into a compound fingerprint image, wherein the compound fingerprint image compensates for the non-uniform thickness of the matching layer.
  • 12. The method of claim 11, wherein the first thickness of the matching layer at the first region is substantially equal to a quarter wavelength of the first transmission frequency plus or minus a one-eighth wavelength of the first transmission frequency and the second thickness of the matching layer at the second region is substantially equal to a quarter wavelength of the second transmission frequency plus or minus a one-eighth wavelength of the second transmission frequency.
  • 13. The method of claim 11, further comprising: activating a third subset of ultrasonic transducers of the two-dimensional array of ultrasonic transducers associated with a third region of the two-dimensional array of ultrasonic transducers at a third transmission frequency to image a third subset of pixels, wherein a third thickness of the matching layer at the third region is substantially equal to a quarter wavelength of the third transmission frequency, wherein the first region, the second region, and the third region are non-overlapping regions of the two-dimensional array of ultrasonic transducers.
  • 14. The method of claim 13, wherein the first thickness, the second thickness, and the third thickness are different.
  • 15. The method of claim 11, wherein the activating the first subset of ultrasonic transducers and the activating the second subset of ultrasonic transducers is based on requirement of an application using the compound fingerprint image.
RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Patent Application 62/987,266, filed on Mar. 9, 2020, entitled “ULTRASONIC FINGERPRINT SENSOR WITH A CONTACT LAYER OF NON-UNIFORM THICKNESS,” by Mark Jennings et al., and assigned to the assignee of the present application, which is incorporated herein by reference in its entirety.

US Referenced Citations (322)
Number Name Date Kind
4880012 Sato Nov 1989 A
5575286 Weng et al. Nov 1996 A
5680863 Hossack et al. Oct 1997 A
5684243 Gururaja et al. Nov 1997 A
5808967 Yu et al. Sep 1998 A
5867302 Fleming Feb 1999 A
5911692 Hussain et al. Jun 1999 A
6071239 Cribbs et al. Jun 2000 A
6104673 Cole et al. Aug 2000 A
6289112 Jain et al. Sep 2001 B1
6292576 Brownlee Sep 2001 B1
6350652 Libera et al. Feb 2002 B1
6428477 Mason Aug 2002 B1
6483932 Martinez et al. Nov 2002 B1
6500120 Anthony Dec 2002 B1
6676602 Barnes et al. Jan 2004 B1
6679844 Loftman et al. Jan 2004 B2
6736779 Sano et al. May 2004 B1
7067962 Scott Jun 2006 B2
7109642 Scott Sep 2006 B2
7243547 Cobianu et al. Jul 2007 B2
7257241 Lo Aug 2007 B2
7400750 Nam Jul 2008 B2
7433034 Huang Oct 2008 B1
7459836 Scott Dec 2008 B2
7471034 Schlote-Holubek et al. Dec 2008 B2
7489066 Scott et al. Feb 2009 B2
7634117 Cho Dec 2009 B2
7739912 Schneider et al. Jun 2010 B2
8018010 Tigli et al. Sep 2011 B2
8139827 Schneider et al. Mar 2012 B2
8255698 Li et al. Aug 2012 B2
8311514 Bandyopadhyay et al. Nov 2012 B2
8335356 Schmitt Dec 2012 B2
8433110 Kropp et al. Apr 2013 B2
8508103 Schmitt et al. Aug 2013 B2
8515135 Clarke et al. Aug 2013 B2
8666126 Lee et al. Mar 2014 B2
8703040 Liufu et al. Apr 2014 B2
8723399 Sammoura et al. May 2014 B2
8805031 Schmitt Aug 2014 B2
9056082 Liautaud et al. Jun 2015 B2
9070861 Bibl et al. Jun 2015 B2
9224030 Du et al. Dec 2015 B2
9245165 Slaby et al. Jan 2016 B2
9424456 Kamath Koteshwara et al. Aug 2016 B1
9572549 Belevich et al. Feb 2017 B2
9582102 Setlak Feb 2017 B2
9582705 Du et al. Feb 2017 B2
9607203 Yazdandoost et al. Mar 2017 B1
9607206 Schmitt et al. Mar 2017 B2
9613246 Gozzini et al. Apr 2017 B1
9618405 Liu et al. Apr 2017 B2
9665763 Du et al. May 2017 B2
9747488 Yazdandoost et al. Aug 2017 B2
9785819 Oreifej Oct 2017 B1
9815087 Ganti et al. Nov 2017 B2
9817108 Kuo et al. Nov 2017 B2
9818020 Schuckers et al. Nov 2017 B2
9881195 Lee et al. Jan 2018 B2
9881198 Lee et al. Jan 2018 B2
9898640 Ghavanini Feb 2018 B2
9904836 Yeke Yazdandoost et al. Feb 2018 B2
9909225 Lee et al. Mar 2018 B2
9922235 Cho et al. Mar 2018 B2
9933319 Li et al. Apr 2018 B2
9934371 Hong et al. Apr 2018 B2
9939972 Shepelev et al. Apr 2018 B2
9953205 Rasmussen et al. Apr 2018 B1
9959444 Young et al. May 2018 B2
9967100 Hong et al. May 2018 B2
9983656 Merrell et al. May 2018 B2
9984271 King et al. May 2018 B1
10006824 Tsai et al. Jun 2018 B2
10275638 Yousefpor et al. Apr 2019 B1
10315222 Salvia et al. Jun 2019 B2
10322929 Soundara Pandian et al. Jun 2019 B2
10325915 Salvia et al. Jun 2019 B2
10387704 Dagan et al. Aug 2019 B2
10445547 Tsai Oct 2019 B2
10461124 Berger et al. Oct 2019 B2
10478858 Lasiter et al. Nov 2019 B2
10488274 Li et al. Nov 2019 B2
10497747 Tsai et al. Dec 2019 B2
10515255 Strohmann et al. Dec 2019 B2
10539539 Garlepp et al. Jan 2020 B2
10600403 Garlepp et al. Mar 2020 B2
10656255 Ng et al. May 2020 B2
10670716 Apte et al. Jun 2020 B2
10706835 Garlepp et al. Jul 2020 B2
10726231 Tsai et al. Jul 2020 B2
10755067 De Foras et al. Aug 2020 B2
11107858 Berger et al. Aug 2021 B2
20010016686 Okada et al. Aug 2001 A1
20020062086 Miele et al. May 2002 A1
20020135273 Mauchamp et al. Sep 2002 A1
20030013955 Poland Jan 2003 A1
20040085858 Khuri-Yakub et al. May 2004 A1
20040122316 Satoh et al. Jun 2004 A1
20040174773 Thomenius et al. Sep 2004 A1
20050023937 Sashida et al. Feb 2005 A1
20050057284 Wodnicki Mar 2005 A1
20050100200 Abiko et al. May 2005 A1
20050110071 Ema et al. May 2005 A1
20050146240 Smith et al. Jul 2005 A1
20050148132 Wodnicki et al. Jul 2005 A1
20050162040 Robert Jul 2005 A1
20060052697 Hossack et al. Mar 2006 A1
20060079777 Karasawa Apr 2006 A1
20060210130 Germond-Rouet et al. Sep 2006 A1
20060230605 Schlote-Holubek et al. Oct 2006 A1
20060280346 Machida Dec 2006 A1
20070046396 Huang Mar 2007 A1
20070047785 Jang et al. Mar 2007 A1
20070073135 Lee et al. Mar 2007 A1
20070202252 Sasaki Aug 2007 A1
20070215964 Khuri-Yakub et al. Sep 2007 A1
20070223791 Shinzaki Sep 2007 A1
20070230754 Jain et al. Oct 2007 A1
20080125660 Yao et al. May 2008 A1
20080146938 Hazard et al. Jun 2008 A1
20080150032 Tanaka Jun 2008 A1
20080194053 Huang Aug 2008 A1
20080240523 Benkley et al. Oct 2008 A1
20090005684 Kristoffersen et al. Jan 2009 A1
20090163805 Sunagawa et al. Jun 2009 A1
20090182237 Angelsen et al. Jul 2009 A1
20090232367 Shinzaki Sep 2009 A1
20090274343 Clarke Nov 2009 A1
20090303838 Svet Dec 2009 A1
20100030076 Vortman et al. Feb 2010 A1
20100046810 Yamada Feb 2010 A1
20100063391 Kanai et al. Mar 2010 A1
20100113952 Raguin et al. May 2010 A1
20100168583 Dausch et al. Jul 2010 A1
20100195851 Buccafusca Aug 2010 A1
20100201222 Adachi et al. Aug 2010 A1
20100202254 Roest et al. Aug 2010 A1
20100239751 Regniere Sep 2010 A1
20100251824 Schneider et al. Oct 2010 A1
20100256498 Tanaka Oct 2010 A1
20100278008 Ammar Nov 2010 A1
20110285244 Lewis et al. Nov 2011 A1
20110291207 Martin et al. Dec 2011 A1
20120016604 Irving et al. Jan 2012 A1
20120092026 Liautaud et al. Apr 2012 A1
20120095335 Sverdlik Apr 2012 A1
20120095344 Kristoffersen et al. Apr 2012 A1
20120095347 Adam et al. Apr 2012 A1
20120147698 Wong et al. Jun 2012 A1
20120179044 Chiang et al. Jul 2012 A1
20120224041 Monden Sep 2012 A1
20120232396 Tanabe Sep 2012 A1
20120238876 Tanabe et al. Sep 2012 A1
20120263355 Monden Oct 2012 A1
20120279865 Regniere et al. Nov 2012 A1
20120288641 Diatezua et al. Nov 2012 A1
20120300988 Ivanov et al. Nov 2012 A1
20130051179 Hong Feb 2013 A1
20130064043 Degertekin et al. Mar 2013 A1
20130127297 Bautista May 2013 A1
20130127592 Fyke et al. May 2013 A1
20130133428 Lee et al. May 2013 A1
20130201134 Schneider et al. Aug 2013 A1
20130271628 Ku et al. Oct 2013 A1
20130294201 Hajati Nov 2013 A1
20130294202 Hajati Nov 2013 A1
20140003679 Han et al. Jan 2014 A1
20140060196 Falter et al. Mar 2014 A1
20140117812 Hajati May 2014 A1
20140176332 Alameh et al. Jun 2014 A1
20140208853 Onishi et al. Jul 2014 A1
20140219521 Schmitt et al. Aug 2014 A1
20140232241 Hajati Aug 2014 A1
20140265721 Robinson et al. Sep 2014 A1
20140294262 Schuckers et al. Oct 2014 A1
20140313007 Harding Oct 2014 A1
20140355387 Kitchens et al. Dec 2014 A1
20150036065 Yousefpor et al. Feb 2015 A1
20150049590 Rowe et al. Feb 2015 A1
20150087991 Chen et al. Mar 2015 A1
20150097468 Hajati et al. Apr 2015 A1
20150105663 Kiyose et al. Apr 2015 A1
20150145374 Xu et al. May 2015 A1
20150164473 Kim et al. Jun 2015 A1
20150165479 Lasiter et al. Jun 2015 A1
20150169136 Ganti et al. Jun 2015 A1
20150189136 Chung et al. Jul 2015 A1
20150198699 Kuo et al. Jul 2015 A1
20150206738 Rastegar Jul 2015 A1
20150213180 Herberholz Jul 2015 A1
20150220767 Yoon et al. Aug 2015 A1
20150241393 Ganti et al. Aug 2015 A1
20150261261 Bhagavatula et al. Sep 2015 A1
20150286312 Kang et al. Oct 2015 A1
20150301653 Urushi Oct 2015 A1
20150324569 Hong et al. Nov 2015 A1
20150345987 Hajati Dec 2015 A1
20150357375 Tsai et al. Dec 2015 A1
20150358740 Tsai et al. Dec 2015 A1
20150362589 Tsai Dec 2015 A1
20150371398 Qiao et al. Dec 2015 A1
20160041047 Liu et al. Feb 2016 A1
20160051225 Kim et al. Feb 2016 A1
20160063294 Du et al. Mar 2016 A1
20160063300 Du et al. Mar 2016 A1
20160070967 Du et al. Mar 2016 A1
20160070968 Gu et al. Mar 2016 A1
20160086010 Merrell et al. Mar 2016 A1
20160091378 Tsai et al. Mar 2016 A1
20160092715 Yazdandoost et al. Mar 2016 A1
20160092716 Yazdandoost et al. Mar 2016 A1
20160100822 Kim et al. Apr 2016 A1
20160107194 Panchawagh et al. Apr 2016 A1
20160117541 Lu et al. Apr 2016 A1
20160180142 Riddle et al. Jun 2016 A1
20160296975 Lukacs Oct 2016 A1
20160299014 Li et al. Oct 2016 A1
20160326477 Fernandez-Alcon et al. Nov 2016 A1
20160350573 Kitchens et al. Dec 2016 A1
20160358003 Shen et al. Dec 2016 A1
20170004346 Kim et al. Jan 2017 A1
20170004352 Jonsson et al. Jan 2017 A1
20170330552 Garlepp et al. Jan 2017 A1
20170032485 Vemury Feb 2017 A1
20170059380 Li et al. Mar 2017 A1
20170075700 Abudi et al. Mar 2017 A1
20170076132 Sezan et al. Mar 2017 A1
20170100091 Eigil et al. Apr 2017 A1
20170110504 Panchawagh et al. Apr 2017 A1
20170119343 Pintoffl May 2017 A1
20170124374 Rowe et al. May 2017 A1
20170168543 Dai et al. Jun 2017 A1
20170185821 Chen et al. Jun 2017 A1
20170194934 Shelton et al. Jul 2017 A1
20170200054 Du et al. Jul 2017 A1
20170219536 Koch et al. Aug 2017 A1
20170231534 Agassy et al. Aug 2017 A1
20170243049 Dong Aug 2017 A1
20170255338 Medina et al. Sep 2017 A1
20170293791 Mainguet et al. Oct 2017 A1
20170316243 Ghavanini Nov 2017 A1
20170316248 He et al. Nov 2017 A1
20170322290 Ng Nov 2017 A1
20170322291 Salvia et al. Nov 2017 A1
20170322292 Salvia et al. Nov 2017 A1
20170322305 Apte et al. Nov 2017 A1
20170323133 Tsai Nov 2017 A1
20170325081 Chrisikos et al. Nov 2017 A1
20170326590 Daneman Nov 2017 A1
20170326591 Apte et al. Nov 2017 A1
20170326593 Garlepp et al. Nov 2017 A1
20170326594 Berger et al. Nov 2017 A1
20170328866 Apte et al. Nov 2017 A1
20170328870 Garlepp et al. Nov 2017 A1
20170330012 Salvia et al. Nov 2017 A1
20170330553 Garlepp et al. Nov 2017 A1
20170344782 Andersson Nov 2017 A1
20170357839 Yazdandoost et al. Dec 2017 A1
20180025202 Ryshtun et al. Jan 2018 A1
20180032788 Krenzer et al. Feb 2018 A1
20180101711 D'Souza et al. Apr 2018 A1
20180107852 Fenrich et al. Apr 2018 A1
20180107854 Tsai et al. Apr 2018 A1
20180129849 Strohmann May 2018 A1
20180129857 Bonev May 2018 A1
20180150679 Kim et al. May 2018 A1
20180178251 Foncellino et al. Jun 2018 A1
20180206820 Anand et al. Jul 2018 A1
20180217008 Li et al. Aug 2018 A1
20180225495 Jonsson et al. Aug 2018 A1
20180229267 Ono et al. Aug 2018 A1
20180268232 Kim et al. Sep 2018 A1
20180276443 Strohmann et al. Sep 2018 A1
20180276672 Breed et al. Sep 2018 A1
20180329560 Kim et al. Nov 2018 A1
20180341799 Schwartz et al. Nov 2018 A1
20180349663 Garlepp et al. Dec 2018 A1
20180357457 Rasmussen et al. Dec 2018 A1
20180369866 Sammoura et al. Dec 2018 A1
20180373913 Panchawagh et al. Dec 2018 A1
20190005300 Garlepp et al. Jan 2019 A1
20190012673 Chakraborty et al. Jan 2019 A1
20190018123 Narasimha-Iyer et al. Jan 2019 A1
20190043920 Berger et al. Feb 2019 A1
20190046263 Hayashida et al. Feb 2019 A1
20190057267 Kitchens et al. Feb 2019 A1
20190073507 D'Souza et al. Mar 2019 A1
20190087632 Raguin et al. Mar 2019 A1
20190095015 Han Mar 2019 A1
20190102046 Miranto et al. Apr 2019 A1
20190130083 Agassy et al. May 2019 A1
20190171858 Ataya et al. Jun 2019 A1
20190175035 Van Der Horst et al. Jun 2019 A1
20190188441 Hall et al. Jun 2019 A1
20190188442 Flament et al. Jun 2019 A1
20190247887 Salvia et al. Aug 2019 A1
20190311177 Joo et al. Oct 2019 A1
20190325185 Tang Oct 2019 A1
20190340455 Jung et al. Nov 2019 A1
20190370518 Maor et al. Dec 2019 A1
20200030850 Apte et al. Jan 2020 A1
20200050816 Tsai Feb 2020 A1
20200050817 Salvia et al. Feb 2020 A1
20200050820 Iatsun et al. Feb 2020 A1
20200050828 Li et al. Feb 2020 A1
20200074135 Garlepp et al. Mar 2020 A1
20200111834 Tsai et al. Apr 2020 A1
20200125710 Andersson et al. Apr 2020 A1
20200147644 Chang May 2020 A1
20200158694 Garlepp et al. May 2020 A1
20200175143 Lee et al. Jun 2020 A1
20200194495 Berger et al. Jun 2020 A1
20200210666 Flament Jul 2020 A1
20200250393 Tsai et al. Aug 2020 A1
20200285882 Skovgaard Christensen et al. Sep 2020 A1
20200302140 Lu et al. Sep 2020 A1
20200342203 Lin et al. Oct 2020 A1
20200355824 Apte et al. Nov 2020 A1
20200400800 Ng et al. Dec 2020 A1
20200410070 Strohmann Dec 2020 A1
20200410193 Wu Dec 2020 A1
Foreign Referenced Citations (45)
Number Date Country
1826631 Aug 2006 CN
101192644 Jun 2008 CN
102159334 Aug 2011 CN
105264542 Jan 2016 CN
105378756 Mar 2016 CN
106458575 Jul 2018 CN
109196671 Jan 2019 CN
109255323 Jan 2019 CN
1214909 Jun 2002 EP
2884301 Jun 2015 EP
3086261 Oct 2016 EP
1534140 Jan 2019 EP
3292508 Dec 2020 EP
3757884 Dec 2020 EP
2011040467 Feb 2011 JP
201531701 Aug 2015 TW
2009096576 Aug 2009 WO
2009137106 Nov 2009 WO
2014035564 Mar 2014 WO
2015009635 Jan 2015 WO
2015112453 Jul 2015 WO
2015120132 Aug 2015 WO
2015131083 Sep 2015 WO
2015134816 Sep 2015 WO
2015183945 Dec 2015 WO
2016007250 Jan 2016 WO
2016011172 Jan 2016 WO
2016022439 Feb 2016 WO
2016040333 Mar 2016 WO
2016053587 Apr 2016 WO
2016061406 Apr 2016 WO
2016061410 Apr 2016 WO
2017003848 Jan 2017 WO
2017053877 Mar 2017 WO
2017192890 Nov 2017 WO
2017192895 Nov 2017 WO
2017192899 Nov 2017 WO
2017196678 Nov 2017 WO
2017196681 Nov 2017 WO
2017196682 Nov 2017 WO
2017192903 Dec 2017 WO
2018148332 Aug 2018 WO
2019005487 Jan 2019 WO
2019164721 Aug 2019 WO
2020081182 Apr 2020 WO
Non-Patent Literature Citations (65)
Entry
Tang, et al., “Pulse-Echo Ultrasonic Fingerprint Sensor on a Chip”, IEEE Transducers, Anchorage, Alaska, USA, Jun. 21-25, 2015, pp. 674-677.
ISA/EP, Partial International Search Report for International Application No. PCT/US2019/034032, 8 pages, dated Sep. 12, 2019, 8.
ISA/EP, International Search Report and Written Opinion for International Application # PCT/US2018/063431, pp. 1-15, dated Feb. 5, 2019.
ISA/EP, International Search Report and Written Opinion for International Application # PCT/US2019/015020, pp. 1-23, dated Jul. 1, 2019.
ISA/EP, International Search Report and Written Opinion for International Application # PCT/US2019/023440, pp. 1-10, dated Jun. 4, 2019.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031120, 12 pages, dated Aug. 29, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031127, 13 pages, dated Sep. 1, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031134, 12 pages, dated Aug. 30, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031140, 18 pages, dated Nov. 2, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031421 13 pages, dated Jun. 21, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031426 13 pages, dated Jun. 22, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031431, 14 pages, dated Aug. 1, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031434, 13 pages, dated Jun. 26, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031439, 10 pages, dated Jun. 20, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031824, 18 pages, dated Sep. 22, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031827, 16 pages, dated Aug. 1, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2017/031831, 12 pages, dated Jul. 21, 2017.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2018/037364, 10 pages, dated Sep. 3, 2018.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2020/033854, 16 pages, dated Nov. 3, 2020.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2020/039208, 10 pages, dated Oct. 9, 2020.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2020/039452, 11 pages, dated Sep. 9, 2020.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2020/042427, 18 pages, dated Dec. 14, 2020.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2020/042428, 9 pages, dated Oct. 26, 2020.
ISA/EP, International Search Report for International Application No. PCT/US2017/031826, 16 pages, dated Feb. 27, 2018.
ISA/EP, Partial International Search Report for International Application No. PCT/US2017/031140, 13 pages, dated Aug. 29, 2017.
ISA/EP, Partial International Search Report for International Application No. PCT/US2017/031823, 12 pages, dated Nov. 30, 2017.
ISA/EP, Partial Search Report and Provisional Opinion for International Application No. PCT/US2020/042427, 13 pages, dated Oct. 26, 2020.
ISA/EP, Partial Search Report for International Application No. PCT/US2020/033854, 10 pages, dated Sep. 8, 2020.
“Moving Average Filters”, Waybackmachine XP05547422, Retrieved from the Internet: URL:https://web.archive.org/web/20170809081353/https//www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf [retrieved on Jan. 24, 2019], Aug. 9, 2017, 1-8.
Office Action for CN App No. 201780029016.7 dated Mar. 24, 2020, 7 pages.
Office Action for CN App No. 201780029016.7 dated Sep. 25, 2020, 7 pages.
Office Action for TW App No. 106113266 dated Jun. 22, 2020, 23 pages.
“Receiver Thermal Noise Threshold”, Fisher Telecommunication Services, Satellite Communications. Retrieved from the Internet URL:https://web.archive.org/web/20171027075705/http//www.fishercom.xyz:80/satellite-communications/receiver-thermal-noise-threshold.html, Oct. 27, 2017, 3.
“Sleep Mode”, Wikipedia, Retrieved from the Internet: URL:https://web.archive.org/web/20170908153323/https://en.wikipedia.org/wiki/Sleep_mode [retrieved on Jan. 25, 2019], Sep. 8, 2017, 1-3.
“TMS320C5515 Fingerprint Development Kit (FDK) Hardware Guide”, Texas Instruments, Literature No. SPRUFX3, XP055547651, Apr. 2010, 1-26.
“ZTE V7 Max. 5,5″ smartphone on MediaTeck Helio P10 cpu; Published on Apr. 20, 2016; https://www.youtube.com/watch?v=ncNCbpkGQzU (Year: 2016)”.
Cappelli, et al., “Fingerprint Image Reconstruction from Standard Templates”, IEEE Transactions on Pattern Analysis and Machine Intfii Igence, IEEE Computer Society, vol. 29, No. 9, Sep. 2007, 1489-1503.
Feng, et al., “Fingerprint Reconstruction: From Minutiae to Phase”, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Computer Society, vol. 33, No. 2, Feb. 2011, 209-223.
Jiang, et al., “Ultrasonic Fingerprint Sensor with Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Jan. 1, 2017, 1-9.
Kumar, et al., “Towards Contactless, Low-Cost and Accurate 3D Fingerprint Identification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Computer Society, vol. 37, No. 3, Mar. 2015, 681-696.
Lee, et al., “Low jitter and temperature stable MEMS oscillators”, Frequency Control Symposium (FCS), 2012 IEEE International, May 2012, 1-5.
Li, et al., “Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study”, AIP Advances 5.12. Retrieved from Internet: http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939217, 2015, 127231.
Pang, et al., “Extracting Valley-Ridge Lines from Point-Cloud-Based 3D Fingerprint Models”, IEEE Computer Graphics and Applications, IEEE Service Center, New York, vol. 33, No. 4, Jul./Aug. 2013, 73-81.
Papageorgiou, et al., “Self-Calibration of Ultrasonic Transducers in an Intelligent Data Acquisition System”, International Scientific Journal of Computing, 2003, vol. 2, Issue 2 Retrieved Online: URL: https://scholar.google.com/scholar?q=self-calibration+of+ultrasonic+transducers+in+an+intelligent+data+acquisition+system&hl=en&as_sdt=0&as_vis=1&oi=scholart, 2003, 9-15.
Ross, et al., “From Template to Image: Reconstructing Fingerprints from Minutiae Points”, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Computer Society, vol. 29, No. 4, Apr. 2007, 544-560.
Rozen, et al., “Air-Coupled Aluminum Nitride Piezoelectric Micromachined Ultrasonic Fransducers at 0.3 MHZ To 0.9 MHZ”, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, Jan. 18, 2015, 921-924.
Shen, et al., “Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers”, American Physical Society, Physical Review X 4.4: 041033., Nov. 19, 2014, 041033-1-041033-7.
Tang, et al., “11.2 3D Ultrasonic Fingerprint Sensor-on-a-Chip”, 2016 IEEE International Solid-State Circuits Conference, IEEE, Jan. 31, 2016, 202-203.
Thakar, et al., “Multi-resonator approach to eliminating the temperature dependence of silicon-based timing references”, Hilton Head'14. Retrieved from the Internet: http://blog.narotama.ac.id/wp-content/uploads/2014/12/Multi-resonator-approach-to-eliminating-the-temperature-dependance-of-silicon-based-timing-references.pdf, 2014, 415-418.
Zhou, et al., “Partial Fingerprint Reconstruction with Improved Smooth Extension”, Network and System Security, Springer Berlin Heidelberg, Jun. 3, 2013, 756-762.
Dausch, et al., “Theory and Operation of 2-D Array Piezoelectric Micromachined Ultrasound Transducers”, IEEE Transactions on Ultrasonics, and Frequency Control, vol. 55, No. 11;, Nov. 2008, 2484-2492.
Hopcroft, et al., “Temperature Compensation of a MEMS Resonator Using Quality Factor as a Thermometer”, Retrieved from Internet: http://micromachine.stanford.edu/˜amanu/linked/MAH_MEMS2006.pdf, 2006, 222-225.
Hopcroft, et al., “Using the temperature dependence of resonator quality factor as a thermometer”, Applied Physics Letters 91. Retrieved from Internet: http://micromachine.stanford.edu/˜hopcroft/Publications/Hopcroft_QT_ApplPhysLett_91_013505.pdf, 2007, 013505-1-031505-3.
Qiu, et al., “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging”, Sensors 15, doi:10.3390/s150408020, Apr. 3, 2015, 8020-8041.
Savoia, et al., “Design and Fabrication of a cMUT Probe for Ultrasound Imaging of Fingerprints”, 2010 IEEE International Ultrasonics Symposium Proceedings, Oct. 2010, 1877-1880.
EP Office Action, for Application 17724184.1, dated Oct. 12, 2021, 6 pages.
EP Office Action, dated Oct. 9, 2021, 6 pages.
European Patent Office, Office Action, App 17725018, pp. 5, dated Oct. 25, 2021.
European Patent Office, Office Action, App 17725020.6, pp. 4, dated Oct. 25, 2021.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2019061516, 14 pages, dated Mar. 12, 2020.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2021/021412, 12 pages, dated Jun. 9, 2021.
ISA/EP, International Search Report and Written Opinion for International Application No. PCT/US2021/021561, 9 pages, dated Jun. 28, 2021.
Taiwan Application No. 106114623, 1st Office Action, dated Aug. 5, 2021, pp. 1-8.
Tang, et al., “Pulse-echo ultrasonic fingerprint sensor on a chip”, 2015 Transducers, 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, Apr. 1, 2015, 674-677.
EP Office Action, for Application 17725017.2 dated Feb. 25, 2022, 7 pages.
Related Publications (1)
Number Date Country
20210278927 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62987266 Mar 2020 US