The present invention relates to an ultrasonic levitation device. In particular, the present invention relates to the ultrasonic levitation device comprising an improved structure of guide mechanism, which accomplishes the down-sizing of device and also improves the levitating stability.
An ultrasonic levitation device, using ultrasonic vibration, has a contact-free mechanism and is free from environmental pollution due to abrasion or lubrication agent, and is considered to be appropriate for clean room environment or precision positioning purposes. There are several examples of this type of ultrasonic levitation device, such as those disclosed under Patent Document 1 and Patent Document 2 as shown below:
Patent Document 1: Japanese Unexamined Patent Publication No. Hei 7-196127; and
Patent Document 2: Japanese Unexamined Patent Publication No. Hei 11-301832.
However, the conventional ultrasonic levitation devices discussed as above have the following problems.
According to the conventional ultrasonic levitation devices as disclosed in Japanese Unexamined Patent Publication No. Hei 7-196127 and Japanese Unexamined Patent Publication No. Hei 11-301832, in particular, there is no disclosure of any structure that is accompanied by linear movement guiding mechanism, and when the application of these inventions are intended, it will be impossible to accomplish the movement in a desirous direction with maintaining the stable levitating of a movable section.
Further, according to the “Langevin type” of ultrasonic transducer as disclosed in Japanese Unexamined Patent Publication No. Hei 7-196127, the height of the device would become taller, and therefore it would be impossible to reduce the size of device.
The taller shape of this device would also cause another problem of higher gravity center of a slider (movable section), which would spoil the stability of movement.
In the light of the above problems, it is an object of the present invention to provide an ultrasonic levitation device, which is provided with linear movement guiding mechanism without requiring any complicated structure, and which also improves the levitating stability and levitating rigidity without requiring the large-sizing of the device.
To achieve the objects mentioned above, according to claim 1 of the present invention, there is provided an ultrasonic levitation device having: a fixed section; a movable section disposed to be movable relative to the fixed section; and a vibration generating device disposed in the fixed section or movable section in order to generate ultrasonic vibrations so that the movable section may levitate on a levitation surface, wherein, all or part of a fixed section-side guide disposed in the fixed section is formed convex or concave in a levitation direction, while all or part of a movable section-side guide disposed in the movable section is formed concave or convex in the levitation direction, whereby the movable section-side guide being opposed to and disposed on the fixed section-side guide.
According to claim 2 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 1, wherein: all or part of the fixed section-side guide disposed in the fixed section is formed spike-shape convex or inverted spike-shape concave in the levitation direction, while all or part of the movable section-side guide disposed in the movable section is formed inverted spike-shape concave or spike-shape convex in the levitation direction, whereby the movable section-side guide being opposed to and disposed on the fixed section-side guide.
According to claim 3 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 1, wherein: all or part of the fixed section-side guide disposed in the fixed section is formed substantially isosceles trapezoidal convex of which top being shorter than base, or formed substantially isosceles trapezoidal concave of which top being longer than base, in the levitation direction, while all or part of the movable section-side guide disposed in the movable section is formed substantially isosceles trapezoidal concave of which top being longer than base, or formed substantially isosceles trapezoidal convex of which top being shorter than base, in the levitation direction, whereby the movable section-side guide being opposed to and disposed on the fixed section-side guide.
According to claim 4 of the present invention, there is provided the ultrasonic levitation device as claimed in any one claim of claims 1 through 3, wherein: sets of guides comprising the fixed section-side guide and the movable section-side guide are disposed not less than two.
According to claim 5 of the present invention, there is provided the ultrasonic levitation device as claimed in any one claim of claims 1 through 4, wherein: the vibration generating devices are disposed not less than two.
According to claim 6 of the present invention, there is provided the ultrasonic levitation device as claimed in any one claim of claims 1 through 5, wherein: vibration converting member is used for the vibration generating device.
According to claim 7 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 6, wherein: the vibration converting member is integrated with the fixed section-side guide or the movable section-side guide.
According to claim 8 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 7, wherein: the vibration converting member is substantially in rectangular hollow shape.
According to claim 9 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 8, wherein: a vibration generating source of the vibration generating device is disposed inside the vibration converting member substantially in rectangular hollow shape.
According to claim 10 of the present invention, there is provided the ultrasonic levitation device as claimed in any one claim of claims 1 through 9, wherein: Langevin type ultrasonic transducer or sheet lamination type piezoelectric element or single sheet piezoelectric element is used as the vibration generating source of the vibration generating device.
According to claim 11 of the present invention, there is provided the ultrasonic levitation device as claimed in any one claim of claims 5 through 10, wherein: vibration phase difference has been given between not less than two vibration generating devices to each other.
And according to claim 12 of the present invention, there is provided the ultrasonic levitation device as claimed in claim 11, wherein: the vibration phase difference is at an angle of substantially 90 degrees or substantially 270 degrees.
Accordingly, in the case of the ultrasonic levitation device of the present invention, all or part of the fixed section-side guide disposed in the fixed section is formed convex or concave in the levitation direction, while all or part of the movable section-side guide disposed in the movable section is formed concave or convex in the levitation direction, so that the movable section-side guide may be opposed to and disposed on the fixed section-side guide. Thus, the ultrasonic levitation device may serve as an effective linear guide.
Preferably, all or part of the fixed section-side guide disposed in the fixed section may be formed spike-shape convex or inverted spike-shape concave in the levitation direction, while all or part of the movable section-side guide disposed in the movable section may be formed inverted spike-shape concave or spike-shape convex in the levitation direction, so that the movable section-side guide may be opposed to and disposed on the fixed section-side guide. Further, all or part of the fixed section-side guide disposed in the fixed section may also be formed substantially isosceles trapezoidal convex of which top being shorter than base, or formed substantially isosceles trapezoidal concave of which top being longer than base, in the levitation direction, while all or part of the movable section-side guide disposed in the movable section may also be formed substantially isosceles trapezoidal concave of which top being longer than base, or formed substantially isosceles trapezoidal convex of which top being shorter than base, in the levitation direction, so that the movable section-side guide may be opposed to and disposed on the fixed section-side guide. In particular, according to the latter structure, since there is no peak of spike-shape convex, it is not necessary to secure high dimensional accuracy at the peak of spike-shape convex and the corresponding inverted spike-shape concave.
Preferably, not less than two sets of guides, comprising the fixed section-side guide and the movable section-side guide, may be disposed, whereby the ultrasonic levitation device according to the present invention may become low-profiled, and the rolling of the ultrasonic levitation device may also be prevented.
Preferably, not less than two vibration generating devices may be provided, whereby the rigidity of the fixed section may be reinforced, and the output per vibration generating device may be reduced.
Where the vibration converting member is used for the vibration generating device, the ultrasonic levitation device according to the present invention may further become low-profiled.
Preferably, the vibration converting member may be integrated with the fixed section-side guide or the movable section-side guide, whereby the number of component parts may be reduced, and the assembling accuracy margin may also be improved.
Preferably, the vibration converting member may be substantially in rectangular hollow shape, and the vibration generating source of the vibration generating device may also be disposed inside the vibration converting member substantially in rectangular hollow shape. Thus, the down-sizing of the ultrasonic levitation device according to the present invention may be accomplished.
For example, Langevin type ultrasonic transducer, sheet lamination type piezoelectric element, or single sheet piezoelectric element, may be used as the vibration generating source of the vibration generating device.
Where the vibration phase difference has been given between not less than two vibration generating devices to each other, the standing wave may be suppressed, which may effectively cope with precision positioning. Further, where the vibration phase difference is set at an angle of substantially 90 degrees or substantially 270 degrees, the generation of thrust may be expected.
A first embodiment of the present invention will be explained with reference to
There is a fixed section 1 in a flat panel shape. There are also vibration generating devices 3, 5, respectively attached to the left end part and the right end part in the elongating direction, on the bottom surface of the fixed section 1. There are supporting members 7, 9, respectively attached to the vibration generating devices 3, 5, whereby the fixed section 1 is mounted on a base 11 via the supporting members 7, 9.
The vibration generating device 3 comprises a Langevin type ultrasonic transducer 13 and an L-shaped vibration direction converting member 15. Similarly, the vibration generating device 5 comprises a Langevin type ultrasonic transducer 17 and an L-shaped vibration direction converting member 19. In the present embodiment, the Langevin type ultrasonic transducers 13, 17 are disposed to be oriented horizontally, so that the ultrasonic device may become low-profiled. Although the Langevin type ultrasonic transducers 13, 17 generate ultrasonic vibrations in horizontal direction, these vibrations are converted into those in vertical direction by the L-shaped vibration direction converting members 15, 19.
There is a movable section 21 being levitated above the fixed section 1. As illustrated in
With reference to the movable section 21, as illustrated in
There is a voice coil motor 35, serving as a driver, disposed between the fixed section 1 and the movable section 21. As illustrated in
The overall structure of the ultrasonic levitation device according to the present embodiment has been discussed as above, and now the detailed explanation will be made by also referring to the functions thereof. First, the fixed section-side guides 23, 25, and the movable section-side guides 29, 31 will be explained with reference to
According to the present embodiment, it is also possible to provide two sets of guides, i.e. the fixed section-side guides 23, 25, and the movable section-side guides 29, 31, which are respectively opposed to and disposed on the fixed section-side guides 23, 25, as illustrated in
As discussed above, according to the present embodiment, there are two sets of guides, comprising the fixed section-side guides 23, 25, and the movable section-side guides 29, 31, which are respectively opposed to and disposed on the fixed section-side guides 23, 25. However, the present embodiment is not limited to the above structures. For example, as illustrated in
According to the present embodiment, the fixed section 1 has the convex shape, and the movable section 21 has the concave shape, but it is also possible to provide the reversed structure.
Now the explanation will be made in regard to the number of vibration generating devices, with reference to
It should be noted that, the structure of the vibration generating devices 3′, 5′ of
As discussed above, the vibration generating devices 3, 5 of the present embodiment respectively use the vibration direction converting members 15, 19, whereby contributing to low-profiling of the ultrasonic levitation device. This low-profiling effect may also be explained from the viewpoint of
On the other hand, according to the present embodiment, the Langevin type ultrasonic transducers 13, 17 of the vibration generating device 3, 5 are respectively disposed so as to generate vibration in horizontal direction, and the direction of such a vibration is then converted into vertical direction by the L-shaped vibration direction converting members 15, 19. Thus, the low-profiling of the ultrasonic levitation device may be accomplished.
Now the explanation will be made in regard to the phase of the vibration generating devices 3, 5 with reference to
On the other hand, according to the present embodiment as discussed above, the phase difference has been given between these two vibration generating devices 3 and 5 to each other, of which waveform is as shown in
Consequently, even when there is no driving device provided separately, it is possible to drive the movable section 21, by setting the phase difference between the vibration generating devices 3 and 5, as “at an angle of substantially 90 degrees” or “at an angle of substantially 270 degrees”. For reference, when the phase difference is at an angle of 90 degrees, if the movable section 21 moves to the right in Y axis direction, the movable section 21 will move to the left in Y axis direction by changing the phase difference to an angle of 270 degrees. Thus, it is also possible to control the moving direction of the movable section 21.
Where more than two vibration generating devices are used, the desired phase difference may be given only between the vibration generating devices at the both end positions. As for the other vibration generating devices, the proportional allotment based on the phase difference between the both end positions may be done, according to the distance from the vibration generating devices at the both end positions. For example, where three vibration generating devices are used by giving 90-degree-angle phase difference between the both end positions, it is appropriate to give the half of the set 90-degree-angle phase difference, i.e. 45-degree-angle phase difference, to the third vibration generating device positioned at the center.
The present embodiment has the following merits.
First, the fixed section-side guides 23, 25, respectively in convex shape, are provided on the fixed section 1, and the movable section-side guides 29, 31, respectively in concave shape, are also provided on the movable section 21, so that the movable section-side guide 21 may be opposed to and disposed on the fixed section-side guide 1. Therefore, it is possible to obtain an ultrasonic levitation device, effectively serving as a linear guide.
Second, there are two sets of guides, i.e. the fixed section-side guides 23, 25, and the movable section-side guides 29, 31, whereby the overall height may be reduced. Thus, the low-profiling and down-sizing of the ultrasonic levitation device may be accomplished, and further the rolling of the movable section 21 may also be prevented.
Third, there are two vibration generating devices 3, 5, whereby the rigidity of the fixed section 1 may be reinforced without increasing the device may be reduced.
Fourth, the L-shaped vibration direction conversion members are used for the vibration generating devices 3, 5, whereby the low-profiling of the ultrasonic levitation device may also be accomplished.
Fifth, the phase difference has been given between these two vibration generating devices 3 and 5 to each other, which may effectively cope with precision positioning.
Sixth, the phase difference, given between these two vibration generating devices 3 and 5, is substantially at an angle of 90 degrees or substantially at an angle of 270 degrees, thus the thrust may be applied to the movable section 21 without requiring any special driving device.
Now a second embodiment of the present invention will be explained with reference to
The other structure is substantially the same as that of the first embodiment as discussed above, and the identical numerals are allotted to the identical elements, and the explanation thereof will not be made.
The second embodiment may also serve substantially the same effect as that of the first embodiment. Further, because of the single sheet piezoelectric transducers 51, 53 in flat panel shape, further low-profiling of the ultrasonic levitation device may be accomplished.
Now a third embodiment of the present invention will be explained with reference to
There is a fixed section 101, provided with a vibration converting member 121 and another vibration converting member 125. The fixed section 101 is also provided with fixed section-side guides 105, 107, respectively disposed on the both sides of the vibration converting members 121, 125. There are also vibration generating devices 109, 111, respectively attached to the vibration converting members 121, 125 of the fixed section 101, in the space between the fixed section-side guides 105, 107 and at the left end part and the right end part in the elongating direction of the fixed section 101. There are supporting members 113, 115, respectively attached to the vibration generating devices 109, 111, whereby the fixed section 101 is mounted on a base 117 via the supporting members 113, 115 of the vibration generating devices 109, 111.
As discussed above, the vibration converting members 121, 125 serve, not only as the structural elements of the fixed section 101, but also as the structural elements of the vibration generating devices 109, 111.
The vibration generating device 109 comprises a Langevin type ultrasonic transducer 109 and a cross-shaped vibration direction converting member 121. Similarly, the vibration generating device 111 comprises a Langevin type ultrasonic transducer 123 and a cross-shaped vibration direction converting member 125. When the ultrasonic vibration is generated by the Langevin type ultrasonic transducers 119, 123, the cross-shaped vibration direction converting members 121, 125 convert the direction of the generated ultrasonic vibration into two perpendicular directions, whereby the ultrasonic vibration is given to the fixed section-side guides 105, 107.
There is a movable section 131 being levitated above the fixed section 101. Further, the fixed section 101 has slant surfaces 105a, 107a, respectively formed on the fixed section-side guides 105, 107. As illustrated in the cross-sectional view of
On the other hand, with reference to the movable section 131, there are slant surfaces 131a, 131b, opposing to the slant surfaces 105a, 107a. Thus, the movable section 131 and the fixed section-side guides 105, 107 have the concave-convex relation, forming substantially isosceles trapezoidal concave and convex each of which tops being shorter than bases. This is because of the following reason.
With reference to the first and second embodiments, the concave-convex relation between the fixed section 1 and the movable section 21 is in spike-shape, but in such structure, it is necessary to secure high dimensional accuracy at the peak of spike-shape convex and the corresponding inverted spike-shape concave. In other words, if there is very minor dimensional error, the movable section 21 would collide with the fixed section 1. On the other hand, according to the third embodiment in which the movable section 131 and the fixed section-side guides 105, 107 have the concave-convex relation, forming substantially isosceles-trapezoidal concave and convex each of which tops being shorter than bases, there is no spike-shape peaks, thus it is sufficient to secure only the surface accuracy (flatness, angle and straightness) of the slant surfaces 105a, 107a, 131a, 131b forming the above isosceles trapezoidal concave and convex. Thus, the machining efficiency may be facilitated, and the machining cost may be reduced. Further, the stability may be improved against any disturbance such as dimensional distortion due to thermal expansion.
There is a recessed section 133 disposed in the movable section 131. Further, at the center of the fixed section in Y axis direction, only the fixed section-side guides 105, 107 are provided, and in the space between the fixed section-side guides 105, 107 at this position, there is a coil base 103 mounted on the base 117. The coil base 103 has a coil 139 mounted thereon. The coil 139, and a permanent magnet 141 disposed on the recessed section 133, serve a driving voice coil motor 137.
When electric current is applied to the coil 139 in an appropriate direction, according to interaction with the flow of magnetic flux of the permanent magnet 141 based on Fleming's Left Hand Rule, the driving force is generated so that the movable section 131 may move along the fixed section 1 in any Y axis direction.
According to the third embodiment as discussed above, substantially the same effect as those of the first and second embodiments can be accomplished. Further, because the movable section 131 and the fixed section-side guides 105, 107 have the concave-convex relation, forming substantially isosceles trapezoidal concave and convex each of which tops being shorter than bases, it is not necessary to secure high dimensional accuracy at the peaks of spike-shape convex and concave according to the first and second embodiments. On the other hand, according to the third embodiment, it is sufficient to secure only the surface accuracy (flatness, angle and straightness) of the slant surfaces 105a, 107a, 131a, 131b forming the above isosceles trapezoidal concave and convex. Thus, the machining efficiency may be facilitated, and the machining cost may be reduced. Further, the stability may be improved against any disturbance such as dimensional distortion due to thermal expansion.
According to the third embodiment, although there is only single set of substantially isosceles trapezoidal concave and convex guides provided as an example, it is also possible to provide two or more sets of these concave-convex guides.
Now a fourth embodiment of the present invention will be explained with reference to
On the other hand, according to the fourth embodiment, as illustrated in
The structure of the fourth embodiment will be explained in detail. As illustrated in
The longer sides 205, 207 of the fixed section-side guide 201 respectively have slant surfaces 205a, 207a, so that the fixed section-side guide 201 and the movable section 131 may have the concave-convex relation, forming substantially isosceles trapezoidal concave and convex each of which tops being shorter than bases, likewise the fixed section-side guides 105, 107 of the third embodiment.
According to the fourth embodiment, the vibration generating sources 109, 111 are respectively provided on the right and left, but it is not necessary to provide two vibration generating sources merely for the purpose of generating ultrasonic vibration. According to the fourth embodiment, these two vibration generating sources 109, 111 generate vibration in the common phase, so that the input vibration power may become double.
The other structure is substantially the same as that of the third embodiment as discussed above, and the identical numerals are allotted to the identical elements, and the explanation thereof will not be made.
The fourth embodiment may also serve substantially the same effect as that of the third embodiment. Further, because of the fixed section-side guide 201 substantially in rectangular hollow shape, formed by integrating the cross-shaped vibration converting members and the fixed section-side guides as discussed in the third embodiment, further preciseness of the ultrasonic levitation device may be accomplished.
Now a fifth embodiment of the present invention will be explained with reference to
The present invention is of course not limited to the first through fifth embodiment as discussed above.
For example, the vibration generating device is not limited to Langevin type ultrasonic transducer or single sheet piezoelectric element, and for example, sheet lamination type piezoelectric element may be used.
Further, there is no limitation as to the number of guides.
According to the above embodiments, the driving by voice coil motor has been explained as an example. However, the present invention is not limited to the driving by voice coil motor, and for example, driving by linear motor may be done.
The other structures shown in drawing are merely for explanation purposes, and any modification and alteration thereof may be made as long as it is not departing from the spirit of the present invention.
As above discussed, the present invention relates to the ultrasonic levitation device, in which the down-sizing and stable levitating performance may be accomplished by improving the structure of guide mechanism. For example, the present invention is suitable for various positioning devices.
Number | Date | Country | Kind |
---|---|---|---|
2003-071439 | Mar 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/03465 | 3/16/2004 | WO | 9/16/2005 |