This invention relates generally to systems for ultrasonically treating a liquid, more particularly for ultrasonically treating a flowing liquid in a treatment chamber in which particulate material is present in the chamber.
Liquid reaction or treatment chambers find numerous applications for enhancing the treatment of liquids such as a single component liquid, liquid-liquid reaction and/or mixing, liquid-gas reaction and/or mixing and liquid-particulate material reaction and/or mixing. For example, in formulating inks, paints and other viscous materials two or more components (at least one being a liquid) are mixed together in such a treatment chamber to form the applicable solution. Other examples include the simultaneous introduction of various liquids and gases into the chamber to promote certain reactions. This would include the flow of water into the chamber with the introduction of gases such as air and/or oxygen and/or ozone only to mention a few. Also such chambers can be used to induce a variety of chemical reactions such as the decomposition of hydrogen peroxide, emulsion polymerization reactions and the creation of emulsions for emulsion polymerization mechanisms.
In other applications, treatment chambers can be used for the deagglomeration of particles in a liquid stream. This would include the deagglomeration of nano-particles such as pigments used in the formulation of inks. Plus the simultaneous formulation of an ink using these nano-pigment particles. This system can also have the simultaneous exposure to UltraViolet (UV) light to promote certain reactions of fluids or fluid/gas or fluid/gas/solids systems in the ultrasonic chamber. Another application could be in the medical field where a treatment chamber is used in the preparation of pharmaceutical formulations that are composed of powders/liquids and liquids for dispensing for use.
In particular, it is often advantageous to provide the chamber with some agitating mechanism by which liquid is agitated within an elongate column or chamber. By agitating the liquid, a desired reaction (e.g., mixing or other result) may be expedited and thus capable of being achieved in a continuous flow operation. As a result, treatment chambers that facilitate such agitation are particularly useful in continuous flow treatment processes.
Agitation of a liquid may be referred to as static agitation, in which agitation is caused by the particular flow parameters (e.g., flow rate, pressure, etc.) of the one or more liquid components through a column. Static agitation may also occur by directing a flow of liquid past stationary agitating members, such as a helical vane-type construction or other structures disposed in the flow column or chamber that disrupt and thus turbulate the flow of the liquid to be treated. Dynamic agitation is brought about by moving, e.g., rotating, oscillating, vibrating, etc. one or more agitating members (e.g., vanes, fan blades, etc.) within the treatment chamber through which the liquid flows.
One particularly useful type of dynamic agitation of the liquid results from ultrasonic cavitation, a more rigorous agitation, in the liquid. Ultrasonic cavitation refers to the formation, growth and implosive collapse of bubbles in liquid due ultrasonic energization thereof. Such cavitation results from pre-existing weak points in the liquid, such as gas-filled crevices in suspended particulate matter or transient microbubbles from prior cavitation events. As ultrasound passes through a liquid, the expansion cycles exert negative pressure on the liquid, pulling the molecules away from one another. Where the ultrasonic energy is sufficiently intense, the expansion cycle creates cavities in the liquid when the negative pressure exceeds the local tensile strength of the liquid, which varies according to the type and purity of liquid.
Small gas bubbles formed by the initial cavities grow upon further absorption of the ultrasonic energy. Under the proper conditions, these bubbles undergo a violent collapse, generating very high pressures and temperatures. In some fields, such as what is known as sonochemistry, chemical reactions take advantage of these high pressures and temperatures brought on by cavitation. However, the growth and violent collapse of the bubbles themselves provides a desirably rigorous agitation of the liquid. Cavitation that occurs at the interface between the ultrasonically energized liquid and a solid surface is rather asymmetric and generates high speed jets of liquid, further agitating the liquid. This type of cavitation is particularly useful, for example, in facilitating a more complete mixing together of two or more components of a liquid solution.
It is known to pack some treatment chambers with a bed of particles, such as in the manner of a fluidized bed reactor. The particles are thus in the flow path of the liquid within the treatment chamber and further facilitate treatment of the liquid. However, where such particles are present in the chamber, the chamber must be configured to prevent the particles from being carried (or forced) out of the chamber by the liquid flowing therein. For example, a screen element may block the outlet of the chamber to block the particles, but not the liquid, from exiting the chamber. While such a screen element can be effective, there is a risk that the particles will agglomerate or otherwise build up on the screen element and reduce the flow rate of the liquid out of the chamber, thereby increasing the pressure in the chamber.
There is need, therefore, for a continuous flow ultrasonic liquid treatment chamber that takes advantage of the benefits of ultrasonic energy to treat a flowing liquid, particularly where particles are used in such a treatment chamber, while maintaining desired operation conditions of the treatment chamber.
In one embodiment, an ultrasonic treatment chamber for ultrasonically treating a liquid generally comprises an elongate housing having longitudinally opposite ends and an interior space, with the housing being generally closed at its longitudinal ends and having an inlet port for receiving liquid into the interior space of the housing and an outlet port through which liquid is exhausted from the housing following ultrasonic treatment of the liquid. The outlet port is spaced longitudinally from the inlet port such that liquid flows longitudinally within the interior space of the housing from the inlet port to the outlet port. An elongate ultrasonic waveguide assembly extends longitudinally within the interior space of the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize liquid flowing within the housing. The waveguide assembly generally comprises an elongate ultrasonic horn disposed intermediate the inlet port and the outlet port of the housing and having an outer surface located for contact with liquid flowing within the housing from the inlet port to the outlet port. The waveguide assembly has a terminal end spaced longitudinally from the outlet port of the housing. A standing wave member is disposed within the housing longitudinally intermediate the outlet port of the housing and the terminal end of the waveguide assembly. The standing wave member is spaced from the terminal end of the waveguide assembly so as to define an acoustic standing wave therebetween upon operation of the waveguide assembly at the predetermined ultrasonic frequency.
In another embodiment, an ultrasonic treatment system for ultrasonically treating a liquid generally comprises an elongate, generally tubular housing having longitudinally opposite ends and an interior space. The housing has an inlet for receiving liquid into the interior space of the housing and an outlet through which liquid is exhausted from the housing following ultrasonic treatment of the liquid. The outlet is spaced longitudinally from the inlet such that liquid flows longitudinally within the interior space of the housing from the inlet to the outlet. An elongate ultrasonic horn extends longitudinally within the interior space of the housing intermediate the inlet and the outlet of the housing. A drive system is operable to ultrasonically vibrate the ultrasonic horn, with the ultrasonic treatment system being configured such that operation of the drive system generates mechanical vibration of the horn within the interior space of the housing and further generates a standing acoustic wave within the interior space of the housing.
In one embodiment of a process for ultrasonically treating a liquid in an ultrasonic treatment chamber comprised of an elongate, generally tubular housing having an inlet and an outlet spaced longitudinally from the inlet, liquid is directed into the housing at the housing inlet for longitudinal flow within the housing to the housing outlet. Mechanical ultrasonic vibration is generated within the housing in direct contact with the liquid flowing within the housing, with the direct contact being upstream of the housing outlet. A standing acoustic wave is produced within the housing with the standing acoustic wave having a node spaced longitudinally from the housing outlet.
Corresponding reference characters indicate corresponding parts throughout the drawings.
With reference now to the drawings, and in particular to
The ultrasonic treatment chamber 21 is illustrated schematically in the embodiment of
For example, some contemplated mixing uses for the ultrasonic treatment chamber 21 include, without limitation, mixing resins and curing agents for the plastic industry; mixing pulp slurries with chemical additives such as bleaching agents, wet strength agents, starches, dyes, enzymes, fillers, anti-slime agents, silicone additives, etc.; mixing compounds used in the paper and tissue industries, such as clay slurries for coatings, polymeric additives such as wet strength resins, starch suspensions, silicone compounds, lotions, filler suspensions, etc.; mixing resins and coloring agents, fillers, and other compounds; mixing immiscible phases to prepare emulsions, such as food emulsions (e.g., for sun block products, hand lotions, lipstick compounds, etc.), cosmetics, cleaning agents (including nanoemulsions of oil and water), pharmaceutical compounds, etc; and mixing coloring agents and other compounds to form cosmetics such as hair dyes; mixing pulp slurries with chemical additives such as bleaching agents, wet strength agents, starches, dyes, etc.; and mixing compounds used in the paper and tissue industries, such as clay slurries.
It is understood, however, that the ultrasonic liquid treatment chamber 21 may be used with liquid ultrasonic treatment systems other than for mixing but where passing a liquid through a bed of particulate material at least in part comprises the desired treatment of the liquid. Non-limiting examples include food processing and treatment; degassing solutions (e.g., pulling dissolved gasses from liquid solutions such as oxygen, nitrogen, ammonia, etc.); and enhancing chemical reactions, for example, as is common in sonochemistry where excitation is imparted to a chemical reaction to expedite the reaction.
Additional examples include degassing a mixture to simplify subsequent treatment and reduce void formation; deinking recycled papermaking fibers, in which ultrasonic energy may assist in removal of inks (particularly in the presence of enzymes, detergents, or other chemicals); hydrogenating oils, cheese, or other food stuffs, in which gas and slurries or liquids must be mixed; homogenizing milk and other compounds; treating wastewater and/or manure, in which a variety of additives and air bubbles may need to be mixed with a slurry; manufacturing petrochemicals such as lubricant mixtures, gasoline blends, wax mixtures, etc., and compounds derived from petrochemicals; processing dough (e.g., mixing combinations of agents to be added to flour or processing the dough itself, which may result in improved breakdown of gluten, etc.). The ultrasonic treatment chamber 21 may also be used in chemical reactors involving single or multiple phases, including slurries.
In other contemplated uses, the ultrasonic treatment chamber 21 may be used to remove entrapped gas bubbles from coating solutions that are used in gravure coating, meyer rod coating or any other coating applications where it is desirable to remove air bubbles from a solution. The ultrasonic treatment chamber 21 may also be used to remove liquid or solid material from a solution, such as where the chamber particles comprise an adsorbent material.
In particular, the ultrasonic treatment chamber 21 is suitable for use in liquid treatment systems in which ultrasonic treatment of the liquid is desired in an in-line, e.g., continuous flow process in which fluid flows continuously through the chamber. It is contemplated, though, that the treatment chamber 21 may be used in a liquid treatment system in which liquid is treated in accordance with a batch process instead of a continuous flow process and remain with the scope of this invention.
In the illustrated embodiment of
The terms “upper” and “lower” are used herein in accordance with the vertical orientation of the ultrasonic treatment chamber 21 illustrated in the various drawings and are not intended to describe a necessary orientation of the chamber in use. That is, while the chamber 21 is most suitably oriented vertically, with the outlet end 27 of the chamber above the inlet end 25 as illustrated in the various drawings, it is understood that the chamber may be oriented with the inlet end above the outlet end, or it may be oriented other than in a vertical orientation and remain within the scope of this invention.
The terms axial and longitudinal refer directionally herein to the lengthwise direction of the chamber 21 (e.g., end-to-end such as the vertical direction in the illustrated embodiments). The terms transverse, lateral and radial refer herein to a direction normal to the axial (e.g., longitudinal) direction. The terms inner and outer are also used in reference to a direction transverse to the axial direction of the ultrasonic treatment chamber 21, with the term inner referring to a direction toward the interior of the chamber (e.g., toward the longitudinal axis of the chamber) and the term outer referring to a direction toward the exterior of the chamber (e.g., away from the longitudinal axis of the chamber).
The inlet end 25 of the ultrasonic treatment chamber 21 is in fluid communication with a suitable delivery system, generally indicated at 29, that is operable to direct one or more liquid components to, and more suitably through, the chamber 21. For example, in the illustrated treatment system 23 of
It is understood that the delivery system 29 may be configured to deliver less than four (including one), or more than four components to the treatment chamber 21 without departing from the scope of this invention. It is also contemplated that delivery systems other than that illustrated in
With reference now to
The housing 51 also comprises a closure 63 connected to and substantially closing the longitudinally opposite end of the sidewall 57, and having at least one outlet port 65 (broadly, an outlet) therein to generally define the outlet end 27 of the treatment chamber 21. The closure 63 also has a screen element 66 held in assembly therewith and blocking the outlet port 65 (e.g., between the outlet port and the interior space 53 of the chamber 21) to inhibit the chamber particles 24 from flowing out of the chamber through the outlet port along with the liquid solution. The sidewall 57 (e.g., defined by the elongate tube 55) of the chamber 21 has an inner surface 67 that together with the collar 61 and the closure 63 define the interior space 53 of the chamber.
In the illustrated embodiment, the tube 55 is generally cylindrical so that the chamber sidewall 57 is generally annular in cross-section. However, it is contemplated that the cross-section of the chamber sidewall 57 may be other than annular, such as polygonal or another suitable shape, and remain within the scope of this invention. The chamber sidewall 57 of the illustrated chamber 21 is suitably constructed of a transparent material, although it is understood that any suitable material may be used as long as the material is compatible with the liquid components being treated in the chamber, the pressure at which the chamber is intended to operate, and other environmental conditions within the chamber such as temperature.
With particular reference to
This dual tangential inlet port 69a, 69b arrangement is particularly useful for initiating mixing of two or more components together before the liquid solution is further subjected to ultrasonic treatment within the chamber 21. In a particularly suitable use of this arrangement, where the liquid to be treated in the chamber 21 comprises two or more liquids, the liquid having the lowest viscosity is directed to flow into the chamber via the outer inlet port 69a while the liquid having the highest viscosity is directed to flow into the chamber via the inner inlet port 69b. The flow of the lower viscosity ingredient through the outer inlet port 69a has a tendency to draw the higher viscosity ingredient into the interior space 53 of the chamber 21 to speed the rate at which the higher viscosity ingredient is introduced into the chamber.
This action, combined with the swirling action resulting from the tangential direction in which the liquid components are directed into the chamber 21, facilitate an initial mixing of these two components before the liquid solution flows further through the chamber for ultrasonic treatment. In the illustrated embodiment, the collar 61 also has an additional tangential set of inlet ports 69a, 69b and a pair of generally vertically oriented inlet ports 71. It is understood, however, that none of the ports 69a, 69b need to be oriented tangentially relative to the collar 61 to remain within the scope of this invention. It is also understood that the number of inlet ports 69a, 69b, 71 may vary, and may even be limited to a single inlet port.
An ultrasonic waveguide assembly, generally indicated at 101, extends longitudinally at least in part within the interior space 53 of the chamber 21 to ultrasonically energize liquid (and any other components of the liquid solution) flowing through the interior space 53 of the chamber, as well to ultrasonically energize the chamber particles 24. In particular, the ultrasonic waveguide assembly 101 of the illustrated embodiment extends longitudinally from the lower or inlet end 25 of the chamber 21 up into the interior space 53 thereof to a terminal end 103 of the waveguide assembly disposed intermediate the inlet ports 69a, 69b and the outlet port 65. More suitably, the waveguide assembly 101 is mounted, either directly or indirectly, to the chamber housing 51 as will be described later herein.
The ultrasonic waveguide assembly 101 suitably comprises an elongate horn assembly, generally indicated at 105, disposed entirely with the interior space 53 of the housing 51 intermediate the uppermost inlet port and the outlet port for complete submersion within the liquid being treated within the chamber 21, and more suitably it is aligned coaxially with the chamber sidewall 57. The horn assembly 105 has an outer surface 107 that together with the inner surface 67 of the sidewall 57 defines a flow path within the interior space 53 of the chamber 21 along which liquid and other components flow past the horn assembly within the chamber (this portion of the flow path being broadly referred to herein as the ultrasonic treatment zone). The horn assembly 105 has an upper end 109 defining a terminal end of the horn assembly (and therefore the terminal end 103 of the waveguide assembly) and a longitudinally opposite lower end 111. The waveguide assembly 101 of the illustrated embodiment also comprises a booster 113 coaxially aligned with and connected at an upper end thereof to the lower end 111 of the horn assembly 105. It is understood, however, that the waveguide assembly 101 may comprise only the horn assembly 105 and remain within the scope of this invention. It is also contemplated that the booster 113 may be disposed entirely exterior of the chamber housing 51, with the horn assembly 105 mounted on the chamber housing 51 without departing from the scope of this invention.
The ultrasonic waveguide assembly 101, and more particularly the booster 113 in the illustrated embodiment of
As one example, the mounting member 115 of the illustrated embodiment generally comprises an annular outer segment 117 extending transverse to the waveguide assembly 101 in transversely spaced relationship therewith, and a flange member 119 interconnecting the outer segment to the waveguide assembly. While the flange member 119 and transverse outer segment 117 of the mounting member 115 extend continuously about the circumference of the waveguide assembly 101, it is understood that one or more of these elements may be discontinuous about the waveguide assembly such as in the manner of wheel spokes, without departing from the scope of this invention. The outer segment 117 of the mounting member 115 is particularly configured to seat down against a shoulder 121 formed by the inlet collar 61.
As seen best in
The mounting member 115 is suitably sized in transverse cross-section so that at least an outer edge margin of the outer segment 117, and more suitably a substantial transverse portion of the outer segment is seated on the shoulder 121 formed on the collar 61. A suitable fastening system (not shown), such as a plurality of bolts and corresponding nuts (not shown), secures the outer segment 117 of the mounting member 115 to the shoulder 121 formed by the collar 61 to thereby connect the booster 113 (and more broadly the waveguide assembly 101) to the chamber housing 51.
The flange member 119 may suitably be constructed relatively thinner than the outer segment 117 of the mounting member 115 to facilitate flexing and/or bending of the flange member 119 in response to ultrasonic vibration of the waveguide assembly 101. As an example, in one embodiment the thickness of the flange member 119 may be in the range of about 0.2 mm to about 5 mm, and more suitably about 2.5 mm. The flange member 119 of the illustrated mounting member 115 suitably has an inner transverse component 125 connected to the waveguide assembly 101 and extending generally transversely outward therefrom but inward of the outer segment 117 of the mounting member, and an axial, or longitudinal component 127 interconnecting the transverse inner component with the outer segment of the mounting member and together with the transverse inner component generally forming a generally L-shaped cross-section of the flange member 119. It is contemplated, however, that the flange member 119 may instead have a generally U-shaped cross-section or other suitable cross-sectional shape such as an H-shape, an I-shape, an inverted U-shape and the like and remain within the scope of this invention. Additional examples of suitable mounting member 115 configurations are illustrated and described in U.S. Pat. No. 6,676,003, the entire disclosure of which is incorporated herein by reference to the extent it is consistent herewith.
The longitudinal component 127 of the illustrated flange member 119 is suitably cantilevered to the transverse outer segment 117 and to the transverse inner component 125 of the flange member, while the inner component of the flange member is cantilevered to the waveguide assembly 101. Accordingly, the flange member 119 is capable of dynamically bending and/or flexing relative to the outer segment 117 of the mounting member 115 in response to vibratory displacement of the waveguide assembly 101 to thereby isolate the chamber housing 51 from transverse and longitudinal displacement of the waveguide assembly.
While in the illustrated embodiment the transverse outer segment 117 of the mounting member 115 and the transverse inner component 125 of the flange member 119 are disposed generally at longitudinally offset locations relative to each other, it is understood that they may be disposed at generally the same location (e.g., where the flange member is generally U-shaped in cross-section) or at locations other than those illustrated in
In one particularly suitable embodiment the mounting member 115 is of single piece construction. Even more suitably the mounting member 115 may be formed integrally with the booster 113 (and more broadly with the waveguide assembly 101) as illustrated in
In one suitable embodiment the mounting member 115 is further constructed to be generally rigid (e.g., resistant to static displacement under load) so as to hold the waveguide assembly 101 in proper alignment within the interior space 53 of the chamber 21. For example, the rigid mounting member 115 in one embodiment may be constructed of a non-elastomeric material, more suitably metal, and even more suitably the same metal from which the booster 113 (and more broadly the waveguide assembly 101) is constructed. The term rigid is not, however, intended to mean that the mounting member 115 is incapable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 101. In other embodiments, the rigid mounting member 115 may be constructed of an elastomeric material that is sufficiently resistant to static displacement under load but is otherwise capable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 101. While the mounting member 115 illustrated in
A suitable ultrasonic drive system 131 (shown schematically in
The drive system 131 is suitably capable of operating the waveguide assembly 101 at a frequency in the range of about 15 kHz to about 100 kHz, more suitably in the range of about 15 kHz to about 60 kHz, and even more suitably in the range of about 20 kHz to about 40 kHz. Such ultrasonic drive systems 131 are well known to those skilled in the art and need not be further described herein.
With particular reference to
In the illustrated embodiment, the agitating members 137 comprise a series of six washer-shaped rings that extend continuously about the circumference of the horn member 133 in longitudinally spaced relationship with each other and transversely (e.g., radially in the illustrated embodiment) outward from the outer surface of the horn. In this manner the vibrational displacement of each of the agitating members 137 relative to the horn 133 is relatively uniform about the circumference of the horn. It is understood, however, that the agitating members 137 need not each be continuous about the circumference of the horn 133. For example, the agitating members 137 may instead be in the form of spokes, blades, fins or other discrete structural members that extend transversely outward from the outer surface 135 of the horn 133.
To provide a dimensional example, for the horn 133 of the illustrated embodiment of
It is understood that the number of agitating members 137 (e.g., the rings in the illustrated embodiment) may be less than or more than six without departing from the scope of this invention. It is also contemplated that in other embodiments the agitating members 137 may be omitted entirely without departing from the scope of this invention, the horn outer surface 135 providing the sole mechanical ultrasonic vibration contact with the liquid in the flow path within the treatment chamber 21. It is further understood that the longitudinal spacing between the agitating members 137 may be other than as illustrated in
In particular, the locations of the agitating members 137 are at least in part a function of the intended vibratory displacement of the agitating members upon vibration of the horn 133. For example, in the illustrated embodiment the horn 133 has a nodal region located generally longitudinally centrally of the horn (e.g., between the third and fourth rings). As used herein, the “nodal region” of the horn 133 refers to a longitudinal region or segment of the horn member along which little (or no) longitudinal displacement occurs during ultrasonic vibration of the horn and transverse (e.g., radial in the illustrated embodiment) displacement of the horn is generally maximized. Transverse displacement of the horn 133 suitably comprises transverse expansion of the horn but may also include transverse movement (e.g., bending) of the horn.
In the illustrated embodiment, the configuration of the one-half wavelength horn 133 is such that the nodal region is particularly defined by a nodal plane (i.e., a plane transverse to the horn member at which no longitudinal displacement occurs while transverse displacement is generally maximized). This plane is also sometimes referred to as a nodal point. Accordingly, agitating members 137 (e.g., in the illustrated embodiment, the rings) that are disposed longitudinally further from the nodal region of the horn 133 will experience primarily longitudinal displacement while agitating members that are longitudinally nearer to the nodal region will experience an increased amount of transverse displacement and a decreased amount of longitudinal displacement relative to the longitudinally distal agitating members.
It is understood that the horn 133 may be configured so that the nodal region is other than centrally located longitudinally on the horn member without departing from the scope of this invention. It is also understood that one or more of the agitating members 137 may be longitudinally located on the horn so as to experience both longitudinal and transverse displacement relative to the horn upon ultrasonic vibration of the horn assembly 105.
Still referring to
As used herein, the ultrasonic cavitation mode of the agitating members refers to the vibrational displacement of the agitating members sufficient to result in cavitation (i.e., the formation, growth, and implosive collapse of bubbles in a liquid) of the liquid being treated at the predetermined ultrasonic frequency. For example, where the liquid flowing within the chamber comprises an aqueous solution, and more particularly water, and the ultrasonic frequency at which the waveguide assembly 101 is to be operated (i.e., the predetermined frequency) is about 20 kHZ, one or more of the agitating members 137 are suitably constructed to provide a vibrational displacement of at least 1.75 mils (i.e., 0.00175 inches, or 0.044 mm) to establish a cavitation mode of the agitating members. It is understood that the waveguide assembly 101 may be configured differently (e.g., in material, size, etc.) to achieve a desired cavitation mode associated with the particular liquid being treated. For example, as the viscosity of the liquid being treated changes, the cavitation mode of the agitating members may need to be changed.
In particularly suitable embodiments, the cavitation mode of the agitating members corresponds to a resonant mode of the agitating members whereby vibrational displacement of the agitating members is amplified relative to the displacement of the horn. However, it is understood that cavitation may occur without the agitating members operating in their resonant mode, or even at a vibrational displacement that is greater than the displacement of the horn, without departing from the scope of this invention.
In one suitable dimensional example, a ratio of the transverse length of at least one and more suitably all of the agitating members 137 to the thickness of the agitating member is in the range of about 2:1 to about 6:1. As another example, the rings 137 illustrated in
In the illustrated embodiment, the transverse length of the agitating member 137 also at least in part defines the size (and at least in part the direction) of the flow path along which liquid or other flowable components in the interior space 53 of the chamber 21 flows past the horn assembly 105. For example, the horn 133 illustrated in
In general, the horn 133 may be constructed of a metal having suitable acoustical and mechanical properties. Examples of suitable metals for construction of the horn 133 include, without limitation, aluminum, monel, titanium, stainless steel, and some alloy steels. It is also contemplated that all or part of the horn 133 may be coated with another metal such as silver, platinum and copper to mention a few. In one particularly suitable embodiment, the agitating members 137 are constructed of the same material as the horn 133, and are more suitably formed integrally with the horn. In other embodiments, one or more of the agitating members 137 may instead be formed separate from the horn 133 and connected thereto to form the horn assembly 105.
While the agitating members 137 (e.g., the rings) illustrated in
For example,
It is contemplated that the longitudinal component 241 need not extend entirely longitudinal, i.e., parallel to the outer surface of the horn 233, as long as the longitudinal component has some longitudinal vector to it. Also, while in the illustrated embodiment the agitating member 237 having the longitudinal component 241 is generally T-shaped in cross-section, it is understood that other configurations of such an agitating member are suitable, such as an L-shaped cross-section (with the longitudinal component extending either up or down), a plus-shaped cross-section, or other suitable cross-section. It is also contemplated that one or more holes may formed in the centermost agitating member 237, such as in the transverse component and/or the longitudinal components 241 to allow fluid to flow freely in both the horizontal and vertical direction through this member.
As best illustrated in
Providing the illustrated buffer zone is particularly useful where the chamber 21 is used for mixing two or more components together to form a liquid solution such as in the system 23 of
The opposite, e.g., more proximal end of the horn assembly 105 is suitably spaced longitudinally from the collar 61 to define what is referred to herein as a liquid intake zone in which initial swirling of liquid within the interior space 53 of the chamber housing 51 occurs upstream of the horn assembly 105. This intake zone is particularly useful where the treatment chamber 21 is used for mixing two or more components together whereby initial mixing is facilitated by the swirling action in the intake zone as the components to be mixed enter the chamber housing 51. It is understood, though, that the proximal end of the horn assembly 105 may be nearer to the collar 61 than is illustrated in
In a particularly suitable embodiment the ultrasonic treatment chamber 21 further comprises a standing wave member, generally indicated at 301, in the form of a reflector. The “standing wave member” is intended to refer to a member other than the waveguide assembly 101 that together with the waveguide assembly generates a standing wave therebetween within the chamber housing 51. The reflector 301 is disposed within the interior space 53 of the chamber 21 and more particularly in the buffer zone between the terminal end 103 of the waveguide assembly 101 and the outlet port 65 of the chamber 21 in longitudinally spaced, opposed relationship with the terminal end of waveguide assembly. The location of the reflector 301 in the chamber 21 is also such that the reflector is spaced longitudinally from (e.g., below in the illustrated embodiment) the outlet port 65 and more suitably the screen element 66 of the closure 63. Upon ultrasonic operation of the waveguide assembly 101, the reflector 301 acts in conjunction with the waveguide assembly (which acts in this instance as an ultrasonic transducer) to produce a standing acoustic wave within the buffer zone, and more particularly between the terminal end 103 of the waveguide assembly and the reflector.
It is contemplated that instead of the reflector 301, the standing wave member may be another wave generator, such as a transducer spaced from the waveguide assembly in opposed relationship therewith and operable to generate ultrasonic acoustic wave energy that travels in a direction opposite the wave energy generated by the waveguide assembly to together with the waveguide assembly produce a standing acoustic wave therebetween.
In a particularly suitable embodiment the reflector 301 and waveguide assembly 101 produce a standing acoustic wave therebetween that has at least one node, and which has no node at or adjacent the outlet port 65 and more suitably at or adjacent the screen element 65. That is, any node of the standing wave is spaced longitudinally from at least the outlet port 65 and more suitably from the screen element 66 of the closure 63. For example, the longitudinal spacing between the terminal end 103 of the waveguide assembly 101 and the reflector 301 suitably corresponds to one-half of an acoustic wavelength λ (i.e., a one-half wavelength) wherein the wavelength λ of the standing wave is a function of the liquid flowing within the buffer zone in the chamber 21 and the frequency at which the waveguide assembly (acting as a transducer) is operated. In particular,
λ=c/f
where;
c=the speed of sound through the liquid in the chamber 21, and
f=the operating frequency of the waveguide assembly 101.
In the illustrated embodiment, the position of the reflector 301 is suitably adjustable longitudinally relative to the terminal end 103 of the waveguide assembly 101 to adjust the longitudinal spacing between the reflector and the waveguide assembly. This allows the reflector 301 to be selectively positioned relative to the waveguide assembly 101, depending on the liquid solution being treated and/or the predetermined operating frequency of the waveguide assembly, so as to generate a one-half wavelength standing wave (or a multiple of a one-half wavelength standing wave). In particular, a support frame 303 comprised of two or more support posts 305 extends through the closure 63 down into the interior space 53 of the chamber 21, e.g., past the outlet port 65 and more suitably past the screen element 66 of the closure and is adjustably moveable longitudinally relative to the closure. The reflector 301 is suitably secured to the support frame 303 for conjoint movement with the support frame relative to the closure 63 and waveguide assembly 101. The support frame 303 may be manually adjustable or mechanically adjustable by a suitable adjustment mechanism (not shown).
The reflector 301 of the illustrated embodiment comprises a generally circular solid plate sized for sufficiently spaced relationship with the chamber sidewall 57 so that the reflector does not substantially reduce the flow rate of liquid through the screen element 66 and outlet port 65. The reflector 301 is suitably constructed from a material that has an acoustic impedance greater than that of the liquid flowing within the chamber 21 (e.g., the liquid in which the standing wave is generated), and more suitably substantially greater. For example, in one embodiment the reflector 301 may be constructed from stainless steel. It is understood, however, however that the reflector 301 may be constructed from any suitable material having an impedance greater than that of the liquid in the chamber 21 and remain within the scope of this invention. It is also contemplated that the reflector 301 may be other than plate-shaped and/or other than circular without departing from the scope of this invention.
As illustrated in
In operation of the liquid treatment system 23 illustrated in
The waveguide assembly 101, and more particularly the horn assembly 105, is driven by the drive system 131 to vibrate mechanically at a predetermined ultrasonic frequency. In response to ultrasonic excitation of the horn 133, the agitating members 137 that extend outward from the outer surface 135 of the horn 133 dynamically flex/bend relative to the horn, or displace transversely (depending on the longitudinal position of the agitating member relative to the nodal region of the horn). When using a horn assembly 205 such as that illustrated in
Liquid solution flows continuously longitudinally along the flow path between the horn assembly 105 and the inner surface 67 of the chamber sidewall 57 so that the ultrasonic vibration of the agitating members 137 agitates the liquid solution (and, where liquid solution comprises two or more components, also facilitates mixing of the components). In particularly suitable embodiments, the dynamic motion of the agitating members causes cavitation in the liquid to further facilitate agitation of the liquid solution. The ultrasonic energy imparted by the horn assembly 105 also acts on the chamber particles 24 to promote relative motion of the particles and to inhibit the particles against packing together, i.e., to reduce the risk of reduced flow rate or pressure drop within the ultrasonic treatment chamber 21. The vibratory motion imparted to the particles 24 also reduces the hydrodynamic boundary layer of around each particle to facilitate an increased reaction rate (where a reaction of the liquid components, or reaction between the liquid and the chamber particles such as adsorption, is intended to occur) within the chamber 21.
Ultrasonic operation of the waveguide assembly 101 also generates (together with the reflector 301) a standing acoustic wave (e.g., a one dimensional standing wave) in the liquid within the buffer zone between the terminal end 103 of the waveguide assembly and the reflector, with the one or more nodes of the standing wave spaced longitudinally from the outlet port 65, and more particularly from the screen element 66. With particular reference to
In some embodiments, particles 24 stabilized at the node of the standing wave will agglomerate. As such an agglomeration becomes heavier, the agglomerated particles will fall away from the node and back (e.g., against the direction of flow through the chamber) down into the main bed of particles in the chamber 21.
Where further agitation of the liquid in the chamber 21 is desired, a baffle assemble (not shown) can be disposed within the interior space 53 of the chamber, and in particular generally transversely adjacent the inner surface 67 of the sidewall 57 and in generally transversely opposed relationship with the horn assembly 105. Such a baffle assembly may comprise one or more baffle members disposed adjacent the inner surface 67 of the chamber sidewall 57 and extending at least in part transversely inward from the inner surface of the sidewall toward the horn assembly 105 in interspaced relationship with the agitating members 137. These baffle members facilitate the flow of liquid transversely inward over the ultrasonically vibrated agitating members 137 of the horn assembly 105. One suitable baffle assemble is described more fully in co-pending U.S. application Ser. No. 11/530,311 entitled ULTRASONIC LIQUID TREATMENT CHAMBER AND CONTINUOUS FLOW MIXING SYSTEM and filed Sep. 8, 2006, the disclosure of which is incorporated herein by reference to the extent it is consistent herewith.
In another suitable embodiment, the sidewall 57 of the ultrasonic treatment chamber 21 may be configured and arranged relative to the waveguide assembly 101 to generate a standing acoustic wave therebetween upon ultrasonic vibration of the waveguide assembly. In particular, the chamber sidewall 57 may be constructed of a material having an acoustical impedance that is substantially greater than the liquid flowing within the chamber 21, and in particular along the flow path between the waveguide assembly 101 and the chamber sidewall. The inner surface 67 of the sidewall 57 is suitably spaced from the outer surface 135 of the ultrasonic horn 133 a distance sufficient (based on the liquid in the chamber 21 and the operating frequency of the waveguide assembly 101) to generate a one-half wavelength standing wave wherein the outer surface of the horn acts as a transducer and the sidewall of the chamber acts as a reflector.
Upon operation of the waveguide assembly 101 a standing acoustic wave is produced in the liquid between the horn outer surface 135 and the sidewall inner surface 67. Such a standing wave suitably has at least one node spaced from the sidewall inner surface 67 and the horn outer surface 135. Chamber particles 24 in the flow path are urged toward and generally stabilized or trapped at the one or more nodes of the standing wave to inhibit particles against stagnating against the sidewall 57 and/or against the horn 133, and to inhibit particles against being carried by the flow of liquid downstream beyond the terminal end 103 of the waveguide assembly 101 into the buffer zone.
In other embodiments, such as where the ultrasonic treatment chamber 21 is used for mixing together two or more components to form a liquid solution, it is contemplated that the chamber particles 24 may be omitted (e.g., the chamber would resemble what is illustrated in
When introducing elements of the present invention or preferred embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2307206 | Fischer | Jan 1943 | A |
2584053 | Seavey et al. | Jan 1952 | A |
2946981 | O'Neill | Jul 1960 | A |
3202281 | Weston | Aug 1965 | A |
3246881 | Davidson et al. | Apr 1966 | A |
3249453 | Schnoring et al. | May 1966 | A |
3273631 | Neuman | Sep 1966 | A |
3275787 | Newberry | Sep 1966 | A |
3325348 | Bennett | Jun 1967 | A |
3326470 | Loudin et al. | Jun 1967 | A |
3338992 | Kinney | Aug 1967 | A |
3341394 | Kinney | Sep 1967 | A |
3479873 | Hermanns | Nov 1969 | A |
3490584 | Balamuth | Jan 1970 | A |
3502763 | Hartman | Mar 1970 | A |
3519251 | Hammitt et al. | Jul 1970 | A |
3542345 | Kuris | Nov 1970 | A |
3542615 | Dobo et al. | Nov 1970 | A |
3567185 | Ross et al. | Mar 1971 | A |
3664191 | Hermanns | May 1972 | A |
3692618 | Dorschner et al. | Sep 1972 | A |
3782547 | Dietert | Jan 1974 | A |
3802817 | Matsuki et al. | Apr 1974 | A |
3865350 | Burtis | Feb 1975 | A |
4062768 | Elliot | Dec 1977 | A |
4168295 | Sawyer | Sep 1979 | A |
4218221 | Cottell | Aug 1980 | A |
4259021 | Goudy et al. | Mar 1981 | A |
4266879 | McFall | May 1981 | A |
4340563 | Appel et al. | Jul 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4511254 | North et al. | Apr 1985 | A |
4556467 | Kuhn | Dec 1985 | A |
4663220 | Wisneski et al. | May 1987 | A |
4673512 | Schram | Jun 1987 | A |
4693879 | Yoshimura et al. | Sep 1987 | A |
4706509 | Riebel | Nov 1987 | A |
4708878 | Hagelauer et al. | Nov 1987 | A |
4726522 | Kokubo et al. | Feb 1988 | A |
4743361 | Schram | May 1988 | A |
4848159 | Kennedy et al. | Jul 1989 | A |
4877516 | Schram | Oct 1989 | A |
4879011 | Schram | Nov 1989 | A |
4929279 | Hays | May 1990 | A |
RE33524 | Schram | Jan 1991 | E |
4983045 | Taniguchi | Jan 1991 | A |
5006266 | Schram | Apr 1991 | A |
5026167 | Berliner, III | Jun 1991 | A |
5032027 | Berliner, III | Jul 1991 | A |
5059249 | Hays | Oct 1991 | A |
5164094 | Stuckart | Nov 1992 | A |
5169067 | Matsuka et al. | Dec 1992 | A |
5242557 | Jones et al. | Sep 1993 | A |
5258413 | Isayev | Nov 1993 | A |
5326164 | Logan | Jul 1994 | A |
5330100 | Malinowski | Jul 1994 | A |
5335449 | Beatty | Aug 1994 | A |
5391000 | Taniguchi | Feb 1995 | A |
5466722 | Stoffer et al. | Nov 1995 | A |
5536921 | Hedrick et al. | Jul 1996 | A |
5583292 | Karbach et al. | Dec 1996 | A |
5585565 | Glascock et al. | Dec 1996 | A |
5665383 | Grinstaff et al. | Sep 1997 | A |
5681457 | Mahoney | Oct 1997 | A |
5711888 | Trampler et al. | Jan 1998 | A |
5803270 | Brodeur | Sep 1998 | A |
5831166 | Kozuka et al. | Nov 1998 | A |
5868153 | Cohen et al. | Feb 1999 | A |
5873968 | Pike et al. | Feb 1999 | A |
5902489 | Yasuda et al. | May 1999 | A |
5916203 | Brandon et al. | Jun 1999 | A |
5922355 | Parikh et al. | Jul 1999 | A |
5935883 | Pike | Aug 1999 | A |
5964926 | Cohen | Oct 1999 | A |
5979664 | Brodeur | Nov 1999 | A |
6010592 | Jameson et al. | Jan 2000 | A |
6020277 | Jameson | Feb 2000 | A |
6053424 | Gipson et al. | Apr 2000 | A |
6055859 | Kozuka et al. | May 2000 | A |
6060416 | Kobata | May 2000 | A |
6074466 | Iwasa | Jun 2000 | A |
6090731 | Pike et al. | Jul 2000 | A |
6169045 | Pike et al. | Jan 2001 | B1 |
6218483 | Muthiah et al. | Apr 2001 | B1 |
6221258 | Feke et al. | Apr 2001 | B1 |
6254787 | Kimura et al. | Jul 2001 | B1 |
6266836 | Gallego Juarez et al. | Jul 2001 | B1 |
6315215 | Gipson et al. | Nov 2001 | B1 |
6332541 | Coakley et al. | Dec 2001 | B1 |
6361697 | Coury et al. | Mar 2002 | B1 |
6380264 | Jameson et al. | Apr 2002 | B1 |
6383301 | Bell et al. | May 2002 | B1 |
6450417 | Gipson et al. | Sep 2002 | B1 |
6467350 | Kaduchak et al. | Oct 2002 | B1 |
6482327 | Mori et al. | Nov 2002 | B1 |
6506584 | Chandler et al. | Jan 2003 | B1 |
6547935 | Scott | Apr 2003 | B2 |
6547951 | Maekawa | Apr 2003 | B1 |
6551607 | Minerath, III | Apr 2003 | B1 |
6593436 | Austin et al. | Jul 2003 | B2 |
6624100 | Pike et al. | Sep 2003 | B1 |
6627265 | Kutilek | Sep 2003 | B2 |
6655826 | Leanos | Dec 2003 | B1 |
6659365 | Gipson et al. | Dec 2003 | B2 |
6676003 | Ehlert et al. | Jan 2004 | B2 |
6689730 | Hortel et al. | Feb 2004 | B2 |
6739524 | Taylor-McCune et al. | May 2004 | B2 |
6770600 | Lamola | Aug 2004 | B1 |
6817541 | Sands et al. | Nov 2004 | B2 |
6818128 | Minter | Nov 2004 | B2 |
6858181 | Aoyagi | Feb 2005 | B2 |
6878288 | Scott | Apr 2005 | B2 |
6883724 | Adiga et al. | Apr 2005 | B2 |
6890593 | Tian | May 2005 | B2 |
6897628 | Gunnerman | May 2005 | B2 |
6902650 | Park et al. | Jun 2005 | B2 |
6911153 | Minter | Jun 2005 | B2 |
6929750 | Laurell et al. | Aug 2005 | B2 |
6935770 | Schueler | Aug 2005 | B2 |
6936151 | Lock | Aug 2005 | B1 |
7083764 | Scott | Aug 2006 | B2 |
7108137 | Lal et al. | Sep 2006 | B2 |
7150779 | Meegan, Jr. | Dec 2006 | B2 |
7156201 | Peshkovskiy et al. | Jan 2007 | B2 |
7322431 | Ratcliff | Jan 2008 | B2 |
7424883 | McNichols et al. | Sep 2008 | B2 |
7516664 | Meier et al. | Apr 2009 | B2 |
20010040935 | Case | Nov 2001 | A1 |
20020164274 | Haggett et al. | Nov 2002 | A1 |
20030048692 | Cohen et al. | Mar 2003 | A1 |
20030066899 | Gipson | Apr 2003 | A1 |
20030143110 | Kritzler | Jul 2003 | A1 |
20040022695 | Simon et al. | Feb 2004 | A1 |
20040065599 | Lal et al. | Apr 2004 | A1 |
20040120904 | Lye et al. | Jun 2004 | A1 |
20040142041 | MacDonald et al. | Jul 2004 | A1 |
20040187524 | Sen et al. | Sep 2004 | A1 |
20050000914 | Dahlberg et al. | Jan 2005 | A1 |
20050008560 | Kataoka et al. | Jan 2005 | A1 |
20050025797 | Xingwu | Feb 2005 | A1 |
20050082234 | Solenthaler | Apr 2005 | A1 |
20050084438 | Do et al. | Apr 2005 | A1 |
20050084464 | McGrath et al. | Apr 2005 | A1 |
20050129161 | Laberge | Jun 2005 | A1 |
20050207431 | Beca et al. | Sep 2005 | A1 |
20050235740 | Desie et al. | Oct 2005 | A1 |
20050260106 | Marhasin | Nov 2005 | A1 |
20060000034 | McGrath | Jan 2006 | A1 |
20060008442 | MacDonald et al. | Jan 2006 | A1 |
20060120212 | Taniguchi et al. | Jun 2006 | A1 |
20070114306 | Kawakami et al. | May 2007 | A1 |
20070170277 | Ehlert | Jul 2007 | A1 |
20080061000 | Janssen | Mar 2008 | A1 |
20080062811 | Janssen et al. | Mar 2008 | A1 |
20080063718 | Janssen et al. | Mar 2008 | A1 |
20080069887 | Baran et al. | Mar 2008 | A1 |
20080155763 | Janssen et al. | Jul 2008 | A1 |
20080192568 | Hielscher et al. | Aug 2008 | A1 |
20088251375 | Hielscher et al. | Oct 2008 |
Number | Date | Country |
---|---|---|
2175065 | May 1995 | CA |
657067 | Aug 1986 | CH |
1247628 | Mar 2006 | CN |
101153138 | Apr 2008 | CN |
262553 | Dec 1988 | DE |
9017338 | Mar 1991 | DE |
4444525 | Jun 1996 | DE |
19854013 | May 2000 | DE |
19913397 | Sep 2000 | DE |
19938254 | Feb 2001 | DE |
29825063 | Jun 2004 | DE |
102004040233 | Mar 2006 | DE |
102005025118 | Jan 2007 | DE |
102005034629 | Jan 2007 | DE |
0269941 | Jun 1988 | EP |
0292470 | Nov 1988 | EP |
347891 | Dec 1989 | EP |
0459967 | Dec 1991 | EP |
625482 | Nov 1994 | EP |
0648531 | Apr 1995 | EP |
648531 | Apr 1995 | EP |
1954388 | Mar 2007 | EP |
0983968 | Mar 2008 | EP |
2793811 | Nov 2000 | FR |
2799811 | Nov 2000 | FR |
1404575 | Sep 1975 | GB |
56028221 | Mar 1981 | JP |
57119853 | Jul 1982 | JP |
58034051 | Feb 1983 | JP |
62039839 | Mar 1987 | JP |
63072364 | Apr 1988 | JP |
63104664 | May 1988 | JP |
1108081 | Apr 1989 | JP |
2025602 | Jan 1990 | JP |
02281185 | Nov 1990 | JP |
03053195 | Mar 1991 | JP |
3086258 | Apr 1991 | JP |
6228824 | Aug 1994 | JP |
8304388 | Nov 1996 | JP |
9286943 | Nov 1997 | JP |
10060331 | Mar 1998 | JP |
11133661 | May 1999 | JP |
2000158364 | Jun 2000 | JP |
2001017970 | Jan 2001 | JP |
2001252588 | Sep 2001 | JP |
2003103152 | Apr 2003 | JP |
2004020176 | Jan 2004 | JP |
2004020176 | Jan 2004 | JP |
2004256783 | Sep 2004 | JP |
2005118688 | May 2005 | JP |
20020073778 | Sep 2002 | KR |
1020050013858 | Feb 2005 | KR |
1020050113356 | Dec 2005 | KR |
9400757 | Jan 1994 | WO |
9420833 | Sep 1994 | WO |
9429873 | Dec 1994 | WO |
9600318 | Jan 1996 | WO |
9743026 | Nov 1997 | WO |
9817373 | Apr 1998 | WO |
9844058 | Oct 1998 | WO |
9933520 | Jul 1999 | WO |
0004978 | Feb 2000 | WO |
0041794 | Jul 2000 | WO |
0139200 | May 2001 | WO |
0222252 | Mar 2002 | WO |
0250511 | Jun 2002 | WO |
03012800 | Feb 2003 | WO |
03102737 | Dec 2003 | WO |
2004026452 | Apr 2004 | WO |
2004064487 | Aug 2004 | WO |
2005011804 | Feb 2005 | WO |
2006037591 | Apr 2006 | WO |
2006043970 | Apr 2006 | WO |
2006073645 | Jul 2006 | WO |
2006093804 | Sep 2006 | WO |
2007060245 | May 2007 | WO |
2007095871 | Aug 2007 | WO |
2008029379 | Mar 2008 | WO |
2008047259 | Apr 2008 | WO |
2008085806 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080156737 A1 | Jul 2008 | US |