This application is a U.S. national stage application under section 35 U.S.C. § 371 of International Application No. PCT/IB2019/060810, filed Dec. 15, 2019, the entire contents of which are incorporated herein in its entirety.
The invention relates to an ultrasonic mist inhaler for atomizing a liquid by ultrasonic vibrations.
Electronic vaporizing inhalers are becoming popular among smokers who also want to avoid the tar and other harsh chemicals associated with traditional cigarettes and who wish to satisfy the craving for nicotine. Electronic vaporizing inhalers may contain liquid nicotine, which is typically a mixture of nicotine oil, a solvent, water, and often flavoring. When the user draws, or inhales, on the electronic vaporizing inhaler, the liquid nicotine is drawn into a vaporizer where it is heated into a vapor. As the user draws on the electronic vaporizing inhaler, the vapor containing the nicotine is inhaled. Such electronic vaporizing inhalers may have medical purpose.
Electronic vaporizing inhalers and other vapor inhalers typically have similar designs. Most electronic vaporizing inhalers feature a liquid nicotine reservoir with an interior membrane, such as a capillary element, typically cotton, that holds the liquid nicotine so as to prevent leaking from the reservoir. Nevertheless, these cigarettes are still prone to leaking because there is no obstacle to prevent the liquid from flowing out of the membrane and into the mouthpiece. A leaking electronic vaporizing inhaler is problematic for several reasons. As a first disadvantage, the liquid can leak into the electronic components, which can cause serious damage to the device. As a second disadvantage, the liquid can leak into the electronic vaporizing inhaler mouthpiece, and the user may inhale the unvaporized liquid.
Electronic vaporizing inhalers are also known for providing inconsistent doses between draws. The aforementioned leaking is one cause of inconsistent doses because the membrane may be oversaturated or undersaturated near the vaporizer. If the membrane is oversaturated, then the user may experience a stronger than desired dose of vapor, and if the membrane is undersaturated, then the user may experience a weaker than desired dose of vapor. Additionally, small changes in the strength of the user's draw may provide stronger or weaker doses. Inconsistent dosing, along with leaking, can lead to faster consumption of the vaping liquid.
Additionally, conventional electronic vaporizing inhalers tend to rely on inducing high temperatures of a metal heating component configured to heat a liquid in the e-cigarette, thus vaporizing the liquid that can be breathed in. Problems with conventional electronic vaporizing inhalers may include the possibility of burning metal and subsequent breathing in of the metal along with the burnt liquid. In addition, some may not prefer the burnt smell caused by the heated liquid.
Electronic vaporizing inhalers are generally designed so that the liquid nicotine reservoir is arranged away from the metal heating component to prevent heating the unused liquid in the reservoir. This arrangement makes the inhaler device cumbersome and more complex to produce.
Thus, a need exists in the art for an electronic vaporizing inhaler that is better able to withstand these disadvantages.
According to one aspect of the invention, an ultrasonic mist inhaler, comprises:
wherein the capillary element is a material at least partly in bamboo fibers.
The capillary element according to the invention allows a high absorption capacity, a high rate of absorption as well as a high fluid-retention ratio.
It was found that the inherent properties of the proposed material used for the capillarity have a significant impact on the efficient functioning of the ultrasonic mist inhaler.
Further, inherent properties of the proposed material include a good hygroscopicity while maintaining a good permeability. This allows the drawn liquid to efficiently permeate the capillary while the observed high absorption capacity allows the retention of a considerable amount of liquid thus allowing the ultrasonic mist inhaler to last for a longer time when compared with the other products available in the market.
Another significant advantage of using the bamboo fibers is the naturally occurring antimicrobial bio-agent namely “Kun” inherently present within the bamboo fiber making it antibacterial, anti-fungal and odor resistant making it suitable for medical applications.
The inherent properties have been verified using numerical analysis regarding the benefits of the bamboo fiber for sonication.
The following formulae have been tested with bamboo fibers material and others material such a cotton, paper, or other fiber strands for the use as capillary element and demonstrates that bamboo fibers have much better properties for the use in sonication:
wherein:
In the ultrasonic mist inhaler, the capillary element material may be 100% bamboo fiber.
Extensive testing have concluded that a 100% pure bamboo fiber is the most optimal choice for sonication.
In the ultrasonic mist inhaler, the capillary element material may be in at least 75% bamboo fiber and, preferably, 25% cotton.
Capillary element from 100% pure bamboo fiber or with a high percentage of bamboo fibers demonstrates a high absorption capacity as well as improved fluid transmission making it an optimal choice for the application of the ultrasonic mist inhaler.
In the ultrasonic mist inhaler, the capillary element may have a flat shape.
In the ultrasonic mist inhaler, the capillary element may comprise a central portion and a peripheral portion.
In the ultrasonic mist inhaler, the peripheral portion may have an L-shape cross section extending down to the liquid chamber.
In the ultrasonic mist inhaler, the central portion may have a U-shape cross section extending down to the sonication chamber.
It is noted that the expression “mist” used in the invention means the liquid is not heated as usually in traditional inhalers known from the prior art. In fact, traditional inhalers use heating elements to heat the liquid above its boiling temperature to produce a vapor, which is different from a mist.
In fact, when sonicating liquids at high intensities, the sound waves that propagate into the liquid media result in alternating high-pressure (compression) and low-pressure (rarefaction) cycles, at different rates depending on the frequency. During the low-pressure cycle, high-intensity ultrasonic waves create small vacuum bubbles or voids in the liquid. When the bubbles attain a volume at which they can no longer absorb energy, they collapse violently during a high-pressure cycle. This phenomenon is termed cavitation. During the implosion very high pressures are reached locally. At cavitation, broken capillary waves are generated, and tiny droplets break the surface tension of the liquid and are quickly released into the air, taking mist form.
The ultrasonic mist inhaler according to the invention, wherein said liquid to be received in the liquid chamber comprises 57-70% (w/w) vegetable glycerin and 30-43% (w/w) propylene glycol, said propylene glycol including nicotine and flavorings.
An ultrasonic mist inhaler or a personal ultrasonic atomizer device, comprising:
wherein said liquid to be received in the liquid chamber comprises 57-70% (w/w) vegetable glycerin and 30-43% (w/w) propylene glycol, said propylene glycol including nicotine and flavorings.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings.
As used herein, an element recited in the singular and preceded with the word “a” or “an” should be understood as not excluding plural of said elements, unless such exclusion is explicitly stated. Furthermore, the references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
The present invention is directed to an ultrasonic mist inhaler. The description of the invention and accompanying figures will be directed to the electronic vaporizing inhaler embodiment; however, other embodiments are envisioned, such as an inhaler for hookah, flavored liquids, medicine, and herbal supplements. Additionally, the device can be packaged to look like an object other than a cigarette. For instance, the device could resemble another smoking instrument, such as a pipe, water pipe, or slide, or the device could resemble another non-smoking related object.
Ultrasonic mist inhalers are either disposable or reusable. The term “reusable” as used herein implies that the energy storage device is rechargeable or replaceable or that the liquid is able to be replenished either through refilling or through replacement of the liquid reservoir structure. Alternatively, in some embodiments reusable electronic device is both rechargeable and the liquid can be replenished. A disposable embodiment will be described first, followed by a description of a reusable embodiment.
Conventional electronic vaporizing inhaler tend to rely on inducing high temperatures of a metal component configured to heat a liquid in the inhaler, thus vaporizing the liquid that can be breathed in. The liquid typically contains nicotine and flavorings blended into a solution of propylene glycol (PG) and vegetable glycerin (VG), which is vaporized via a heating component at high temperatures. Problems with conventional inhaler may include the possibility of burning metal and subsequent breathing in of the metal along with the burnt liquid. In addition, some may not prefer the burnt smell or taste caused by the heated liquid.
In contrast, aspects of the present disclosure include an ultrasonic mist inhaler that atomizes the liquid through ultrasonic vibrations, which produces micro water bubbles in the liquid. When the bubbles come into contact with ambient air molecules, water droplets of about 0.25 to 0.5 microns spray into the air, thereby generating micro-droplets that can be absorbed through breathing, similar to breathing in a mist.
No heating elements are involved, thereby leading to no burnt elements and reducing second-hand smoke effects.
As can be seen in
The first portion 101 contains the power supply energy.
An electrical storage device 30 powers the ultrasonic mist inhaler 100. The electrical storage device 30 can be a battery, including but not limited to a lithium-ion, alkaline, zinc-carbon, nickel-metal hydride, or nickel-cadmium battery; a super capacitor; or a combination thereof. In the disposable embodiment, the electrical storage device 30 is not rechargeable, but, in the reusable embodiment, the electrical storage device 30 would be selected for its ability to recharge. In the disposable embodiment, the electrical storage device 30 is primarily selected to deliver a constant voltage over the life of the inhaler 100. Otherwise, the performance of the inhaler would degrade over time. Preferred electrical storage devices that are able to provide a consistent voltage output over the life of the device include lithium-ion and lithium polymer batteries.
The electrical storage device 30 has a first end 30a that generally corresponds to a positive terminal and a second end 30b that generally corresponds to a negative terminal. The negative terminal is extending to the first end 30a.
Because the electrical storage device 30 is located in the first portion 101 and the liquid reservoir structure 2 is located in the second portion 102, the joint needs to provide electrical communication between those components. In the present invention, electrical communication is established using at least an electrode or probe that is compressed together when the first portion 101 is tightened into the second portion 102.
In order for this embodiment to be reusable, the electrical storage device 30 is rechargeable. The casing 3 contains a charging port 32.
The integrated circuit 4 has a proximal end 4a and a distal end 4b. The positive terminal at the first end 30a of the electrical storage device 30 is in electrical communication with a positive lead of the flexible integrated circuit 4. The negative terminal at the second end 30b of the electrical storage device 30 is in electrical communication with a negative lead of the integrated circuit 4. The distal end 4b of the integrated circuit 4 comprise a microprocessor. The microprocessor is configured to process data from a sensor, to control a light, to direct current flow to means of ultrasonic vibrations 5 in the second portion 102, and to terminate current flow after a preprogrammed amount of time.
The expression “means of ultrasonic vibrations” is similar to the expression “ultrasonic oscillation component” used in the patent application PCT/IB2019/055192.
The sensor detects when the ultrasonic mist inhaler 100 is in use (when the user draws on the inhaler) and activates the microprocessor. The sensor can be selected to detect changes in pressure, air flow, or vibration. In a preferred embodiment, the sensor is a pressure sensor. In the digital embodiment, the sensor takes continuous readings which in turn requires the digital sensor to continuously draw current, but the amount is small and overall battery life would be negligibly affected.
Additionally, the integrated circuit 4 may comprise a H bridge, preferably formed by 4 MOSFETs to convert a direct current into an alternate current at high frequency.
Referring to
In the embodiment shown, the liquid reservoir structure 2 comprises an inhalation channel 20 providing an air passage from the sonication chamber 22 toward the surroundings.
As an example of sensor position, the sensor may be located in the sonication chamber 22.
The inhalation channel 20 has a frustoconical element 20a and an inner container 20b.
As depicted in
The airflow member 27 has an airflow bridge 27a and an airflow duct 27b made in one piece, the airflow bridge 27a having two airway openings 27a′ forming a portion of the inhalation channel 20 and the airflow duct 27b extending in the sonication chamber 22 from the airflow bridge 27a for providing the air flow from the surroundings to the sonication chamber.
The airflow bridge 27a cooperates with the frustoconical element 20a at the second diameter 20a2.
The airflow bridge 27a has two opposite peripheral openings 27a″ providing air flow to the airflow duct 27b.
The cooperation with the airflow bridge 27a and the frustoconical element 20a is arranged so that the two opposite peripheral openings 27a″ cooperate with complementary openings 20a″ in the frustoconical element 20a.
The mouthpiece 1 and the frustoconical element 20a are radially spaced and an airflow chamber 28 is arranged between them.
As depicted in
The peripheral openings 27a″, 20a″, 1″ of the airflow bridge 27a, the frustoconical element 20a and the mouthpiece 1 directly supply maximum air flow to the sonication chamber 22.
The frustoconical element 20a includes an internal passage, aligned in the similar direction as the inhalation channel 20, having a first diameter 20a1 less than that of a second diameter 20a2, such that the internal passage reduces in diameter over the frustoconical element 20a.
The frustoconical element 20a is positioned in alignment with the means of ultrasonic vibrations 5 and a capillary element 7, wherein the first diameter 20a1 is linked to an inner duct 11 of the mouthpiece 1 and the second diameter 20a2 is linked to the inner container 20b.
The inner container 20b has an inner wall delimiting the sonication chamber 22 and the liquid chamber 21.
The liquid reservoir structure 2 has an outer container 20c delimiting the outer wall of the liquid chamber 21.
The inner container 20b and the outer container 20c are respectively the inner wall and the outer wall of the liquid chamber 21.
The liquid reservoir structure 2 is arranged between the mouthpiece 1 and the casing 3 and is detachable from the mouthpiece 1 and the casing 3.
The liquid reservoir structure 2 and the mouthpiece 1 or the casing 3 may include complimentary arrangements for engaging with one another; further such complimentary arrangements may include one of the following: a bayonet type arrangement; a threaded engaged type arrangement; a magnetic arrangement; or a friction fit arrangement; wherein the liquid reservoir structure 2 includes a portion of the arrangement and the mouthpiece 1 or the casing 3 includes the complimentary portion of the arrangement.
In the reusable embodiment, the components are substantially the same.
The differences in the reusable embodiment vis-a-vis the disposable embodiment are the accommodations made to replace the liquid reservoir structure 2.
As shown in
The capillary element 7 is arranged between a first section 20b1 and a second section 20b2 of the inner container 20b.
The capillary element 7 has a flat shape extending from the sonication chamber to the liquid chamber.
As depicted in
The L-shape portion 7b extends into the liquid chamber 21 on the inner container 20b and along the bottom wall 25.
The U-shape portion 7a is contained into the sonication chamber 21. The U-shape portion 7a on the inner container 20b and along the bottom wall 25.
In the ultrasonic mist inhaler, the U-shape portion 7a has an inner portion 7a1 and an outer portion 7a2, the inner portion 7a1 being in surface contact with an atomization surface 50 of the means of ultrasonic vibrations 5 and the outer portion 7a2 being not in surface contact with the means of ultrasonic vibrations 5.
The bottom wall 25 of the liquid chamber 21 is a bottom plate 25 closing the liquid chamber 21 and the sonication chamber 22. The bottom plate 25 is sealed, thus preventing leakage of liquid from the sonication chamber 22 to the casing 3.
The bottom plate 25 has an upper surface 25a having a recess 25b on which is inserted an elastic member 8. The means of ultrasonic vibrations 5 are supported by the elastic member 8. The elastic member 8 is formed from an annular plate-shaped rubber having an inner hole 8′ wherein a groove is designed for maintaining the means of ultrasonic vibrations 5.
The top wall 23 of the liquid chamber 21 is a cap 23 closing the liquid chamber 23.
The top wall 23 has a top surface 23 representing the maximum level of the liquid that the liquid chamber 21 may contain and the bottom surface 25 representing the minimum level of the liquid in the liquid chamber 21.
The top wall 23 is sealed, thus preventing leakage of liquid from the liquid chamber 21 to the mouthpiece 1.
The top wall 23 and the bottom wall 25 are fixed to the liquid reservoir structure 2 by means of fixation such as screws, glue, or friction.
As depicted in
As depicted in
As can be seen in
The means of ultrasonic vibrations 5 may be a transducer. For example, the means of ultrasonic vibrations 5 may be a piezoelectric transducer, preferably designed in a circular plate-shape. The material of the piezoelectric transducer is preferably in ceramic.
A variety of transducer materials can also be used for the means of ultrasonic vibrations 5.
The end of the airflow duct 27b1 faces the means of ultrasonic vibrations 5. The means of ultrasonic vibrations 5 are in electrical communication with electrical contactors 101a, 101b. It is noted that, the distal end 4b of the integrated circuit 4 has an inner electrode and an outer electrode. The inner electrode contacts the first electrical contact 101a which is a spring contact probe, and the outer electrode contacts the second electrical contact 101b which is a side pin. Via the integrated circuit 4, the first electrical contact 101a is in electrical communication with the positive terminal of the electrical storage device 30 by way of the microprocessor, while the second electrical contact 101b is in electrical communication with the negative terminal of the electrical storage device 30.
The electrical contacts 101a, 101b crossed the bottom plate 25. The bottom plate 25 is designed to be received inside the perimeter wall 26 of the liquid reservoir structure 2. The bottom plate 25 rests on complementary ridges, thereby creating the liquid chamber 21 and sonication chamber 22.
The inner container 20b comprises a circular inner slot 20d on which a mechanical spring is applied.
By pushing the central portion 7a1 onto the means of ultrasonic vibrations 5, the mechanical spring 9 ensures a contact surface between them.
The liquid reservoir structure 2 and the bottom plate 25 can be made using a variety of thermoplastic materials.
When the user draws on the ultrasonic mist inhaler 100, an air flow is drawn from the peripheral openings 1″ and penetrates the airflow chamber 28, passes the peripheral openings 27a″ of the airflow bridge 27a and the frustoconical element 20a and flows down into the sonication chamber 22 via the airflow duct 27b directly onto the capillary element 7. At the same time, the liquid is drawn from the reservoir chamber 21 by capillarity, through the plurality of apertures 20b′, and into the capillary element 7. The capillary element 7 brings the liquid into contact with the means of ultrasonic vibrations 5 of the inhaler 100. The user's draw also causes the pressure sensor to activate the integrated circuit 4, which directs current to the means of ultrasonic vibrations 5. Thus, when the user draws on the mouthpiece 1 of the inhaler 100, two actions happen at the same time. Firstly, the sensor activates the integrated circuit 4, which triggers the means of ultrasonic vibrations 5 to begin vibrating. Secondly, the draw reduces the pressure outside the reservoir chamber 21 such that flow of the liquid through the apertures 20b′ begins, which saturates the capillary element 7. The capillary element 7 transports the liquid to the means of ultrasonic vibrations 5, which causes bubbles to form in a capillary channel by the means of ultrasonic vibrations 5 and mist the liquid. Then, the mist liquid is drawn by the user.
The ultrasonic mist inhaler 100 of the present disclosures is a more powerful version of current portable medical nebulizers, in the shape and size of current e-cigarettes and with a particular structure for effective vaporization. It is a healthier alternative to cigarettes and current e-cigarettes products.
The ultrasonic mist inhaler 100 of the present disclosures has particular applicability for those who use electronic inhalers as a means to quit smoking and reduce their nicotine dependency. The ultrasonic mist inhaler 100 provides a way to gradually taper the dose of nicotine.
Other embodiments of the invented ultrasonic mist inhaler 100 are easily envisioned, including medicinal delivery devices.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/060810 | 12/15/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/123869 | 6/24/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4119096 | Drews | Oct 1978 | A |
4334531 | Reichel | Jun 1982 | A |
5355873 | Del Bon | Oct 1994 | A |
5518179 | Humberstone et al. | May 1996 | A |
5551416 | Stimpson | Sep 1996 | A |
5894841 | Voges | Apr 1999 | A |
6011345 | Murray | Jan 2000 | A |
6040560 | Fleischhauer | Mar 2000 | A |
6402046 | Loeser | Jun 2002 | B1 |
6601581 | Babaev | Aug 2003 | B1 |
6679436 | Onishi | Jan 2004 | B1 |
7129619 | Yang | Oct 2006 | B2 |
8991722 | Friend et al. | Mar 2015 | B2 |
9242263 | Copeman | Jan 2016 | B1 |
9278365 | Banco | Mar 2016 | B2 |
9415412 | Kawashima | Aug 2016 | B2 |
9687029 | Liu | Jun 2017 | B2 |
9687627 | Gallem et al. | Jun 2017 | B2 |
9718078 | Chau | Aug 2017 | B1 |
9867398 | Guo | Jan 2018 | B2 |
9980140 | Spencer | May 2018 | B1 |
10034495 | Alarcon et al. | Jul 2018 | B2 |
10071391 | Yu | Sep 2018 | B2 |
10195368 | Wang | Feb 2019 | B2 |
10300225 | Terry et al. | May 2019 | B2 |
10327479 | Popplewell | Jun 2019 | B2 |
10328218 | Reed | Jun 2019 | B2 |
10412996 | Bright | Sep 2019 | B2 |
10506827 | Liu | Dec 2019 | B2 |
10561803 | Liu | Feb 2020 | B2 |
10757971 | Liu | Sep 2020 | B2 |
11039641 | Liu | Jun 2021 | B2 |
11207711 | Hejazi | Dec 2021 | B2 |
11219245 | Liu | Jan 2022 | B2 |
11278055 | Liu | Mar 2022 | B2 |
11304451 | Hejazi | Apr 2022 | B2 |
11431242 | Liu | Aug 2022 | B2 |
11517685 | Danek | Dec 2022 | B2 |
11589609 | Liu | Feb 2023 | B2 |
11589610 | Lahoud | Feb 2023 | B2 |
11690963 | Danek | Jul 2023 | B2 |
11700881 | Liu | Jul 2023 | B2 |
11744282 | Liu | Sep 2023 | B2 |
11744284 | Liu | Sep 2023 | B2 |
11771137 | Liu | Oct 2023 | B2 |
20020129813 | Litherland | Sep 2002 | A1 |
20030192532 | Hopkins | Oct 2003 | A1 |
20030209005 | Fenn | Nov 2003 | A1 |
20060243277 | Denyer | Nov 2006 | A1 |
20070125370 | Denyer | Jun 2007 | A1 |
20080088202 | Duru | Apr 2008 | A1 |
20080156320 | Low | Jul 2008 | A1 |
20080164339 | Duru | Jul 2008 | A1 |
20090022669 | Waters | Jan 2009 | A1 |
20100084488 | Mahoney, III | Apr 2010 | A1 |
20100139652 | Lipp | Jun 2010 | A1 |
20120126041 | Mahito et al. | May 2012 | A1 |
20120187209 | Friend et al. | Jul 2012 | A1 |
20130220315 | Conley | Aug 2013 | A1 |
20140007864 | Gordon et al. | Jan 2014 | A1 |
20140151457 | Wilkerson | Jun 2014 | A1 |
20140261414 | Weitzel | Sep 2014 | A1 |
20140270727 | Ampolini | Sep 2014 | A1 |
20150202387 | Yu | Jul 2015 | A1 |
20150230522 | Horn et al. | Aug 2015 | A1 |
20150231347 | Gumaste et al. | Aug 2015 | A1 |
20160001316 | Friend et al. | Jan 2016 | A1 |
20160066619 | Di Carlo | Mar 2016 | A1 |
20160089508 | Smith | Mar 2016 | A1 |
20160199594 | Finger | Jul 2016 | A1 |
20160206001 | Eng | Jul 2016 | A1 |
20160213866 | Tan | Jul 2016 | A1 |
20160279352 | Wang et al. | Sep 2016 | A1 |
20160324212 | Cameron | Nov 2016 | A1 |
20160338407 | Kerdemelidis | Nov 2016 | A1 |
20170042242 | Hon | Feb 2017 | A1 |
20170119052 | Williams | May 2017 | A1 |
20170135411 | Cameron | May 2017 | A1 |
20170136484 | Wilkerson | May 2017 | A1 |
20170265521 | Do | Sep 2017 | A1 |
20170281883 | Li | Oct 2017 | A1 |
20170303594 | Cameron | Oct 2017 | A1 |
20170368273 | Rubin | Dec 2017 | A1 |
20180020730 | Alarcon et al. | Jan 2018 | A1 |
20180042306 | Atkins et al. | Feb 2018 | A1 |
20180153217 | Liu | Jun 2018 | A1 |
20180160737 | Verleur | Jun 2018 | A1 |
20180161525 | Liu | Jun 2018 | A1 |
20180192702 | Li | Jul 2018 | A1 |
20180256832 | Terry et al. | Sep 2018 | A1 |
20180269867 | Terashima | Sep 2018 | A1 |
20180286207 | Baker | Oct 2018 | A1 |
20180296777 | Terry et al. | Oct 2018 | A1 |
20180296778 | Hacker | Oct 2018 | A1 |
20180310625 | Alarcon et al. | Nov 2018 | A1 |
20180338532 | Verleur | Nov 2018 | A1 |
20180343926 | Wensley | Dec 2018 | A1 |
20190056131 | Warren | Feb 2019 | A1 |
20190098935 | Phan | Apr 2019 | A1 |
20190116863 | Dull | Apr 2019 | A1 |
20190158938 | Bowen | May 2019 | A1 |
20190166913 | Trzecieski | Jun 2019 | A1 |
20190216135 | Guo | Jul 2019 | A1 |
20190255554 | Selby | Aug 2019 | A1 |
20190289914 | Liu | Sep 2019 | A1 |
20190289915 | Heidl | Sep 2019 | A1 |
20190289918 | Hon | Sep 2019 | A1 |
20190321570 | Rubin | Oct 2019 | A1 |
20190329281 | Lin | Oct 2019 | A1 |
20190335580 | Lin | Oct 2019 | A1 |
20190336710 | Yamada | Nov 2019 | A1 |
20190373679 | Fu | Dec 2019 | A1 |
20190374730 | Chen et al. | Dec 2019 | A1 |
20190387795 | Fisher | Dec 2019 | A1 |
20200000143 | Anderson | Jan 2020 | A1 |
20200000146 | Anderson | Jan 2020 | A1 |
20200009600 | Tan et al. | Jan 2020 | A1 |
20200016344 | Scheck | Jan 2020 | A1 |
20200022416 | Alarcon | Jan 2020 | A1 |
20200046030 | Krietzman | Feb 2020 | A1 |
20200068949 | Rasmussen | Mar 2020 | A1 |
20200085100 | Hoffman | Mar 2020 | A1 |
20200120989 | Danek | Apr 2020 | A1 |
20200120991 | Hatton | Apr 2020 | A1 |
20200146361 | Silver | May 2020 | A1 |
20200178598 | Mitchell | Jun 2020 | A1 |
20200214349 | Liu | Jul 2020 | A1 |
20200221771 | Atkins | Jul 2020 | A1 |
20200221776 | Liu | Jul 2020 | A1 |
20200245692 | Cameron | Aug 2020 | A1 |
20200345058 | Bowen | Nov 2020 | A1 |
20200404975 | Chen | Dec 2020 | A1 |
20210015957 | Bush | Jan 2021 | A1 |
20210076733 | Liu | Mar 2021 | A1 |
20210112858 | Liu | Apr 2021 | A1 |
20210153548 | Twite | May 2021 | A1 |
20210153549 | Twite | May 2021 | A1 |
20210153564 | Hourmand | May 2021 | A1 |
20210153565 | Twite | May 2021 | A1 |
20210153566 | Hourmand | May 2021 | A1 |
20210153567 | Twite | May 2021 | A1 |
20210153568 | Twite | May 2021 | A1 |
20210153569 | Twite | May 2021 | A1 |
20210177056 | Yilmaz | Jun 2021 | A1 |
20210212362 | Liu | Jul 2021 | A1 |
20210378303 | Liu | Dec 2021 | A1 |
20210401061 | Davis | Dec 2021 | A1 |
20210402114 | Lahoud | Dec 2021 | A1 |
20220151301 | Liu | May 2022 | A1 |
20220240589 | Liu | Aug 2022 | A1 |
20220273037 | Liu | Sep 2022 | A1 |
20220279857 | Liu | Sep 2022 | A1 |
20220295876 | Liu | Sep 2022 | A1 |
20220395023 | Liu | Dec 2022 | A1 |
20220400747 | Liu | Dec 2022 | A1 |
20230001107 | Connolly | Jan 2023 | A1 |
20230013741 | Liu | Jan 2023 | A1 |
20230020762 | Liu | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
101648041 | Feb 2010 | CN |
104055225 | Sep 2014 | CN |
204070580 | Jan 2015 | CN |
105747277 | Jul 2016 | CN |
105768238 | Jul 2016 | CN |
105795526 | Jul 2016 | CN |
105876873 | Aug 2016 | CN |
205432145 | Aug 2016 | CN |
106108118 | Nov 2016 | CN |
205831074 | Dec 2016 | CN |
106422005 | Feb 2017 | CN |
205947130 | Feb 2017 | CN |
206025223 | Mar 2017 | CN |
206043451 | Mar 2017 | CN |
206079025 | Apr 2017 | CN |
206119183 | Apr 2017 | CN |
206119184 | Apr 2017 | CN |
106617319 | May 2017 | CN |
206303211 | Jul 2017 | CN |
206333372 | Jul 2017 | CN |
107048479 | Aug 2017 | CN |
206586397 | Oct 2017 | CN |
206949536 | Feb 2018 | CN |
105476071 | May 2018 | CN |
108283331 | Jul 2018 | CN |
105747277 | Aug 2018 | CN |
108355210 | Aug 2018 | CN |
105876873 | Dec 2018 | CN |
109619655 | Jan 2019 | CN |
208434721 | Jan 2019 | CN |
106108118 | Apr 2019 | CN |
208837110 | May 2019 | CN |
209060228 | Jul 2019 | CN |
110150760 | Aug 2019 | CN |
209255084 | Aug 2019 | CN |
105876870 | Nov 2019 | CN |
209900345 | Jan 2020 | CN |
210076566 | Feb 2020 | CN |
210225387 | Mar 2020 | CN |
110946315 | Apr 2020 | CN |
26 56 370 | Jun 1978 | DE |
26 56 370 | Nov 1978 | DE |
26 56 370 | Jul 1979 | DE |
100 51 792 | May 2002 | DE |
10122065 | Dec 2002 | DE |
0 258 637 | Mar 1988 | EP |
0 295 122 | Dec 1988 | EP |
0 258 637 | Jun 1990 | EP |
0 442 510 | Aug 1991 | EP |
0 442 510 | Jan 1995 | EP |
0 516 565 | Apr 1996 | EP |
0 824 927 | Feb 1998 | EP |
0 833 695 | Apr 1998 | EP |
0 845 220 | Jun 1998 | EP |
0 893 071 | Jan 1999 | EP |
0 970 627 | Jan 2000 | EP |
1 083 952 | Mar 2001 | EP |
1 618 803 | Dec 2008 | EP |
3 088 007 | Nov 2016 | EP |
3 278 678 | Feb 2018 | EP |
3 298 912 | Mar 2018 | EP |
3 298 912 | Mar 2018 | EP |
3 088 007 | Nov 2018 | EP |
3 434 118 | Jan 2019 | EP |
3 469 927 | Apr 2019 | EP |
3 505 098 | Jul 2019 | EP |
3 520 634 | Aug 2019 | EP |
3 278 678 | Oct 2019 | EP |
3 545 778 | Oct 2019 | EP |
3 574 902 | Dec 2019 | EP |
3 837 999 | Jun 2021 | EP |
4033927 | Nov 2023 | EP |
3043576 | May 2017 | FR |
3064502 | Oct 2018 | FR |
1 528 391 | Oct 1978 | GB |
2566766 | Mar 2019 | GB |
2570439 | Jul 2019 | GB |
05093575 | Dec 1993 | JP |
2579614 | Aug 1998 | JP |
2001069963 | Mar 2001 | JP |
2005288400 | Oct 2005 | JP |
2008-104966 | May 2008 | JP |
2019-515690 | Jun 2019 | JP |
2019-521671 | Aug 2019 | JP |
2020535846 | Dec 2020 | JP |
20120107219 | Oct 2012 | KR |
10-2013-0095024 | Aug 2013 | KR |
WO 9221332 | Dec 1992 | WO |
WO 9309881 | May 1993 | WO |
WO-9964095 | Dec 1999 | WO |
WO-9964095 | Dec 1999 | WO |
WO 2000050111 | Aug 2000 | WO |
WO 2002055131 | Jul 2002 | WO |
WO 02094342 | Nov 2002 | WO |
WO 2003055486 | Jul 2003 | WO |
WO 20030101454 | Dec 2003 | WO |
WO 2007083088 | Jul 2007 | WO |
WO 2008076717 | Jun 2008 | WO |
WO 2009096346 | Aug 2009 | WO |
WO-2012062600 | May 2012 | WO |
WO 2012138835 | Oct 2012 | WO |
WO-2013028934 | Feb 2013 | WO |
WO 2014182736 | Nov 2014 | WO |
WO 2015128499 | Mar 2015 | WO |
WO2015084544 | Jun 2015 | WO |
WO 2015115006 | Aug 2015 | WO |
WO 2016010864 | Jan 2016 | WO |
WO 20160116386 | Jul 2016 | WO |
WO-2016118941 | Jul 2016 | WO |
WO-2016175720 | Nov 2016 | WO |
WO-2016196915 | Dec 2016 | WO |
WO-2017076590 | May 2017 | WO |
WO-2017108268 | Jun 2017 | WO |
WO 2017143515 | Aug 2017 | WO |
WO 2017177159 | Oct 2017 | WO |
WO 2017197704 | Nov 2017 | WO |
WO-2017206022 | Dec 2017 | WO |
WO 2017206212 | Dec 2017 | WO |
WO 2017215221 | Dec 2017 | WO |
WO 2018000761 | Jan 2018 | WO |
WO 2018000829 | Jan 2018 | WO |
WO 2018023920 | Feb 2018 | WO |
WO-2018027189 | Feb 2018 | WO |
WO 2018032672 | Feb 2018 | WO |
WO 2018040380 | Mar 2018 | WO |
WO-2018041106 | Mar 2018 | WO |
WO 2018058884 | Apr 2018 | WO |
WO-2018113669 | Jun 2018 | WO |
WO 2018115781 | Jun 2018 | WO |
WO-2018163366 | Sep 2018 | WO |
WO 2018188616 | Oct 2018 | WO |
WO 2018188638 | Oct 2018 | WO |
WO-2018211252 | Nov 2018 | WO |
WO-2018220586 | Dec 2018 | WO |
WO-2018220599 | Dec 2018 | WO |
WO 2019048749 | Mar 2019 | WO |
WO-2019052506 | Mar 2019 | WO |
WO-2019052574 | Mar 2019 | WO |
WO 2019069160 | Apr 2019 | WO |
WO-2019138076 | Jul 2019 | WO |
WO-2019198688 | Oct 2019 | WO |
WO 2019238064 | Dec 2019 | WO |
WO 2019242746 | Dec 2019 | WO |
WO 2020019030 | Jan 2020 | WO |
WO 2020048437 | Mar 2020 | WO |
WO-2020057636 | Mar 2020 | WO |
WO2020187138 | Sep 2020 | WO |
WO-2020225534 | Nov 2020 | WO |
WO 2020254862 | Dec 2020 | WO |
WO-2021036827 | Mar 2021 | WO |
Entry |
---|
Extended European Search Report issued by the European Patent Office for the corresponding EP Application No. 22181106.0, dated Nov. 15, 2022, 10 pages. |
Extended Search Report issued by the European Patent Office, dated Dec. 1, 2022, 11 pages, for corresponding European Patent Application No. 1993337.8. |
Reasons for Rejection with English translation, issued by the Japanese Patent Office dated Nov. 1, 2022, 5 pages, for corresponding Japanese Patent Application No. 2022-545772. |
Combined Search and Examination Report dated Nov. 24, 2021, from application No. 2111261.0, 9 pages. |
Combined Search and Examination Report dated Nov. 24, 2021, from application No. 2113623.9, 9 pages. |
European Extended Search Report dated Jun. 22, 2021, from application No. 19870057.7, 9 pages. |
Extended European Search Report dated May 26, 2021, from application No. 20214228.7, 18 pages. |
Extended European Search Report dated Nov. 12, 2021, from application No. 19870060.1, 8 pages. |
Extended European Search Report dated Nov. 9, 2020, from application No. 19870059.3, 7 pages. |
Extended European Search Report dated Oct. 27, 2021, from application No. 19870058.5, 8 pages. |
Extended European Search Report dated Sep. 15, 2020, from application No. 20168938.7, 8 pages. |
International Search Report and Written Opinion dated Apr. 29, 2020, from application No. PCT/IB2019/055192, 7 pages. |
International Search Report and Written Opinion dated Jun. 25, 2020, from application No. PCT/IB2019/060808, 8 pages. |
International Search Report and Written Opinion dated Nov. 10, 2020, from application No. PCT/IB2019/060812, 9 pages. |
International Search Report and Written Opinion dated Nov. 4, 2020, from application No. PCT/IB2019/060807, 9 pages. |
International Search Report and Written Opinion dated Oct. 19, 2020, from application No. PCT/IB2019/060810, 8 pages. |
International Search Report and Written Opinion dated Oct. 20, 2020, from application No. PCT/IB2019/060811, 9 pages. |
International Search Report and Written Opinion dated Nov. 4, 2020, from application No. PCT/IB2019/060806, 8 pages. |
Extended European Search Report and Opinion, co-pending EP Application No. 23208069.7 dated Jan. 31, 2024; 8 pages. |
Office Action, co-pending KR Application No. 10-2022-7024275 dated Dec. 20, 2023; 5 pages (with English translation). |
Number | Date | Country | |
---|---|---|---|
20210177055 A1 | Jun 2021 | US |