This invention relates to ultrasonic diagnostic imaging and, more particularly, to ultrasonic imaging systems capable of transmitting multiple simultaneous beams.
Ultrasonic diagnostic imaging systems are often preferred for medical diagnoses of organs such as the heart due to their ability to perform real time imaging. The real time capability enables ultrasound to capture the movement of the beating heart and its valves, for instance. Blood flow can also be visualized in real time with ultrasound. To capture the motion of organs which are moving very rapidly such as a pediatric heart it is desirable to have a high frame rate which can image the motion smoothly. However, a limitation impeding high frame rates is the time required for a transmitted ultrasound wave to travel the required depth in the body and for the resultant echoes to return to the transducer. Since such a transmit-receive cycle is necessary when scanning each line used to produce an image, the number of lines required for an image frame and the time required to gather the echoes for each line, generally a function of the desired image depth, can impose a limit on the frame rate of display. Several transmit and receive techniques have been developed in an attempt to overcome this limitation. On the receive side, the reception of multiple lines from a single transmit beam will increase the frame rate, but can introduce artifacts related to the relation of each receive beam to the transmit beam center and can exhibit loss of spatial resolution. Display lines can be produced artificially by interpolating display lines between actual received lines. On the transmit side, attempts have been made to transmit multiple beams simultaneously. A difficulty with simultaneous beam transmission is that the echoes from the multiple transmit beams are being received by the transducer simultaneously and must be clearly segmented or separated after reception. Efforts for dealing with this problem of cross-talk between multiple beams are described in the paper “Golay Codes For Simultaneous Multi-mode Operation In Phased Arrays,” by B. B. Lee and E. S. Furgason, published in the Proceedings of the 1982 Ultrasonics Symposium at page 821 et seq., and in U.S. Pat. Nos. 5,276,654 and 6,221,022. These publications suggest different coding schemes or aperture configurations for each beam and transmitting the simultaneous beams at different focal regions. While these approaches improve the problem, the degree of separation of the echoes from each beam remains less than satisfactory. Accordingly it is desirable to augment or supplement these approaches with other solutions to the echo separation problem.
In accordance with the principles of the present invention, multiple beams are transmitted simultaneously using different frequency bands of a wide bandwidth transducer. In a preferred embodiment the wide bandwidth transducer is a single crystal transducer. The beams transmitted using the different frequency bands can be encoded so that the different codes can be separately distinguished upon reception. The use of the different frequency bands can cause the coding scheme to be more nearly orthogonal and hence the different echoes from the multiple beams can be more fully separately distinguishable due to frequency division. By transmitting multiple beams at the same time, fewer transmit-receive cycles are needed to scan a given volume or area, and the frame rate of display can be improved.
a and 7b illustrate bandwidth and phase characteristics of a matched filter system.
a and 8b illustrate bandwidth and phase characteristics of a mismatched filter system.
a-10c illustrate the benefit realized from the use of different Golay codes in a multi-pulse system.
Referring first to
One way to improve the cross-talk problem is to use passbands 66 and 68 as shown in
A solution to both problems in accordance with the present invention is shown in
A preferred transducer to use for the multi-beam wide passband transducer is one that is made by a single crystal fabrication process. Examples of single crystal transducers are those which are composed of PMN-PT and/or PZN-PT. For the purposes of the present invention, the term single crystal is used to denote oriented polycrystals in which the crystal comprises very few grains (all aligned in the same direction), and single grain crystals in which the crystal comprises only a single grain of material. To fabricate these elements, chemical grade PbO, MgO, ZnO, Nb2O5, and TiO2 may be used to form PMN-PT and PZN-PT compositions. Once the compositions are formed, PMN-PT and PZN-PT single crystals may be grown using the Bridgman and flux technique, and may be oriented via the Laue back reflection method. Next, the crystals may be sliced using an inter-dimensional (ID) saw parallel to the (001), (011), and (111) planes to approximately 1 mm in thickness.
From Table I, it can be appreciated that several different thickness/width cut orientations can be beneficially used in creating a wideband transducer. Due to the particularly desirable properties obtained from single crystal wafers having <001> and <011> thickness orientations, these wafers represent the preferred orientations for crystals that may be used in constructing transducers. Once sliced, the wafers may then be lapped and polished. Gold coating may be applied to both surfaces of the wafers to form electrodes. The single crystal wafers may then be diced on a dicing saw into thin slivers with various width orientation cuts. The slivers may then be poled and measured at room temperature.
After completing transducer material fabrication, the electromechanical properties of the various single crystal slivers may be evaluated. Table I lists the piezoelectric and dielectric properties for various slivers. As shown in the table, very high effective coupling constants may be obtained for slivers k33′=84% to 90%) constructed in accordance with the above description.
For one-dimensional (1D) transducer applications, the single crystal elements may be diced into one-dimensional or quasi-one dimensional sliver shapes where the length>height>width. Not only the thickness orientations, but also the width orientations affect the electromechanical properties of the slivers. As illustrated in Table I, the effective coupling constant (k33′ for slivers) replaces the longitudinal coupling constant (k33 for bars) due to the clamping effect from the length dimension of the sliver. By effectively selecting the thickness and width orientations, very high k33′ (from 0.70 to 0.90) for sliver samples can be obtained, which is very close to the k33 value of bar samples.
Utilizing the large coupling constant k33 obtainable with such single crystals of PMN-PT and PZN-PT, in conjunction with additional improvements such as multiple matching layers, voltage biasing, and multiple-layer design, single crystal transducers can be designed with extremely wide bandwidth. In particular, the additional bandwidth achieved through the use of single crystal transducers provides a total bandwidth which can be separated into different passbands for multiply transmitted transmit beams. As will be understood by persons having ordinary skill in the art, this additional bandwidth creates several application possibilities which either were not possible with conventional transducers, or which were not nearly as useful due to the limitations of such transducers.
One disadvantage related to the use of PMN-PT and PZN-PT single crystals in manufacturing ultrasonic transducers concerns difficulty associated with acoustic matching. The problem of acoustic matching can, however, be overcome through the use of matching layers. In particular, the utilization of multiple matching layers can effectively couple the acoustic energy from the transducer into the body, therefore improving the bandwidth significantly.
In this regard, an ultrasonic transducer comprising single crystal element slivers of these materials may also includes multiple matching layers. A typical single crystal transducer may comprise a backing and an acoustic lens. Interposed between the single crystal slivers and the acoustic lens are, for example, three matching layers. The use of three such matching layers in combination with single crystal slivers render unexpectedly advantageous results in wideband ultrasonic transducer properties.
Table II illustrates modeled bandwidth data of PMN-PT single crystal transducers (<001>✓<010>w or <011>✓<110>w 50-75 degree cuts) with various numbers of matching layers. As shown in Table II, approximately 105% of a −6 dB bandwidth was determined to be possible by using three matching layers.
A typical wideband phased-array transducer was built with 80 active elements with an element pitch of 254 μm. A single layer of PMN-PT single crystal (<001>✓<010>w, and <011>✓<110>w 50-75 degrees cuts) was used as the piezoelectric layer in conjunction with three matching layers to improve acoustic impedance matching. A room-temperature vulcanized (RTV) acoustic lens was added in front of the matching layers to obtain the acoustic focus. The transducer was integrated to an ultrasound imaging system as described below by way of a series inductor and a cable 6 feet in length.
The PMN-31% PT with sliver orientation of <001>✓<010>w was used to build the transducer. The effective coupling constant (k33′) of the sliver was 0.88 and clamping dielectric constant, K, was 1,200. The PMN-PT single crystal plate (<001> orientation) and matching layers were bonded together with epoxy and diced into a one-dimensional array. The thickness to width aspect ratio (t/w) of the sliver was about 0.5. More than 99% of the elements survived the transducer build. In the experiment, the center frequency was 2.7 MHz with −6 dB band edges of 1.15 MHz at the low frequency side (low corner frequency) and 4.1 MHz at the high frequency side (high corner frequency). As a result, the total −6 dB bandwidth for the transducer may be calculated as shown below.
The −20 dB bandwidth was 130% for this transducer. The above data indicates that a very wide bandwidth (more than 100% of −6 dB bandwidth) may be obtained in single crystal transducers with optimized electrical and acoustic design. The extra bandwidth achieved from multiple matching layer single crystal transducers can offer a wide range for division into passbands for multiple simultaneous transmit beams. Further details of the methods for manufacturing single crystal transducers may be found in U.S. Pat. No. 6,425,869, the contents of which are hereby incorporated by reference.
Referring to
Details of the filter 20 are shown in
As used herein the term “matched filter” refers to a filter which, for a given signal X, has an impulse response which is the time-reversal of signal X. An example of a matched filter 92 is shown in
Typical amplitude and phase characteristics of a matched filter system are shown in
The signal will also exhibit a phase response 102 as illustrated in
In some cases it may be desirable to enhance the axial resolution of the filtered output signal by trading off the signal-to-noise ratio for improved bandwidth. In such cases a mismatched filter may be used as illustrated by the response characteristics of
A coding scheme which provides an enhanced ratio of the main echo lobe to sidelobes is a Barker code.
In a constructed embodiment of the present invention, the frequency separation provided by the wide bandwidth transducer can be expected to provide cross-talk reduction in the simultaneously received beams on the order of 10-15 dB. The use of a coding scheme for the transmitted pulses can provide another 10-12 dB of cross-talk reduction. Beamforming, which steers the spatially separated transmit and received beams, can be expected to provide another 10-15 dB of cross-talk reduction. As a result the ghosting of artifacts from one beam into another can be reduced by up to 30-42 dB by employing all three cross-talk reduction techniques while still affording good axial resolution in the simultaneously transmitted and received beams.
It will be appreciated that, while simultaneously transmitted beams are often not preferred in two dimensional imaging, three dimensional imaging applications will benefit from simultaneously transmitted beams, as such a transmit scheme can reduce the volume acquisition time and thereby improve the volume frame rate of display.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/03569 | 11/1/2004 | WO | 4/25/2006 |
Number | Date | Country | |
---|---|---|---|
60517151 | Nov 2003 | US |