Ultrasonic surgical instrument with torque assist feature

Information

  • Patent Grant
  • 11304721
  • Patent Number
    11,304,721
  • Date Filed
    Tuesday, January 28, 2020
    4 years ago
  • Date Issued
    Tuesday, April 19, 2022
    2 years ago
Abstract
An ultrasonic surgical instrument includes a housing, an ultrasonic transducer assembly, and a waveguide. The ultrasonic transducer assembly extends through a proximal opening into the housing and includes a horn disposed within the housing defining a first engagement member. The ultrasonic transducer assembly further includes an inner housing extending through the proximal opening and an outer knob disposed externally of the housing and slidably positioned about the inner housing in fixed rotational orientation relative thereto. The outer knob is selectively translatable relative to the inner housing from a proximal, unlocked position and a distal, locked position to rotationally lock the ultrasonic transducer relative to the housing. The waveguide defines a blade at a distal end and a second engagement member at a proximal end. The second engagement member is configured to releasably engage the first engagement member to thereby engage the waveguide with the ultrasonic transducer assembly.
Description
BACKGROUND
Technical Field

The present disclosure relates to surgical instruments and, more particularly, to an ultrasonic surgical instrument including a torque assist feature to facilitate connection of a waveguide with an ultrasonic transducer.


Background of Related Art

Ultrasonic surgical instruments utilize ultrasonic energy, i.e., ultrasonic vibrations, to treat tissue. More specifically, ultrasonic surgical instruments utilize mechanical vibration energy transmitted at ultrasonic frequencies to coagulate, cauterize, fuse, seal, cut, desiccate, fulgurate, or otherwise treat tissue.


Typically, an ultrasonic surgical instrument is configured to transmit ultrasonic energy produced by a generator and transducer assembly along a waveguide to an end effector that is spaced-apart from the generator and transducer assembly. With respect to cordless ultrasonic instruments, for example, a portable power source, e.g., a battery, and the generator and transducer assembly are mounted on the handheld instrument itself, while the waveguide interconnects the generator and transducer assembly and the end effector. Wired ultrasonic instruments operate in similar fashion except that, rather than having the generator and power source mounted on the handheld instrument itself, the handheld instrument is configured to connect to a standalone power supply and/or generator via a wired connection.


Regardless of the particular type and/or configuration of ultrasonic surgical instrument utilized, it is important to ensure proper engagement between the transducer and waveguide so that the ultrasonic energy is properly transmitted to the end effector for treating tissue therewith. Accordingly, there is a continuing need to facilitate connection of a waveguide with an ultrasonic transducer in an ultrasonic surgical instrument to ensure proper engagement therebetween.


SUMMARY

The present disclosure provides an ultrasonic surgical instrument including a torque assist feature to facilitate connection of a waveguide with an ultrasonic transducer in proper engagement with one another. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user. Further, to the extent consistent any or all of the aspects detailed herein may be used in conjunction with any or all of the other aspects detailed herein.


In accordance with aspects of the present disclosure, an ultrasonic surgical instrument is provided including a housing defining a proximal opening, an ultrasonic transducer assembly extending through the proximal opening into the housing, and a waveguide. The ultrasonic transducer assembly includes a horn disposed within the housing having a first engagement member disposed at a free distal end thereof. The ultrasonic transducer assembly further includes an inner housing extending through the proximal opening and an outer knob disposed externally of the housing and slidably positioned about the inner housing in fixed rotational orientation relative thereto. The outer knob is selectively translatable relative to the inner housing between a proximal, unlocked position, wherein the outer knob is proximally-spaced from the housing, and a distal, locked position wherein the outer knob is engaged with the housing to thereby rotationally lock the ultrasonic transducer relative to the housing. The waveguide defines a blade at a distal end and a second engagement member at a proximal end. The second engagement member is configured to releasably engage the first engagement member to thereby engage the waveguide with the ultrasonic transducer assembly.


In an aspect of the present disclosure, the housing includes a plurality of recesses defined therein and arranged about the proximal opening and the outer knob includes a plurality of fingers extending distally therefrom. Each finger is configured for engagement within one of the recesses in the distal, locked position to thereby rotationally lock the ultrasonic transducer relative to the housing.


In another aspect of the present disclosure, the ultrasonic transducer assembly further includes a biasing member disposed between the inner housing and the outer knob and configured to bias the outer knob towards the proximal, unlocked positon.


In another aspect of the present disclosure, the ultrasonic transducer assembly further includes a piezoelectric stack. In such aspects, the inner housing may form at least a portion of an enclosure that encloses the piezoelectric stack therein.


In still another aspect of the present disclosure, the first and second engagement members are configured to threadingly engage one another upon relative rotation therebetween.


In yet another aspect of the present disclosure, a torque wrench assembly is operably associated with the waveguide to limit application of torque upon relative rotation between the first and second engagement members.


In still yet another aspect of the present disclosure, a generator is engaged with the ultrasonic transducer assembly to define a transducer and generator assembly that is configured to releasably couple to the housing. In such aspects, a battery assembly configured to releasably couple to the housing may be provided to power the generator for driving the ultrasonic transducer assembly.


In another aspect of the present disclosure, at least one sleeve extends distally from the housing about the waveguide. In such aspects, the blade of the waveguide extends distally from the at least one sleeve. A jaw member may be disposed at a distal end of the at least one sleeve and configured to pivot relative to the blade from an open position to a clamping position. Further, a trigger may be operably associated with the housing wherein a drive sleeve of the at least one sleeve is operably coupled between the trigger and the jaw member such that actuation of the trigger pivots the jaw member relative to the blade. In such aspects, two sleeves may be provided: the drive sleeve and a stationary support sleeve.


In another aspect of the present disclosure, a distal rotation knob is positioned distally adjacent the housing and operably coupled to the waveguide such that rotation of the distal rotation knob rotates the waveguide relative to the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the present disclosure will become more apparent in view of the following detailed description when taken in conjunction with the accompanying drawings wherein like reference numerals identify similar or identical elements and:



FIG. 1 is a perspective view of an ultrasonic surgical instrument provided in accordance with the present disclosure;



FIG. 2 is a perspective view of the ultrasonic surgical instrument of FIG. 1 with the elongated assembly separated from the handle assembly;



FIG. 3 is a longitudinal, cross-sectional view of a proximal portion of the ultrasonic surgical instrument of FIG. 1;



FIG. 4 is an enlarged, longitudinal, cross-sectional view of part of the proximal portion of the ultrasonic surgical instrument illustrated in FIG. 3;



FIG. 5A is a side view of a proximal end of the ultrasonic surgical instrument of FIG. 1, wherein the proximal knob assembly thereof is disposed in an unlocked condition, with portions removed;



FIG. 5B is a side view of the proximal end of the ultrasonic surgical instrument of FIG. 1, wherein the proximal knob assembly thereof is disposed in a locked condition, with portions removed; and



FIG. 6 is a transverse, cross-sectional view taken across section line “6-6” in FIG. 5A.





DETAILED DESCRIPTION

Referring to FIGS. 1-4, ultrasonic surgical instrument 10 includes a handle assembly 100 and an elongated assembly 200 extending distally from handle assembly 100. Handle assembly 100 includes a housing 110 defining a body portion 112 and a fixed handle portion 114. Handle assembly 100 further includes an activation button 120 and a clamp trigger 130.


Body portion 112 of housing 110 is configured to support an ultrasonic transducer and generator assembly (“TAG”) 300 including a generator 310 and an ultrasonic transducer assembly 320. TAG 300 may be permanently engaged with body portion 112 of housing 110 or removable therefrom. Generator 310 includes a housing 312 configured to house the internal electronics of generator 310, and a cradle 314 configured to rotatably support ultrasonic transducer assembly 320. Alternatively, generator 310 may be remotely disposed and coupled to ultrasonic surgical instrument 10 by way of a surgical cable (not shown).


Ultrasonic transducer assembly 320 includes a piezoelectric stack 322, a horn 324, a casing 326, and a bolt 328 securing piezoelectric stack 322 between horn 324 and a proximal nut 329. Ultrasonic transducer assembly 320 further includes a proximal knob assembly 370, detailed below. Casing 326 and inner housing 372 of proximal knob assembly 370 are engaged with one another and cooperate to form an enclosure to encapsulate proximal nut 329, bolt 328, piezoelectric stack 322, and a portion of horn 324, with the remainder of horn 324 extending distally from casing 326.


A set of connectors 330 and corresponding rotational contacts 334 associated with generator 310 and ultrasonic transducer assembly 320, respectively, enable drive signals to be communicated from generator 310 to piezoelectric stack 322 of ultrasonic transducer assembly 320 to drive ultrasonic transducer assembly 320 regardless of the rotational orientation of ultrasonic transducer assembly 320. Horn 324, in turn, is configured to transmit the ultrasonic energy produced by piezoelectric stack 322 to waveguide 230 of elongated assembly 200 for transmission therealong to blade 282 of end effector 280 of elongated assembly 200, as detailed below.


Continuing with reference to FIGS. 1-4, fixed handle portion 114 of housing 110 defines a compartment 116 configured to receive a battery assembly 400 and a door 118 configured to enclose compartment 116. An electrical connection assembly 140 is disposed within housing 110 of handle assembly 100 and serves to electrically couple activation button 120, generator 310 of TAG 300, and battery assembly 400 with one another when TAG 300 is supported on or in body portion 112 of housing 110 and battery assembly 400 is disposed within compartment 116 of fixed handle portion 114 of housing 110, thus enabling activation of ultrasonic surgical instrument 10 in response to depression of activation button 120. In embodiments where generator 310 is remote from ultrasonic surgical instrument 10, battery assembly 400 and the configuration of fixed handle portion 114 for receiving battery assembly 400 need not be provided, as generator 310 may be powered by a standard wall outlet or other power source.


Elongated assembly 200 of ultrasonic surgical instrument 10 includes an outer drive sleeve 210, an inner support sleeve 220 disposed within outer drive sleeve 210, a waveguide 230 extending through inner support sleeve 220, a drive assembly 250, an integrated torque wrench assembly 260, a distal rotation knob 270 disposed about and forming part of integrated torque wrench assembly 260, and an end effector 280 including a blade 282 and a jaw 284. A proximal portion of outer drive sleeve 210 is operably coupled to clamp trigger 130 of handle assembly 100 via drive assembly 250, while a distal portion of outer drive sleeve 210 is operably coupled to jaw 284. As such, clamp trigger 130 is selectively actuatable to thereby move outer drive sleeve 210 about inner support sleeve 220 to pivot jaw 284 relative to blade 282 of end effector 280 from a spaced-apart position to an approximated position for clamping tissue between jaw 284 and blade 282. Drive assembly 250 provides a force-limiting feature whereby the clamping pressure applied to tissue is limited to a particular clamping pressure or particular clamping pressure range. During use, distal rotation knob 270 is rotatable in either direction to rotate elongated assembly 200 in either direction relative to handle assembly 100. Distal rotation knob 270 is also operably coupled to waveguide 230 via integrated torque wrench assembly 260 to facilitate attachment of waveguide 230 with horn 324 of ultrasonic transducer assembly 320, as detailed below.


Waveguide 230, as noted above, extends through inner support sleeve 220. Waveguide 230 defines a body 232 and a blade 282 extending from the distal end of body 232. Blade 282 serves as the blade of end effector 280. Waveguide 230 further includes a proximal threaded male connector 236 configured for threaded engagement within threaded female receiver 349 of horn 324 such that ultrasonic motion produced by ultrasonic transducer assembly 320 is transmitted along waveguide 230 to blade 282 for treating tissue clamping between blade 282 and jaw 284 or positioned adjacent to blade 282.


It is important to ensure that waveguide 230 and ultrasonic transducer assembly 320 are sufficiently engaged with one another and also important to inhibit over-tightening of the engagement between threaded male connector 236 and threaded female receiver 349. Integrated torque wrench assembly 260 helps ensure that waveguide 230 and ultrasonic transducer assembly 320 are sufficiently engaged while inhibiting over-tightening, as detailed below. Proximal knob assembly 370 also facilitates engagement between threaded male connector 236 and threaded female receiver 349, as also detailed below.


Referring to FIGS. 3-5B, proximal knob assembly 370 includes an inner housing 372, an outer rotation knob 374, and a biasing member 376, e.g., a compression coil spring. Inner housing 372 together with casing 326 of ultrasonic transducer assembly 320, as noted above, cooperate to form an enclosure to encapsulate bolt 328, proximal nut 329, piezoelectric stack 322, and a portion of horn 324 of ultrasonic transducer assembly 320, with the remainder of horn 324 extending distally from casing 326. Casing 326 and inner housing 372 are substantially fixed (within manufacturing tolerances and without regard to activation of piezoelectric stack 322 or ultrasonic motion produced thereby) relative to the other component of ultrasonic transducer assembly 320, e.g., proximal nut 329, piezoelectric stack 322, and horn 324. With particular reference to FIGS. 5A-6, outer rotation knob 374, on the other hand, is rotationally fixed relative to inner housing 372, e.g., via slidable rib-channel engagement or other suitable slidable inter-fit engagement, is disposed about inner housing 372, and is selectively translatable relative to inner housing 372 from a proximal, unlocked position, wherein outer rotation knob 374 extends further proximally from inner housing 372, and a distal, locked position, wherein outer rotation knob 374 is more-distally positioned to further surround inner housing 372. Biasing member 376 is disposed within outer rotation knob 374 and is positioned between an internal proximal surface 375 of outer rotation knob 374 and an external proximal surface 373 of inner housing 372 so as to bias outer rotation knob 374 proximally towards the proximal, unlocked position relative to inner housing 372. Recesses 378a, 378b may be defined within internal proximal surface 375 of outer rotation knob 374 and external proximal surface 373 of inner housing 372, respectively, for receipt of the ends of biasing member 376 to maintain biasing member 376 in position.


Continuing with reference to FIGS. 5A-6, outer rotation knob 374 of proximal knob assembly 370 defines a plurality of flutes 379 configured to facilitate grasping and rotation of outer rotation knob 374. Outer rotation knob 374 further includes a plurality of distally-extending fingers 380 extending from an outer annular periphery of outer rotation knob 374 at equally-spaced and/or radially-opposing positions). Fingers 380 define free distal ends 382 that are flared radially outwardly.


With additional reference to FIGS. 1 and 3, body portion 112 of housing 110 of handle assembly 100 defines a plurality of recesses 111 surrounding the proximal opening 113 thereof through which ultrasonic transducer assembly 320 extends. The plurality of recesses 111 are radially opposed and/or equally-spaced about the annular periphery of proximal opening 113. In the proximal, unlocked position of outer rotation knob 374 (FIG. 5A), free distal ends 382 of fingers 380 are proximally-spaced from recesses 111, thus permitting rotation of outer rotation knob 374 (and, thus, ultrasonic transducer assembly 320) relative to housing 110. However, upon movement of outer rotation knob 374 to the distal, locked position (FIG. 5B), against the bias of biasing member 376, free distal ends 382 of fingers 380 are slid into engagement within recesses 111, thereby rotationally fixing outer rotation knob 374 (and, thus, ultrasonic transducer assembly 320) relative to housing 110.


With general reference to FIGS. 1-6, the assembly of ultrasonic surgical instrument 10 in preparation for use is detailed. Initially, TAG 300 is engaged with body portion 112 of housing 110 of handle assembly 100. Thereafter, or prior to engagement of TAG 300, battery assembly 400 is inserted into and compartment 116 of fixed handle portion 114 of housing 110 of handle assembly 100 and door 118 closed to retain battery assembly 400 therein. With both TAG 300 and battery assembly 400 installed in this manner, TAG 300 and battery assembly 400 are electrically coupled with one another and activation button 120 via electrical connection assembly 140.


Next, elongated assembly 200, lead by proximal connector 236 of waveguide 230 is inserted proximally into handle assembly 100 until threaded proximal connector 236 is positioned adjacent threaded female receiver 349 of horn 324 of ultrasonic transducer assembly 320. Once this position is achieved, the user urges outer rotation knob 374 of proximal knob assembly 370 distally from the proximal, unlocked position to the distal, locked position to rotationally fix ultrasonic transducer assembly 320 relative to housing 110 of handle assembly 100. While maintaining the outer rotation knob 374 in the distal, locked position (with a hand, against a rigid surface, or in any other suitable manner), the user may grasp housing 110 with one hand (e.g., the same hand maintaining outer rotation knob 374 in the distal, locked position) and grasp distal rotation knob 270 of elongated assembly 200 with the other hand. Distal rotation knob 270 of elongated assembly 200 is then rotated relative to housing 110 in a first, engagement direction, to threadingly engage threaded proximal connector 236 within threaded female receiver 349, thereby engaging waveguide 230 and ultrasonic transducer assembly 320 with one another.


Distal rotation knob 270 is rotated relative to housing 110 to achieve sufficient engagement between waveguide 230 and ultrasonic transducer assembly 320. Once sufficient engagement is achieved, integrated torque wrench assembly 260 slips, inhibiting further application or torque to the engagement between waveguide 230 and ultrasonic transducer assembly 320. Upon this slipping of integrated torque wrench assembly 260, an audible and/or tactile “click” is produced indicating to the user that sufficient engagement of waveguide 230 and ultrasonic transducer assembly 320 has been achieved. Thereafter, outer rotation knob 374 may be released, allowing outer rotation knob 374 to return under bias to the proximal, unlocked position such that ultrasonic transducer assembly 320 is permitted to rotation relative to housing 110 of handle assembly 100. Ultrasonic instrument 10 is now ready for use.


In use, ultrasonic instrument 10 is inserted into and manipulated within a surgical site such that end effector 280 is positioned adjacent tissue to be treated. If needed, end effector 280 may be rotated relative to handle assembly 100 by rotating distal rotation knob 270 (Ultrasonic transducer assembly 320 is also rotated therewith). Once positioned as desired, clamp trigger 130 may be actuated to pivot jaw member 282 from the open position towards the clamping position to clamp tissue to be treated between jaw member 282 and blade 234. As detailed above, drive assembly 250 functions to limit the clamping pressure applied to grasped tissue to a particular clamping pressure or a clamping pressure within a particular clamping pressure range.


With tissue sufficiently clamped between jaw member 282 and blade 234, activation button 120 may be activated in either the “LOW” power mode or the “HIGH” power mode to initiate the supply power from battery assembly 400 to TAG 300 for driving ultrasonic transducer assembly 320 to, in turn, transmit ultrasonic mechanical motion along waveguide 230 to blade 234 for treating tissue therewith, in either the “LOW” power mode or the “HIGH” power mode.


Once tissue(s) is sufficiently treated, ultrasonic surgical instrument 10 is withdrawn from the surgical site. Thereafter, elongated assembly 200 is disengaged from handle assembly 100 in a similar manner as the engagement thereof, detailed above, except that distal rotation knob 270 is rotated in a second, opposite, disengagement direction, to disengage threaded proximal connector 236 from threaded female receiver 349. Once disengaged, elongated assembly 200 is removed from handle assembly 100 and either or both are discarded or sterilized for subsequent use. TAG 300 and battery assembly 400 are removed from handle assembly 100 and sterilized, cleaned, charged, and/or otherwise conditions for subsequent use.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An ultrasonic surgical instrument, comprising: a housing;an ultrasonic transducer supported by the housing;a waveguide engaged with the ultrasonic transducer and extending distally from the housing;a knob assembly including an outer knob rotatably fixed relative to the ultrasonic transducer such that rotation of the outer knob rotates the ultrasonic transducer, the outer knob selectively translatable relative to the housing between an unlocked position and a locked position, wherein, in the locked position, the outer knob is engaged with the housing to thereby rotationally lock the ultrasonic transducer relative to the housing; anda biasing member configured to bias the outer knob towards the unlocked position.
  • 2. The ultrasonic surgical instrument according to claim 1, wherein the ultrasonic transducer includes an ultrasonic horn extending distally therefrom, the ultrasonic horn having a first engagement member, and wherein the waveguide defines a second engagement member configured to releasably engage the first engagement member to thereby releasably engage the waveguide with the ultrasonic horn.
  • 3. The ultrasonic surgical instrument according to claim 2, wherein the first and second engagement members are configured to threadingly engage one another upon relative rotation therebetween.
  • 4. The ultrasonic surgical instrument according to claim 1, wherein the outer knob extends from an opening defined within the housing.
  • 5. The ultrasonic surgical instrument according to claim 4, wherein the housing includes a plurality of recesses defined therein and arranged about the opening, and wherein the outer knob includes a plurality of fingers extending distally therefrom, each finger configured for engagement within one of the recesses in the locked position to thereby rotationally lock the ultrasonic transducer relative to the housing.
  • 6. The ultrasonic surgical instrument according to claim 1, wherein the ultrasonic transducer includes a piezoelectric stack.
  • 7. The ultrasonic surgical instrument according to claim 1, further comprising a torque wrench assembly operably associated with the waveguide to limit application of torque thereto.
  • 8. The ultrasonic surgical instrument according to claim 1, further comprising a generator engaged with the ultrasonic transducer to define a transducer and generator assembly, the transducer and generator assembly configured to releasably couple to the housing.
  • 9. The ultrasonic surgical instrument according to claim 8, further comprising a battery assembly configured to releasably couple to the housing, the battery assembly configured to power the generator for driving the ultrasonic transducer.
  • 10. A surgical instrument, comprising: a housing defining an opening;an inner housing extending through the opening;an outer knob disposed externally of the housing and slidably positioned about the inner housing in fixed rotational orientation relative thereto, the outer knob selectively translatable relative to the inner housing between an unlocked position, wherein the outer knob is spaced from the housing, and a locked position wherein the outer knob is rotationally locked relative to the housing, wherein the opening is a proximal opening and wherein the outer knob is disposed proximally of the housing; andan elongated assembly extending distally from the housing and rotatably coupled to the outer knob such that rotation of the outer knob rotates the elongated assembly.
  • 11. The surgical instrument according to claim 10, wherein the elongated assembly includes at least one sleeve extending distally from the housing and an end effector assembly disposed at a distal end of the at least one sleeve.
  • 12. The surgical instrument according to claim 11, wherein the end effector assembly includes a jaw and a blade, the jaw movable relative to the blade between a spaced-apart position and a clamping position.
  • 13. The surgical instrument according to claim 12, wherein the at least one sleeve includes a first sleeve pivotably supporting the jaw thereon and a second sleeve operably coupled to the jaw such that sliding of the second sleeve about the first sleeve pivots the jaw relative to the blade between the spaced-apart position and the clamping position.
  • 14. The surgical instrument according to claim 10, further comprising: an ultrasonic transducer supported by the housing, wherein the outer knob is rotatably fixed relative to the ultrasonic transducer such that rotation of the outer knob rotates the ultrasonic transducer.
  • 15. The surgical instrument according to claim 14, further comprising a waveguide coupled to the ultrasonic transducer and extending distally from the hosing through the elongated assembly.
  • 16. An ultrasonic surgical instrument, comprising: a housing;an ultrasonic transducer supported by the housing;a waveguide engaged with the ultrasonic transducer and extending distally from the housing; anda knob assembly including an outer knob rotatably fixed relative to the ultrasonic transducer such that rotation of the outer knob rotates the ultrasonic transducer, the outer knob selectively translatable relative to the housing between an unlocked position and a locked position, wherein, in the locked position, the outer knob is engaged with the housing to thereby rotationally lock the ultrasonic transducer relative to the housing, wherein the outer knob extends from an opening defined within the housing,wherein the housing includes a plurality of recesses defined therein and arranged about the opening, and wherein the outer knob includes a plurality of fingers extending distally therefrom, each finger configured for engagement within one of the recesses in the locked position to thereby rotationally lock the ultrasonic transducer relative to the housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation Application which claims the benefit of and priority to U.S. patent application Ser. No. 15/903,765, filed on Feb. 23, 2018, the entire content of which is incorporated herein by reference.

US Referenced Citations (188)
Number Name Date Kind
1813902 Bovie Jul 1931 A
2235274 Trehern Mar 1941 A
2874470 Richards Feb 1959 A
2990616 Balamuth Jul 1961 A
3432691 Shoh Mar 1969 A
3489930 Shoh Jan 1970 A
3526792 Shoh Sep 1970 A
3629726 Popescu Dec 1971 A
3668486 Silver Jun 1972 A
3809977 Balamuth et al. May 1974 A
3875945 Friedman Apr 1975 A
3924335 Balamuth et al. Dec 1975 A
4012647 Balamuth et al. Mar 1977 A
4193818 Young et al. Mar 1980 A
4227110 Douglas et al. Oct 1980 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4370302 Suzuoka et al. Jan 1983 A
4641053 Takeda Feb 1987 A
5113116 Wilson May 1992 A
5224680 Greenstein et al. Jul 1993 A
5264925 Shipp et al. Nov 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5293878 Bales Mar 1994 A
5374813 Shipp Dec 1994 A
5394187 Shipp Feb 1995 A
5408268 Shipp Apr 1995 A
5451220 Ciervo Sep 1995 A
5490860 Middle et al. Feb 1996 A
5565520 Fock et al. Oct 1996 A
5582617 Klieman et al. Dec 1996 A
5593414 Shipp et al. Jan 1997 A
5685311 Hara Nov 1997 A
5717306 Shipp Feb 1998 A
5728130 Ishikawa et al. Mar 1998 A
5776155 Beaupre et al. Jul 1998 A
5792138 Shipp Aug 1998 A
5796056 Bredow et al. Aug 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5858018 Shipp et al. Jan 1999 A
5873873 Smith et al. Feb 1999 A
5897569 Kellogg et al. Apr 1999 A
5910152 Bays Jun 1999 A
5938633 Beaupre Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5993465 Shipp et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6031526 Shipp Feb 2000 A
6036667 Manna et al. Mar 2000 A
6068647 Witt et al. May 2000 A
6095981 McGahan Aug 2000 A
6162194 Shipp Dec 2000 A
6183426 Akisada et al. Feb 2001 B1
6220098 Johnson et al. Apr 2001 B1
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6284185 Tokuda et al. Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6416486 Wampler Jul 2002 B1
6423082 Houser et al. Jul 2002 B1
6432118 Messerly Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458142 Faller et al. Oct 2002 B1
6480796 Wiener Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491708 Madan et al. Dec 2002 B2
6500188 Harper et al. Dec 2002 B2
6514267 Jewett Feb 2003 B2
6537291 Friedman et al. Mar 2003 B2
6561983 Cronin et al. May 2003 B2
6565520 Young May 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6607540 Shipp Aug 2003 B1
6623500 Cook et al. Sep 2003 B1
6626926 Friedman et al. Sep 2003 B2
6633234 Wiener et al. Oct 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6666875 Sakurai et al. Dec 2003 B1
6678621 Wiener et al. Jan 2004 B2
6679899 Wiener et al. Jan 2004 B2
6719776 Baxter et al. Apr 2004 B2
6752815 Beaupre Jun 2004 B2
6773444 Messerly Aug 2004 B2
6869439 White et al. Mar 2005 B2
6908472 Wiener et al. Jun 2005 B2
6915623 Dey et al. Jul 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6976969 Messerly Dec 2005 B2
7037306 Podany et al. May 2006 B2
7066895 Podany Jun 2006 B2
7074218 Washington et al. Jul 2006 B2
7108695 Witt et al. Sep 2006 B2
7128720 Podany Oct 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7163548 Stulen et al. Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7217128 Atkin et al. May 2007 B2
7217893 Huang et al. May 2007 B1
7230199 Chou et al. Jun 2007 B2
7244262 Wiener et al. Jul 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7300446 Beaupre Nov 2007 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7819298 Hall et al. Oct 2010 B2
7977587 Rajagopal et al. Jul 2011 B2
8435258 Young et al. May 2013 B2
8672959 Witt et al. Mar 2014 B2
9017355 Smith et al. Apr 2015 B2
9539020 Conlon et al. Jan 2017 B2
10582944 Netzel Mar 2020 B2
20010048855 Lin Dec 2001 A1
20020002379 Bishop Jan 2002 A1
20020077645 Wiener et al. Jun 2002 A1
20020091339 Horzewski et al. Jul 2002 A1
20030144680 Kellogg et al. Jul 2003 A1
20030149424 Barlev et al. Aug 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030212363 Shipp Nov 2003 A1
20040097972 Shipp et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040171930 Grimm et al. Sep 2004 A1
20040256487 Collins et al. Dec 2004 A1
20050091770 Mourad et al. May 2005 A1
20050107658 Brockway May 2005 A1
20050113815 Ritchie et al. May 2005 A1
20050119677 Shipp Jun 2005 A1
20050149063 Young et al. Jul 2005 A1
20050203329 Muto et al. Sep 2005 A1
20050234338 Masuda Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20060058825 Ogura et al. Mar 2006 A1
20060079878 Houser Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060087286 Phillips et al. Apr 2006 A1
20060129168 Shipp Jun 2006 A1
20060178579 Haynes Aug 2006 A1
20060178667 Sartor et al. Aug 2006 A1
20060194567 Kelly et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20070011836 Brewer et al. Jan 2007 A1
20070149881 Rabin Jun 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070175960 Shelton et al. Aug 2007 A1
20070227866 Dimig Oct 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070282333 Fortson et al. Dec 2007 A1
20080033248 Akagi Feb 2008 A1
20080051693 Babaev Feb 2008 A1
20080245841 Smith et al. Oct 2008 A1
20090138006 Bales et al. May 2009 A1
20090143797 Smith et al. Jun 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090223033 Houser Sep 2009 A1
20100004669 Smith et al. Jan 2010 A1
20100090420 Nickels, Jr. et al. Apr 2010 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20130338691 Young et al. Dec 2013 A1
20140107684 Craig Apr 2014 A1
20150148830 Stulen et al. May 2015 A1
20150182250 Conlon Jul 2015 A1
20150245850 Hibner et al. Sep 2015 A1
20170319229 Brown et al. Nov 2017 A1
Foreign Referenced Citations (20)
Number Date Country
0705570 Apr 1996 EP
0908148 Apr 1999 EP
1594209 Nov 2005 EP
1707131 Oct 2006 EP
2200145 Jun 2010 EP
2510891 Oct 2012 EP
2000506430 May 2000 JP
2001112768 Apr 2001 JP
2001514541 Sep 2001 JP
2002518067 Jun 2002 JP
2003502102 Jan 2003 JP
2003285008 Oct 2003 JP
2004129871 Apr 2004 JP
2005278932 Oct 2005 JP
2005296411 Oct 2005 JP
2009538710 Nov 2009 JP
2006087885 Aug 2006 WO
2006119376 Nov 2006 WO
2007047380 Apr 2007 WO
2007080723 Jul 2007 WO
Non-Patent Literature Citations (2)
Entry
Extended European Search Report issued in corresponding European Application No. 19158757.5 dated Jul. 1, 2019, 9 pages.
Canadian Office Action issued in corresponding Canadian Application No. 3,034,337 dated Jan. 19, 2020, 5 pages.
Related Publications (1)
Number Date Country
20200155193 A1 May 2020 US
Continuations (1)
Number Date Country
Parent 15903765 Feb 2018 US
Child 16774397 US