The invention relates to an ultrasonic surgical instrument, in which an ultrasonic transducer is suspended on a support structure. A sonotrode is connected to the ultrasonic transducer. The support structure comprises a cladding section, which encloses an interior.
During surgery, such an ultrasonic surgical instrument can be used to sever tissue. The ultrasonic transducer makes the sonotrode undergo high-frequency vibrations. A front end of the sonotrode is brought into contact with the tissue such that the vibrations act on the tissue and the tissue is severed.
Since the ultrasonic transducer is connected not only to the sonotrode but also to the support structure, it can also make the support structure vibrate. This is undesirable since this places an unnecessary load onto the instrument and the handling becomes more difficult.
The invention is based on the object of presenting an ultrasonic surgical instrument, in which vibrations transmitted from the ultrasonic transducer to the support structure are reduced. Proceeding from the prior art set forth at the outset, the object is achieved by the features of claim 1. Advantageous embodiments are found in the dependent claims.
According to the invention, the ultrasonic transducer is suspended on a retaining ring. The retaining ring is arranged in a continuation of the cladding section and connected to the cladding section by means of a connection section. The connection section is provided with a plurality of perforations, which, overall, cover the whole circumference of the connection section.
A few terms will be explained first. The direction in which the cladding section, the connection section and the retaining ring are arranged in succession is referred to as longitudinal direction. The interior enclosed by the cladding section extends through the cladding section, the connection section and the retaining ring in the longitudinal direction.
If a plurality of perforations, overall, cover the whole circumference of the connection section, this means that the perforations would form a continuous perforation extending over the whole circumference of the connection section if the perforations were to be projected onto a common position in the longitudinal direction. According to the invention, the perforations are arranged at different longitudinal positions, and so there are connecting webs between the perforations, which connecting webs establish the connection between the cladding section and the retaining ring. The support structure containing the cladding section, the connection section and the retaining ring preferably has an integral embodiment.
The invention has identified that the connection section provided with perforations can decouple the vibrations in the longitudinal direction. If the ultrasonic transducer generates a vibration in the longitudinal direction, this vibration is transferred to the retaining ring, on which the ultrasonic transducer is suspended. A transfer of the vibrations from the retaining ring to the cladding section is prevented by the perforations. Thus, the cladding section and the part of the support structure adjoining this remain at rest, even though the ultrasonic transducer generates high-frequency vibrations and transmits these to the sonotrode. By contrast, the connection section is rigid in relation to pressure forces in the lateral direction and in relation to torsional forces, and so these forces can be reliably transmitted.
So that the instrument overall can remain compact, it is desirable to keep the extent of the connection section small in the longitudinal direction. This can be achieved by virtue of providing a plurality of perforations, which have a large extent in the circumferential direction and a small extent in the longitudinal direction. The extent in the circumferential direction is preferably at least twice as big, more preferably at least five times as big, more preferably at least ten times as big, as the extent in the longitudinal direction.
It is advantageous for decoupling the vibrations if there is no direct and continuous connection between the retaining ring and the cladding section in the longitudinal direction. Provision can therefore be made for an overlap between a first perforation and, adjoining this in the circumferential direction, a second perforation. Consequently, the first perforation and the second perforation follow one another in the longitudinal direction in the region of the overlap. Preferably, an overlap is provided at each transition from one perforation to the next perforation.
In order to keep the extent of the connection section small in the longitudinal direction, it is moreover advantageous if the spacing between the first perforation and the second perforation in the region of the overlap is less than the width of the perforations.
In order to be able to connect the ultrasonic transducer with the retaining ring, the retaining ring can have a fastening element. There regularly are a plurality of fastening elements, which are distributed evenly over the circumference of the retaining ring. Provision can be made for perforations which are guided around the fastening elements. If a perforation is guided around a fastening element, this means that a first section of the perforation is situated closer to the cladding section than a second section of the perforation. The fastening element is arranged in the region next to the first section. Overall, a perforation which is guided around a fastening element should also extend substantially in the circumferential direction.
Good decoupling of the vibrations is achieved if a plurality of perforations are distributed over the circumference of the connection section in such a way that the end sections of the perforations lie against one another head-to-head and are merely separated by a connecting web. Two further perforations, which extend parallel to one another, can enclose these end sections between them. Labyrinthine connecting webs which have good resilient properties are formed in this manner.
The extent of the cladding section in the longitudinal direction need not be large. The cladding section merely needs to be so stable that it can offer the ultrasonic transducer support by means of the connection section and the retaining ring. A housing, which can serve to hold components such as the ultrasonic transducer, can adjoin the cladding section. The ultrasonic transducer is preferably arranged in the interior. The housing can be provided with an opening for supplying a rinsing fluid to the front end of the instrument. Additionally, or as an alternative thereto, provision can be made in the housing for an opening through which liquids from the front end of the instrument can be sucked away. The front end refers to the region of the instrument which serves to treat the tissue.
The rear end of the instrument can be configured as a handle, which is held by the surgeon when using the instrument. The cladding section can be provided with a connection element, by means of which the handle can be connected to the support structure. By way of example, the connection element can be a thread arranged around the circumference of the cladding section.
At the front end of the support structure, provision can be made for a connection element for connecting a sleeve, through which the sonotrode extends. The sleeve can also be connected to the support structure via a thread. In an advantageous embodiment, the support structure has a knee-like design, such that the sleeve is angled with respect to the handle.
If the ultrasonic transducer generates a vibration in the longitudinal direction, the amplitude of the vibration differs depending on which section of the vibrating system is considered. There is a transition region, in which the amplitude of the vibration is very small, between two counter-vibrating sections. This transition region is referred to as node of the vibration. The ultrasonic transducer is preferably suspended in the node of the vibration. An advantage of this is that the vibrations, which can be transferred to the support structure, are minimized from the outset. The damping according to the invention can be restricted to catch the residual remainder of the vibration.
With reference to the attached drawings, the invention will be described in an exemplary manner hereinbelow on the basis of advantageous embodiments. In detail:
An ultrasonic surgical instrument in
A line 18 is guided to the front end of the instrument so as to be able to supply a rinsing fluid to the operating field. A second line 19 serves to suck liquids away from the operating field.
The instrument moreover comprises a knee 20, which forms a support structure of the instrument. The ultrasonic transducer 17 is suspended on the knee 20; the handle 14 is connected to the rear end of the knee 20 and the sleeve 15 is connected to the front end of the knee. The knee 20 is integral and can consist of e.g. stainless steel.
The knee 20 comprises a retaining ring 21, on which the ultrasonic transducer 17 is suspended. The retaining ring 21 is provided with four bores 22, which form fastening elements for the ultrasonic transducer 17. The connection is established by means of screws, which are guided in through the bores 22. The retaining ring 21 is connected to a cladding section 24 by means of a connection section 23. On the circumference thereof, the cladding section 24 is provided with a thread 25, by means of which the handle 14 can be connected to the knee 20. The retaining ring 21 is positioned in such a way that the vibration transducer is suspended in the node of the vibration.
When the ultrasonic transducer 17 is in operation, the vibrations are transferred not only to the sonotrode 16 but also to the retaining ring 21, which is rigidly connected to the ultrasonic transducer 17. The connection section 23 serves to avoid a transfer of the vibrations from the retaining ring 21 to the cladding section 24. Otherwise, the whole instrument would be put into vibration by the cladding section 24.
In order to impart the effect of a spring element, which decouples the vibrations of the retaining ring 21 from the cladding section 24, to the connection section 23, the connection section 23 is provided with perforations 26, 27. In
Further perforations 27, which are arranged parallel to one another and which enclose the end sections 28 therebetween, are formed in the region of the end sections 28. Thus, there is an overlap between the perforations 27 and each of the end sections 28.
There are connecting webs between the perforations 27 and the perforations 28, which webs extend in a labyrinthine manner between the retaining ring 21 and the cladding section 24. The connecting webs form an elastic connection between the retaining ring 21 and the cladding section 24 such that the vibrations transmitted to the retaining ring 21 are not transferred.
At the front end thereof, the knee 20 comprises a flange 30, which is angled with respect to the cladding section 24. The flange 30 comprises a thread (not visible in
Number | Date | Country | Kind |
---|---|---|---|
10 2011 086 326 | Nov 2011 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/072599 | 11/14/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/072357 | 5/23/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3671887 | Gibson | Jun 1972 | A |
4315181 | Holze, Jr. | Feb 1982 | A |
4681561 | Hood et al. | Jul 1987 | A |
4816017 | Hood et al. | Mar 1989 | A |
5057119 | Clark et al. | Oct 1991 | A |
5526815 | Granz et al. | Jun 1996 | A |
5626560 | Soring | May 1997 | A |
5921999 | Dileo | Jul 1999 | A |
6551337 | Rabiner et al. | Apr 2003 | B1 |
20030125645 | Rabiner et al. | Jul 2003 | A1 |
20040037626 | Awtar | Feb 2004 | A1 |
20050020966 | Soring et al. | Jan 2005 | A1 |
20090030437 | Houser | Jan 2009 | A1 |
20110196405 | Dietz | Aug 2011 | A1 |
20120049422 | Gnateski | Mar 2012 | A1 |
20120204550 | Al-Bender | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
S62298346 | Dec 1987 | JP |
03146047 | Jun 1991 | JP |
05031118 | Feb 1993 | JP |
06133981 | May 1994 | JP |
10127653 | May 1998 | JP |
2001079012 | Mar 2001 | JP |
2004021404 | Mar 2004 | WO |
Entry |
---|
International Preliminary Report on Patentability dated May 20, 2014 (PCT/EP2012/072599). |
International Search Report dated Sep. 30, 2013 (PCT/EP2012/072599). |
Number | Date | Country | |
---|---|---|---|
20150190167 A1 | Jul 2015 | US |