Ultrasonic surgical instruments

Information

  • Patent Grant
  • 10688321
  • Patent Number
    10,688,321
  • Date Filed
    Wednesday, September 13, 2017
    7 years ago
  • Date Issued
    Tuesday, June 23, 2020
    4 years ago
Abstract
In one general aspect, various embodiments are directed to a surgical instrument that can supply mechanical energy and electrical energy to an end effector of the surgical instrument. The surgical instrument may be operated in a first operating mode in which a transducer of the surgical instrument produces mechanical energy, or vibrations, that are transmitted to the end effector and a second operating mode in which electrical energy, or current, can flow through the end effector to perform electrosurgery. In another general aspect, the surgical instrument may comprise a clamp, or jaw, which can be moved into a closed position to hold tissue against a waveguide, or blade, of the end effector. In the second operating mode of the surgical instrument, current can flow from a power source, through the waveguide, and return to the power source through a path comprising the jaw.
Description
BACKGROUND

The present disclosure generally relates to ultrasonic surgical systems and, more particularly, to ultrasonic systems that allow surgeons to perform cutting and coagulation.


Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and homeostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically realized by an-end effector, or blade tip, at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end effector. Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic, or endoscopic surgical procedures including robotic-assisted procedures.


Some surgical instruments utilize ultrasonic energy for both precise cutting and controlled coagulation. Ultrasonic energy cuts and coagulates by using lower temperatures than those used by electrosurgery. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue with the blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. The precision of cutting and coagulation is controlled by the surgeon's technique and adjusting the power level, blade edge, tissue traction, and blade pressure.


A primary challenge of ultrasonic technology for medical devices, however, continues to be sealing of blood vessels. Work done by the applicant and others has shown that optimum vessel sealing occurs when the inner muscle layer of a vessel is separated and moved away from the adventitia layer prior to the application of standard ultrasonic energy. Current efforts to achieve this separation have involved increasing the clamp force applied to the vessel.


Furthermore, the user does not always have visual feedback of the tissue being cut. Accordingly, it would be desirable to provide some form of feedback to indicate to the user that the cut is complete when visual feedback is unavailable. Moreover, without some form of feedback indicator to indicate that the cut is complete, the user may continue to activate the harmonic instrument even though the cut is complete, which cause possible damage to the harmonic instrument and surrounding tissue by the heat that is generated exponentially when activating a harmonic instrument with nothing between the jaws.


It would be desirable to provide an ultrasonic surgical instrument that overcomes some of the deficiencies of current instruments. The ultrasonic surgical instrument described herein overcomes those deficiencies.


SUMMARY

In one general aspect, various embodiments are directed to an ultrasonic surgical instrument that comprises a transducer configured to produce vibrations along a longitudinal axis at a predetermined frequency. In various embodiments, an ultrasonic blade extends along the longitudinal axis and is coupled to the transducer. In various embodiments, the ultrasonic blade includes a body having a proximal end and a distal end, wherein the distal end is movable relative to the longitudinal axis by the vibrations produced by the transducer.


In one general aspect, various embodiments are directed to a surgical instrument that can supply mechanical energy and electrical energy to an end effector of the surgical instrument. The surgical instrument may be operated in a first operating mode in which a transducer of the surgical instrument produces mechanical energy, or vibrations, that are transmitted to the end effector and a second operating mode in which electrical energy, or current, can flow through the end effector to perform electrosurgery. In another general aspect, the surgical instrument may comprise a clamp, or jaw, which can be moved into a closed position to hold tissue against a waveguide, or blade, of the end effector. In the second operating mode of the surgical instrument, current can flow from a power source, through the waveguide, and return to the power source through a path comprising the jaw.





FIGURES

The features of various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 illustrates a surgical instrument comprising an ultrasonic surgical instrument system and an electrosurgery surgical instrument system.



FIG. 2 illustrates a portion of a handpiece assembly of the surgical instrument of FIG. 1 with a portion of the handpiece housing removed and an acoustic assembly operably engaged with a waveguide of the surgical instrument.



FIG. 3 illustrates the handpiece assembly of FIG. 2 with the acoustic assembly removed to illustrate positive and negative electrode contacts configured to supply the acoustic assembly with power.



FIG. 4 is a detail view of a portion of the acoustic assembly of FIG. 2.



FIG. 5 is a detail view of the end effector of the ultrasonic surgical instrument of FIG. 1.



FIG. 6 is a perspective view of an embodiment of a sheath assembly comprising an inner sheath and an outer sheath which can define a first passageway for a waveguide of an ultrasonic instrument and a second passageway for a return conductor.



FIG. 7 is a perspective view of an embodiment of a sheath configured to surround at least a portion of a waveguide of an ultrasonic surgical instrument, wherein a conductor can be embedded in at least a portion of a sheath.



FIG. 8 is a perspective view of an embodiment of a clamp arm assembly configured to hold tissue against a waveguide of an ultrasonic surgical instrument.



FIG. 9 is a perspective view of another embodiment of a clamp arm assembly having downwardly-extending walls which extend below a tissue-contacting surface.



FIG. 10 is a cross-sectional end view of the clamp arm assembly of FIG. 9 positioned in a closed position relative to a waveguide of an ultrasonic surgical instrument.



FIG. 11 is a perspective view of a tissue-contacting pad of a clamp arm assembly, wherein the pad includes first and second electrodes embedded therein and positioned relative to a waveguide of an ultrasonic surgical instrument.



FIG. 12 is a perspective view of another embodiment of a tissue-contacting pad of a clamp arm assembly, wherein the pad includes first and second electrodes mounted thereto and positioned relative to a waveguide of an ultrasonic surgical instrument.



FIG. 13 is a perspective view of another embodiment of a tissue-contacting pad of a clamp arm assembly, wherein the pad includes first and second point electrodes embedded therein.



FIG. 14 is a perspective view of an embodiment of a sheath configured to surround at least a portion of a waveguide of an ultrasonic surgical instrument, wherein first and second conductors can be embedded in at least a portion of a sheath.



FIG. 15 is a perspective view of an embodiment of a sheath assembly comprising an inner sheath and an outer sheath, wherein the inner sheath and the outer sheath may comprise first and second conductors.



FIG. 16 is an end view of a clamp arm assembly holding tissue against a waveguide.



FIG. 17 is an end view of an alternative embodiment of a clamp arm assembly holding tissue against a waveguide.



FIG. 18 illustrates one embodiment of a drive system of an ultrasonic generator module, which creates the ultrasonic electrical signal for driving an ultrasonic transducer.



FIG. 19 illustrates one embodiment of a drive system of a generator comprising a tissue impedance module.



FIG. 20 is a schematic diagram of a tissue impedance module coupled to a blade and a clamp arm assembly with tissue located therebetween.





DESCRIPTION

Before explaining various embodiments of ultrasonic surgical instruments in detail, it should be noted that the illustrative embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not for the purpose of limitation thereof.


Further, it is understood that any one or more of the following-described embodiments, expressions of embodiments, examples, can be combined with any one or more of the other following-described embodiments, expressions of embodiments, and examples.


Various embodiments are directed to improved ultrasonic surgical instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures. In one embodiment, an ultrasonic surgical instrument apparatus is configured for use in open surgical procedures, but has applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures. Versatile use is facilitated by selective use of ultrasonic energy.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handpiece assembly. Thus, an end effector is distal with respect to the more proximal handpiece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the handpiece assembly. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.


The various embodiments will be described in combination with an ultrasonic instrument as described herein. Such description is provided by way of example, and not limitation, and is not intended to limit the scope and applications thereof. For example, any one of the described embodiments is useful in combination with a multitude of ultrasonic instruments including those described in, for example, U.S. Pat. Nos. 5,322,055; 5,449,370; 5,630,420; 5,935,144; 5,938,633; 5,944,737; 5,954,736; 6,278,218; 6,283,981; 6,309,400; 6,325,811; and 6,436,115, wherein the disclosure of each of the patents is herein incorporated by reference. Also incorporated by reference in its entirety is commonly-owned, U.S. patent application Ser. No. 11/726,625, entitled ULTRASONIC SURGICAL INSTRUMENTS, filed on Mar. 22, 2007, now U.S. Pat. No. 8,911,460. The disclosure of each the following commonly-owned U.S. Patent Applications is incorporated herein by reference in its entirety:


(1) U.S. patent application Ser. No. 12/503,770, entitled “ROTATING TRANSDUCER MOUNT FOR ULTRASONIC SURGICAL INSTRUMENTS”, now U.S. Pat. No. 8,461,744; and


(2) U.S. patent application Ser. No. 12/503,766, entitled “IMPEDANCE MONITORING APPARATUS, SYSTEM, AND METHOD FOR ULTRASONIC SURGICAL INSTRUMENTS”, now U.S. Pat. No. 9,017,326;


(3) U.S. patent application Ser. No. 12/503,775, entitled “ULTRASONIC DEVICE FOR CUTTING AND COAGULATING WITH STEPPED OUTPUT”, now U.S. Pat. No. 8,058,771.


As will become apparent from the following description, it is contemplated that embodiments of the surgical instrument described herein may be used in association with an oscillator module of a surgical system, whereby ultrasonic energy from the oscillator module provides the desired ultrasonic actuation for the present surgical instrument. It is also contemplated that embodiments of the surgical instrument described herein may be used in association with a signal generator module of a surgical system, whereby electrical energy in the form of radio frequencies (RF), for example, is used to provide feedback to the user regarding the surgical instrument. The ultrasonic oscillator and/or the signal generator modules may be non-detachably integrated with the surgical instrument or may be provided as separate components, which can be electrically attachable to the surgical instrument.


One embodiment of the present surgical apparatus is particularly configured for disposable use by virtue of its straightforward construction. However, it is also contemplated that other embodiments of the present surgical instrument can be configured for non-disposable or multiple uses. Detachable connection of the present surgical instrument with an associated oscillator and signal generator unit is presently disclosed for single-patient use for illustrative purposes only. However, non-detachable integrated connection of the present surgical instrument with an associated oscillator and/or signal generator unit is also contemplated. Accordingly, various embodiments of the presently described surgical instruments may be configured for single use and/or multiple uses and with either detachable and/or non-detachable integral oscillator and/or signal generator modules, without limitation. All combinations of such configurations are contemplated to be within the scope of the present disclosure.



FIG. 1 illustrates one embodiment of a surgical system 100. The surgical system 100 includes a generator 112 and an ultrasonic surgical instrument 110. The generator 112 is connected to an ultrasonic transducer 114 portion of the ultrasonic surgical instrument 110 via a suitable transmission medium such as a cable 142. In one embodiment, the generator 112 is coupled to an ultrasonic generator module 180 and a signal generator module 102. In various embodiments, the ultrasonic generator module 180 and/or the signal generator module 102 each may be formed integrally with the generator 112 or may be provided as a separate circuit modules electrically coupled to the generator 112 (shown in phantom to illustrate this option). In one embodiment, the signal generator module 102 may be formed integrally with the ultrasonic generator module 180. Although in the presently disclosed embodiment, the generator 112 is shown separate from the surgical instrument 110, in one embodiment, the generator 112 may be formed integrally with the surgical instrument 110 to form a unitary surgical system 100. The generator 112 comprises an input device 406 located on a front panel of the generator 112 console. The input device 406 may comprise any suitable device that generates signals suitable for programming the operation of the generator 112 as subsequently described with reference to FIG. 18. Still with reference to FIG. 1, the cable 142 may comprise multiple electrical conductors 139, 141 for the application of electrical energy to positive (+) and negative (−) electrodes of the ultrasonic transducer 114. It will be noted that, in some applications, the ultrasonic transducer 114 may be referred to as a “handle assembly” because the surgical instrument 110 of the surgical system 100 may be configured such that a surgeon may grasp and manipulate the ultrasonic transducer 114 during various procedures and operations.


In one embodiment, the generator 112 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one embodiment, the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga. In bipolar electrosurgery applications, as previously discussed, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, or adjacent to, the tissue to be treated such that current can flow from the active electrode to the return electrode through the tissue. Accordingly, the generator 112 may be configured for therapeutic purposes by applying electrical energy to the tissue T sufficient for treating the tissue (e.g., cauterization).


In one embodiment, the signal generator module 102 may be configured to deliver a subtherapeutic RF signal to implement a tissue impedance measurement module. In one embodiment, the signal generator module 102 comprises a bipolar radio frequency generator as described in more detail below. In one embodiment, signal generator module 102 may be configured to monitor the electrical impedance Zt of tissue T (FIG. 5) and to control the characteristics of time and power level based on the tissue impedance Zt. The tissue impedance Zt may be determined by applying the subtherapeutic RF signal to the tissue T and measuring the current through the tissue T (FIGS. 5, 10, 16, 17) by way of a return electrode on provided on a clamp member 151, as discussed in more detail below. Accordingly, the signal generator module 102 may be configured for subtherapeutic purposes for measuring the impedance or other electrical characteristics of the tissue T. Techniques and circuit configurations for measuring the impedance or other electrical characteristics of the tissue T are discussed in more detail below with reference to FIGS. 18-20 below.


A suitable ultrasonic generator module 180 may be configured to functionally operate in a manner similar to the GEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio as is disclosed in one or more of the following U.S. patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (Method for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); U.S. Pat. No. 6,537,291 (Method for Detecting a Loose Blade in a Handle Connected to an Ultrasonic Surgical System); U.S. Pat. No. 6,626,926 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); U.S. Pat. No. 6,633,234 (Method for Detecting Blade Breakage Using Rate and/or Impedance Information); U.S. Pat. No. 6,662,127 (Method for Detecting Presence of a Blade in an Ultrasonic System); U.S. Pat. No. 6,678,621 (Output Displacement Control Using Phase Margin in an Ultrasonic Surgical Handle); U.S. Pat. No. 6,679,899 (Method for Detecting Transverse Vibrations in an Ultrasonic Handle); U.S. Pat. No. 6,908,472 (Apparatus and Method for Altering Generator Functions in an Ultrasonic Surgical System); U.S. Pat. No. 6,977,495 (Detection Circuitry for Surgical Handpiece System); U.S. Pat. No. 7,077,853 (Method for Calculating Transducer Capacitance to Determine Transducer Temperature); U.S. Pat. No. 7,179,271 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); and U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).


In accordance with the described embodiments, the ultrasonic generator module 180 produces electrical signals of a particular voltage, current, and frequency, e.g. 55,500 cycles per second (Hz). The generator is 112 connected by the cable 142 to the ultrasonic generator module 180 in the handpiece assembly 160, which contains piezoceramic elements forming the ultrasonic transducer 114. In response to a switch 143 on the handpiece assembly 160 or a foot switch 144 connected to the generator 112 by another cable 105 the generator signal is applied to the transducer 114, which causes a longitudinal vibration of its elements. A structure connects the transducer 114 to a surgical blade 146, which is thus vibrated at ultrasonic frequencies when the generator signal is applied to the transducer 114. The structure is designed to resonate at the selected frequency, thus amplifying the motion initiated by the transducer 114. In one embodiment, the generator 112 is configured to produce a particular voltage, current, and/or frequency output signal that can be stepped with high resolution, accuracy, and repeatability.


Referring now to FIGS. 1-4, the handpiece assembly 160 of the surgical instrument system 110 may include a handpiece housing 116 that operably supports the end effector 150. The handpiece housing 116 rotatably supports an acoustic assembly 124 therein. The acoustic assembly 124 includes the ultrasonic transducer 114 that generally includes a transduction portion 118, a first resonator or end-bell 120, a second resonator or fore-bell 122, and ancillary components as shown in FIG. 2. In various embodiments, the ultrasonic energy produced by the transducer 114 can be transmitted through the acoustic assembly 124 to the end effector 150 via the ultrasonic transmission waveguide 147 as shown in FIGS. 1 and 3. In order for the acoustic assembly 124 to deliver energy to the waveguide 147, and ultimately to the end effector 150, the components of the acoustic assembly 124 are acoustically coupled to the blade 146. For example, the distal end of the ultrasonic transducer 114 may be acoustically coupled to the proximal end 170 of the waveguide 147 by a coupling assembly that enables the acoustic assembly 124 to freely rotate relative to the waveguide 147 while transmitting ultrasonic energy thereto.


As shown in FIG. 3, the proximal end 170 of the waveguide 147 may be provided with an aperture 172 therein that is sized to receive a stem (not shown) that protrudes distally from the fore-bell 122. In various embodiments, piezoelectric elements 132, for example, can be compressed between the end-bell 120 and the fore-bell 122 to form a stack of piezoelectric elements when the end-bell 120 and the fore-bell 122 are assembled together as illustrated in FIGS. 2-4. The piezoelectric elements 132 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any suitable piezoelectric crystal material, for example. As shown in FIGS. 2 and 4, the transducer 114 may comprise electrodes, such as at least one positive electrode 134 and at least one negative electrode 136, for example, which can be configured to create a voltage potential across the one or more piezoelectric elements 132. As shown in FIG. 2, the positive electrode 134 and the negative electrode 136, and the piezoelectric elements 132 can each be configured with a bore (not shown) that cooperates to form a passageway that can receive a threaded portion of the end-bell 120. In one embodiment, the positive electrode 134 is provided in the form of an annular ring that has a first circumference “PC” and the negative electrode 136 is also provided in the form of an annular ring that has a second circumference “NC.” As shown in FIG. 2, in various embodiments, the stack of piezoelectric elements 132 may have an outer circumference “OC” that is less than the first and second circumferences “PC” and “NC.”


In various embodiments, the handpiece housing 116 may support the ultrasonic generator module 180 and/or the signal generator module 102. In one embodiment, the ultrasonic generator module 180 may be electrically coupled to an electrical contact assembly 190 that may comprise a positive slip ring contact 191 that is mounted within handpiece housing 116 for rotatable contact with the positive electrode 134. The positive slip ring contact 191 is electrically coupled to the ultrasonic generator module 180 by a positive ultrasonic supply cable/conductor 192. The electrical contact assembly 190 may further comprise a negative slip ring contact 194 that is mounted within handpiece housing 116 for rotatable contact with the negative electrode 136. The negative slip ring contact 194 is electrically coupled to the ultrasonic generator module 180 by a negative ultrasonic supply cable 195. It will be appreciated that such arrangement enables the acoustic assembly 124 to freely rotate relative to the ultrasonic generator module 180 while remaining in full electrical contact therewith.


In various embodiments, the ultrasonic transmission waveguide 147 may comprise a plurality of stabilizing silicone rings or compliant supports (not shown) positioned at, or at least near, a plurality of nodes. As was discussed above, the silicone rings can dampen undesirable vibration and isolate the ultrasonic energy from the sheath 158 that at least partially surrounds the waveguide 147, thereby assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 152 of the end effector 150 with maximum efficiency.


As shown in FIGS. 2 and 3, the sheath 158 can be coupled to a rotation wheel 159 that is rotatably attached to the distal end of the handpiece assembly 160. The rotation wheel 159 facilitates selective rotation of the sheath 158 and the waveguide 147 relative to the handpiece assembly 160. The sheath 158 may have an adapter portion 162 that may be threaded or snapped onto the rotation wheel 159. The rotation wheel 159 may include a flanged portion (not shown) that is snapped into an annular groove in the handpiece assembly 160 to facilitate rotation of the sheath 158 and waveguide 147 relative to the handpiece assembly 160 about axis A-A. In one embodiment, the sheath 158 also includes a hollow tubular portion 164 through which the waveguide 147 extends in the manner described in further detail above. In various embodiments, the adapter 162 of the sheath 158 may be constructed from ULTEM®, for example, and the tubular portion 164 may be fabricated from stainless steel, for example. In at least one embodiment, the ultrasonic transmission waveguide 147 may have polymeric material, for example, surrounding it in order to isolate it from outside contact.


In the embodiment, as shown in FIG. 1, the ultrasonic generator module 180 is electrically coupled to the electronic signal/radio frequency generator 112 by the cables 139, 141 which may be housed in a sheath to form the cable 142. Because the acoustic assembly 124 can freely rotate relative to the ultrasonic generator module 180, the waveguide 147 and the end effector 150 may be freely rotated about axis A-A relative to the handpiece assembly 160 without causing the cable 142 to undesirably twist and tangle.


As illustrated in FIGS. 2 and 3, the handpiece assembly 160 may have a pistol grip configuration and operably support a movable trigger assembly 145 that is pivotally supported within the handpiece assembly 160. To facilitate easy assembly, the handpiece assembly 160 may comprise two housing segments 162 that are coupled together by threaded fasteners, snap features, adhesive. The movable trigger assembly 145 includes a trigger portion 153 that has a pair of spaced attachment arms 154 that each has a hole 155 therethrough. Holes 155 are each sized to receive a corresponding pivot pin (not shown) that protrudes from each of the housing segments 162. Such arrangement permits the trigger portion 153 to pivot relative to the handpiece assembly 160 about an axis that is substantially transverse to axis A-A.


As shown in FIGS. 2 and 3, the trigger assembly 145 may comprise an actuation arm 156 that is attached to the trigger portion 153 via an intermediate link 157. The actuation arm 156 is pivotally coupled (pinned) to the trigger yoke 185. The arm 156 has a mounting pin 186 extending transversely therethrough that is sized to be slidably received in corresponding elongated cavities 187 formed in the housing segments 162. See FIGS. 2 and 3. Such arrangement facilitates the axial movement of the actuation arm 156 within the handpiece assembly 160 in response to pivoting the trigger portion 153.


In the embodiment illustrated in FIG. 1, the end effector 150 portion of the surgical system 100 comprises a clamp arm assembly 149 connected at a distal end of the surgical instrument 110. The blade 146 forms a first (e.g., energizing) electrode and the clamp arm assembly 149 comprises an electrically conductive portion that forms a second (e.g., return) electrode. The signal generator module 102 is coupled to the blade 146 and the clamp arm assembly 149 through a suitable transmission medium such as a cable 137. The cable 137 comprises multiple electrical conductors for applying a voltage to the tissue and providing a return path for current flowing through the tissue back to the signal generator module 102. In various embodiments, the signal generator module 102 may be formed integrally with the generator 112 or may be provided as a separate circuit coupled to the generator 112 and, in one embodiment, may be formed integrally with the ultrasonic generator module 180 (shown in phantom to illustrate these options).


In one embodiment, the surgical system 100 illustrated in FIG. 1 may comprise components for selectively energizing an end effector 150 and transmitting mechanical energy thereto and, in addition, selectively energizing the end effector 150 with therapeutic and/or subtherapeutic electrical energy. The surgical instrument 110 may be switchable between a first operating mode in which mechanical energy, or vibrations at ultrasonic frequencies (e.g., 55.5 kHz), are transmitted to the end effector 150 and a second operating mode in which electrical energy (e.g., therapeutic and/or subtherapeutic), or current, is permitted to flow through the end effector 150. In certain embodiments, referring to FIG. 1, in a first operating mode of the surgical instrument 110, for example, the transducer 114 converts electrical energy supplied thereto by the ultrasonic generator module 180 (e.g., an ultrasonic oscillator) of the generator 112 into mechanical vibrations and transmit the vibrations into a waveguide 147 to the blade 146 portion of the end effector 150, for example. Such mechanical vibrations can be generated at ultrasonic frequencies, although any suitable frequency, or frequencies, can be used. In the second operating mode of the surgical instrument 110, an electrical current may be supplied by the generator 112 that can flow through the transducer 114, the waveguide 147, and the end effector 150. The current flowing through the waveguide 147 and end effector 150 can be an alternating current (AC current), wherein, in various embodiments, the wave form of the AC current can be sinusoidal and/or may comprise a series of step intervals, for example.


In one embodiment, the current supplied by the signal generator module 102 is an RF current. In any event, the surgical instrument 110 may comprise a supply path and a return path, wherein the tissue T (FIG. 5) being treated completes, or closes, an electrical circuit, or loop, comprising a supply path through the transducer 114, the waveguide 147, and the blade 146 and a return path through conductor cable 137. In one embodiment, the patient can be positioned on a conductive pad wherein the current can flow from a supply path of the surgical instrument, through the patient, and into the conductive pad in order to complete the electrical circuit.


Still referring to FIG. 1, as previously discussed, in one embodiment the surgical instrument system 110 may be energized by the generator 112 by way of the foot switch 144 in order to energize the end effector 150. When actuated, the foot switch 144 triggers the generator 112 to deliver electrical energy to the handpiece assembly 160, for example. Although the foot switch 144 may be suitable in many circumstances, other suitable switches can be used. In various embodiments, the surgical instrument system 110 may comprise at least one supply conductor 139 and at least one return conductor 141, wherein current can be supplied to handpiece assembly 160 via the supply conductor 139 and wherein the current can flow back to the generator 112 via return conductor 141. In various embodiments, the supply conductor 139 and the return conductor 141 may comprise insulated wires and/or any other suitable type of conductor. In certain embodiments, as described below, the supply conductor 139 and the return conductor 141 may be contained within and/or may comprise a cable extending between, or at least partially between, the generator 112 and the transducer 114 portion of the handpiece assembly 160. In any event, the generator 112 can be configured to apply a sufficient voltage differential between the supply conductor 139 and the return conductor 141 such that sufficient current can be supplied to the transducer 114.


In various embodiments, still referring to FIG. 1, the supply conductor 139 and the return conductor 141 may be operably connected to a transducer drive unit 135, wherein the drive unit 135 can be configured to receive current from the generator 112 via the supply conductor 139. In certain embodiments, the handpiece assembly 160 may comprise a switch, such as a toggle switch 143, for example, which can be manipulated to place the surgical instrument 110 in one of a first operating mode and a second operating mode. In one embodiment, as described below, the toggle switch 143 may comprise a first toggle button 143a which can be depressed to place the surgical instrument 110 in the first operating mode and, in addition, a second toggle button 143b which can be depressed to place the surgical instrument in the second operating mode. Although a toggle switch is illustrated and described herein, any suitable switch, or switches, can be used. When the first toggle button 143a is depressed, the transducer drive unit 135 can operate a transducer, such as the transducer 114, for example, such that the transducer 114 produces vibrations. The transducer 114 may comprise one or more piezoelectric elements 132, wherein the drive unit 135 can be configured to apply a voltage differential, and/or a series of voltage differentials, across the piezoelectric elements 132 such that they mechanically vibrate in a desired manner. Also, the transducer 114 may comprise one or more electrodes, such as a positive electrode 134 and a negative electrode 136, for example, positioned intermediate and/or adjacent to the piezoelectric elements 132. In one embodiment, the surgical instrument 110 may comprise a positive polarizing conductor 192 operably connected to the drive unit 135 and a positive electrode 134 and, in addition, a negative polarizing conductor 195 operably connected to the drive unit 135 and the negative electrode 136, wherein the drive unit 135 can be configured to polarize the electrodes 134, 136 via the polarizing conductors 192, 195, respectively.


In various embodiments, the transducer 114 may comprise a fore-bell 122 and a velocity transformer 128 which can be configured to conduct the vibrations produced by the piezoelectric elements 132 into the transmission waveguide 147. In certain embodiments, referring still to FIG. 1, the transmission waveguide 147 may comprise an elongate shaft portion surrounded, or at least partially surrounded, by a sheath 158, for example, wherein the waveguide 147 may comprise a distal end 152. The distal end 152 of the waveguide 147 may comprise part of the end effector 150, wherein the end effector 150 may comprise the clamp member 151 having a rotatable clamp arm, or jaw, which can be pivoted between an open position in which tissue can be positioned intermediate the blade 146 and the clamp member 151 and a closed position in which clamp member 151 can position and/or compress the tissue T (FIG. 5) against the blade 146. In various embodiments, a surgical instrument may comprise a lever or actuator, such as a jaw closure trigger 145, for example, which can be actuated by a surgeon in order to pivot the clamp member 151 between its open and closed positions. In at least one embodiment, the jaw closure trigger 145 can be operably engaged with a push/pull rod operably engaged with the clamp member 151 wherein, when the jaw closure trigger 145 is closed or moved toward the handpiece assembly 160, the closure trigger 145 can push the push/pull rod distally and pivot the clamp member 151 toward the blade 146 into its closed position. Correspondingly, the jaw closure trigger 145 can be pivoted into its open position in order to pull the rod proximally and pivot the clamp member 151 away from the blade 146 into its open position.


In any event, once the tissue T (FIG. 5) has been suitably positioned within the jaws of the end effector 150, the transducer 114 can be operated by the drive unit 135 in order to transmit mechanical energy, or vibrations, into the targeted tissue T. In some embodiments, the actuation of the foot switch 144 may be sufficient to actuate the transducer 114. In certain other embodiments, the actuation of a different switch may be required in addition to or in lieu of the actuation of the foot switch 144. In one embodiment, the actuation of the foot switch 144 can supply power to the drive unit 135, although the actuation of the jaw closure trigger 145, and the trigger closure switch 147, may be required before the drive unit 135 can drive the transducer 114. In various embodiments, the jaw closure trigger 145 can be moved between a first, or open, position in which the trigger closure switch 147 is in an open state, or condition, and a second, or closed, position in which the trigger closure switch 147 is in a closed state, or condition. When the trigger closure switch 147 is in its closed condition, in various embodiments, a circuit within the drive unit 135, for example, can be closed such that the drive unit 135 can drive the transducer 114.


Referring still to FIG. 1, In various applications, a surgeon may desire to treat tissue using mechanical energy, or vibrations, transmitted through the blade 146, for example. In various other applications, the surgeon may desire to treat the tissue using therapeutic electrical energy transmitted through the blade 146. In various other applications, the surgeon may desire to obtain feedback in regards to a state of the tissue T (FIG. 5) by measuring the electrical properties of the tissue T (e.g., impedance) using subtherapeutic electrical energy transmitted through the blade 146. In various embodiments, the toggle switch 143 can be manipulated to place the surgical instrument 110 in the second operating mode. In at least one such embodiment, the second toggle button 143b of the toggle switch 143 can be depressed in order to switch the surgical instrument 110 from the first operating mode into the second operating mode. As described below, the depression of the second toggle button 143b can configure the handpiece assembly 160 such that the drive unit 135 does not drive the transducer 114 but rather, the power supplied to the handpiece assembly 160 from generator 112 can flow into the blade 146 without being converted into mechanical energy, or vibrations. In one embodiment, referring now to FIG. 5, the distal end 152 of the blade 146 can be positioned against the targeted tissue “T” and, in addition, the distal end 153 of the clamp member 151 can also be positioned against the tissue T such that current can flow from the supply conductor 139 into the blade 146, through the tissue T, and return back to the generator 112 via the clamp member 151, the return conductors 137, 141. As shown in FIG. 5, the clamp member 151 can be configured such that it is not in contact with the blade 146 when the clamp member 151 is in the closed position.


With reference now back to FIG. 1, in various embodiments, the return conductor 137 may comprise an insulated wire having a first end operably coupled with the clamp member 151 and a second end operably coupled with the return conductor 141, wherein current can flow through the return conductor 137 when the toggle switch 143 is in the second configuration and the trigger closure switch 147 has been closed by the trigger 145. In one embodiment, current will not flow through the return conductor 137 when the trigger closure switch 147 is in an open condition and/or when the toggle switch 143 is in the first configuration, i.e., when the first toggle button 143a is depressed, as described above. In any event, in various circumstances, the current flowing through the tissue T (FIG. 5) from the distal end 152 of the blade 146 to the distal end 153 of the clamp member 151 can treat the tissue positioned intermediate, and/or surrounding, the distal ends 152, 153. In another embodiment, the current may be subtherapeutic for measuring the electrical state of the tissue T (FIG. 5).


The distal end 152 of the blade 146 may comprise a supply electrode while the distal end 153 of the clamp member 151 may comprise a return electrode. In various other embodiments, current can be supplied to the conductor 137 such that the distal end 153 of the clamp member 151 may comprise the supply electrode and the distal end 152 of the blade 146 may comprise the return electrode. In one embodiment, the current can return to the generator 112 via the blade 146, the waveguide 147, and the conductor 139. In either event, referring again to FIG. 1, at least a portion of the return conductor 137 can extend along the outside of the sheath 158, wherein at least another portion of the return conductor 137 can extend through the handpiece assembly 160. In certain embodiments, although not illustrated, at least a portion of the return conductor 137 can be positioned within the sheath 158 and can extend alongside the blade 146.


A s shown in FIG. 6, in some embodiments, the surgical instrument 110 may comprise an inner sheath 257 and an outer sheath 258, wherein the inner sheath 257 can define a first, or inner, passageway 259, and wherein the inner sheath 257 and the outer sheath 258 can define a second, or outer, passageway 261 therebetween. In one embodiment, the blade 146 can extend through the inner passageway 259 and the return conductor 137, and/or any other suitable conductor, can extend through the outer passageway 261. In various other embodiments, a conductor can be embedded in at least a portion of the inner sheath 257 or the outer sheath 258.


As shown in FIG. 7, in one embodiment, a sheath may comprise a non-electrically conductive or insulative material 358, such as plastic and/or rubber, for example, overmolded onto a conductive insert 357, which can be comprised of copper, for example, wherein the conductive insert 357 can allow current flowing through the blade 146 to return to the generator 112 after it has passed through the targeted tissue T (FIG. 5) as described above. In various embodiments, the insulative material 358 can entirely, or at least substantially, surround the conductive insert 357 such that current flowing through the conductive insert 357 does not unintentionally short to non-targeted tissue, for example. In at least one embodiment, the insulative material 358 can cover the inside surface and the outside surface of the conductive insert 357. In certain embodiments, although not illustrated, an insulative material of a sheath may cover only the outer surface of a conductive insert, for example.


In various embodiments, as described above, a first end of the return conductor 137 can be operably coupled to the clamp member 151 such that current can flow therethrough. In certain embodiments, the first end of the return conductor 137 can be soldered and/or welded to the clamp member 151. In one embodiment, although not illustrated, the clamp member 151 may comprise an aperture configured to receive the first end of the return conductor 137 wherein a fastener can be inserted into the aperture in order to secure the first end therein. In at least one such embodiment, the sidewalls of the aperture can be at least partially threaded and the fastener can be threadably received in the threaded aperture.


As shown in FIG. 8, in one embodiment, a clamp arm assembly 451 may comprise a conductive jacket 472 mounted to a base 449. In one embodiment, the first end of the return conductor 137 may be mounted to the conductive jacket 472 such that current can flow from the blade 146, through tissue positioned intermediate the jacket 472 and the blade 146, and then into the jacket 472 and to the return conductor 137. In various embodiments, the conductive jacket 472 may comprise a center portion 473 and at least one downwardly-extending sidewall 474 which can extend below bottom the surface 475 of the base 449. In the illustrated embodiment, the conductive jacket 472 has two sidewalls 474 extending downwardly on opposite sides of the base 449. In certain embodiments, the center portion 473 may comprise at least one aperture 476 which can be configured to receive a projection 477 extending from the base 449. In one embodiment, the projections 477 can be press-fit within the apertures 476 in order to secure the conductive jacket 472 to the base 449 although, in some embodiments, the projections 477 can be deformed after they have been inserted into the apertures 476. In various embodiments, fasteners can be used to secure the conductive jacket 472 to the base 449.


In various embodiments, the clamp arm assembly 451 may comprise a non-electrically conductive or insulative material, such as plastic and/or rubber, for example, positioned intermediate the conductive jacket 472 and the base 449. The insulative material can prevent current from flowing, or shorting, between the conductive jacket 472 and the base 449. In various embodiments, referring again to FIG. 8, the base 449 may comprise at least one aperture 478, for example, which can be configured to receive a pivot pin (not illustrated), wherein the pivot pin can be configured to pivotably mount the base 449 to the sheath 158, for example, such that the clamp arm assembly 451 can be rotated between open and closed positions relative to the sheath 158. In the embodiment illustrated in FIG. 8, the base 449 includes two apertures 478 positioned on opposite sides of the base 449. In one embodiment, the pivot pin can be comprised of a non-electrically conductive or insulative material, such as plastic and/or rubber, for example, which can be configured to prevent current from flowing into the sheath 158 even if the base 449 is in electrical contact with the conductive jacket 472, for example.


In various embodiments, as described above, the surgical instrument system 110 can be configured such that current can flow from the distal tip of the blade 146, through the tissue T (FIG. 5), and then to the distal tip of the clamp member 151. In one embodiment, as shown in to FIG. 5, the clamp member 151 may comprise a tissue engaging pad or clamp pad 155, for example, mounted thereto, wherein the pad 155 can be configured to contact tissue positioned intermediate the clamp member 151 and the waveguide 147. In one expression of the embodiment, the pad 155 may be formed of a non-electrically conductive or insulative material, such as polytetrafluoroethylene (PTFE), such as for example TEFLON® a trademark name of E. I. Du Pont de Nemours and Company, a low coefficient of friction polymer material, or any other suitable low-friction material. The non-electrically conductive or insulative material can also server to prevent current from flowing between the clamp member 151 and the blade 146 without first passing through the distal end 152 of the blade 146, the targeted tissue T, and the distal end 153 of the clamp member 151. In various embodiments, the pad 155 can be attached to the clamp member 151 utilizing an adhesive, for example. The clamp pad 155 mounts on the clamp member 151 for cooperation with the blade 146, with pivotal movement of the clamp member 151 positioning the clamp pad 155 in substantially parallel relationship to, and in contact with, the blade 146, thereby defining a tissue treatment region. By this construction, tissue is grasped between the clamp pad 155 and the blade 146. The clamp pad 155 may be provided with a non-smooth surface, such as a saw tooth-like configuration to enhance the gripping of tissue in cooperation with the blade 146. The saw tooth-like configuration, or teeth, provide traction against the movement of the blade 146. The teeth also provide counter traction to the blade 146 and clamping movement. It will be appreciated that the saw tooth-like configuration is just one example of many tissue engaging surfaces to prevent movement of the tissue relative to the movement of the blade 146. Other illustrative examples include bumps, criss-cross patterns, tread patterns, a bead, or sand blasted surface.


In various other embodiments, the surgical instrument 110 can be configured such that current can flow through tissue clamped between the blade 146, for example, and the clamp member 151 without having to first pass through the distal ends thereof. In at least one embodiment, referring now to FIG. 9, a clamp arm assembly 551 may comprise an electrically-conductive member 572 and a pad 555 attached thereto, wherein the electrically-conductive member 572 may comprise at least one sidewall 574 extending downwardly therefrom. In one embodiment, current can flow between the blade 146, for example, through tissue positioned between the blade 146 and the sidewalls 574 of the clamp arm assembly 551, and into the sidewalls 574. In various embodiments, gaps can be defined between each sidewall 574 and the blade 146 and, in addition, a gap can be defined between the tissue-contacting surface 575 of the pad 555 and the blade 146.


In one embodiment, referring now to FIG. 10, the gaps between each sidewall 574 and the waveguide 147 can be defined by a distance “D1,” wherein the distance D1 can be selected such that, when the clamp arm assembly 551 is positioned in a closed position, the tissue positioned intermediate each of the sidewalls 574 and the blade 146 can be compressed. Although these gaps are illustrated as having the same distance D1, other embodiments are envisioned in which the gaps have different distances. A gap between the tissue-contacting surface 575 and the blade 146 can be defined by a distance “D2,” wherein the distance D2 also may be selected such that, when the clamp arm assembly 551 is positioned in a closed position, the tissue-contacting surface 575 can be contact and/or compress the tissue against blade 146.


In various embodiments, a clamp arm assembly may comprise an electrically-conductive pad mounted thereto. In at least one such embodiment, such a pad can be configured to contact and/or compress tissue positioned intermediate the clamp arm assembly and a waveguide, such as the blade 146, for example, such that current can flow from the blade 146 into the pad. In certain embodiments, the electrically conductive pad can be comprised of a typically conductive material, such as copper, for example. In at least one embodiment, the pad can be comprised of a typically non-conductive material, such as PTFE, for example, which can be impregnated with electrically conductive particles, such as medical grade stainless steel, for example, such that the pad is sufficiently conductive to permit current to flow between the blade 146 and the clamp arm.


In one embodiment, as previously discussed, the surgical instrument 110 comprises the blade 146, for example, which may comprise a first electrode and, in addition, a clamp arm, such as the clamp member 151, for example, which may comprise a second electrode. In various embodiments, as also discussed above, the blade 146 may comprise a supply electrode whereas the clamp member 151 may comprise a return electrode. Alternatively, the clamp member 151 may comprise the supply electrode while the blade 146 may comprise the return electrode. In various other embodiments, a clamp arm may comprise both the supply electrode and the return electrode. In certain embodiments, referring now to FIG. 11, a clamp arm may comprise a pad 655 and two or more electrodes, such as a first electrode 682 and a second electrode 683, for example. In one embodiment, the pad 655 can be comprised of a non-electrically conductive or insulative material, such as PTFE, for example, as previously discussed with reference to the clamp pad 155 (FIG. 5), whereas the electrodes 682, 683 can be comprised of an electrically conductive material, such as copper and/or a PTFE material having electrically conductive particles mixed therein, for example. In various embodiments, the first electrode 682 and/or the second electrode 683 can be embedded within the pad 655. In at least one such embodiment, the pad 655 can be molded onto the electrodes 682, 683 whereas, in certain embodiments, the electrodes 682, 683 can be inserted and/or press-fit into openings formed in the pad 655.


In various embodiments, the first electrode 682 can be positioned adjacent to a first side 674a of the pad 655 while the second electrode 683 can be positioned adjacent to a second side 674b of the pad 655. In use, the first electrode 682 may comprise a supply electrode and the second electrode 683 may comprise a return electrode, wherein current can flow from the supply electrode 682, through tissue clamped or positioned between the pad 655 and the blade 146, for example, and into the return electrode 683. In one embodiment, a supply wire can be operably coupled with the first electrode 682 and a return wire can be operably coupled with the second electrode 683 such that current can be supplied thereto from a power source, such as the generator 112, for example. In various embodiments, referring still to FIG. 11, the electrodes 682, 683 can be positioned within the pad 655 such that the electrodes 682, 683 do not contact the blade 146 when the clamp member 151 (FIG. 5) is in a closed position and short to the blade 146. Although the illustrated embodiment comprises one supply electrode and one return electrode positioned within a pad, embodiments are envisioned in which a pad includes more than one supply electrode and/or more than one return electrode.


As discussed above, electrodes can be embedded within the pad of a clamp arm assembly. In various embodiments, first and second electrodes can be mounted to the sides of a clamp arm pad. Referring now to FIG. 12, a clamp arm may comprise a pad 755, for example, which can be configured to hold tissue against the blade 146, for example, wherein a first electrode 782 can be mounted to a first side 774a of the pad 755 and wherein a second electrode 783 can be mounted to a second side 774b of the pad 755. In various embodiments, the electrodes 782, 783 can be positioned within cut-outs in the sides of the pad 755 wherein, in certain embodiments, the electrodes 782, 783 can be adhered and/or fastened, for example, to the pad 755. The first electrode 782 may comprise a supply electrode and the second electrode 783 may comprise a return electrode, wherein current can flow from the supply electrode 782, through tissue clamped or positioned between the pad 755 and the blade 146, for example, and into the return electrode 783. In one embodiment, a supply wire can be operably coupled with the first electrode 782 and a return wire can be operably coupled with the second electrode 783 such that current can be supplied thereto from a power source, such as the generator 112, for example. Furthermore, the electrodes 782, 783 can be mounted to the pad 755 such that the electrodes 782, 783 do not contact the blade 146 and create an electrical short thereto. Although the illustrated embodiment comprises one supply electrode and one return electrode mounted to a pad, embodiments are envisioned in which a pad includes more than one supply electrode and/or more than one return electrode.


Still referring to FIG. 12, various electrodes can be configured such that they extend in a longitudinal direction which is parallel, or at least substantially parallel, to the longitudinal axis of the blade 146, for example. In various embodiments, the electrodes can extend along an end effector such that the entire length of the tissue positioned within the end effector can be treated. In various embodiments, referring now to FIG. 13, a clamp arm may comprise a pad 885 having two point electrodes. More particularly, in one embodiment, the pad 855 may comprise a first point electrode 882 and a second point electrode 883 positioned therein, wherein current can flow through tissue positioned intermediate the first point electrode 882 and the second point electrode 883. In at least one such embodiment, the pad 855 can be comprised of a non-electrically conductive material, the first point electrode 882 may comprise a supply electrode, and the second point electrode 883 may comprise a return electrode. In various embodiments, the electrodes 882, 883 can be embedded within the pad 885 and, in one embodiment the pad 885 can be molded around the electrodes 882, 883. In certain embodiments, the electrodes 882, 883 can be inserted into apertures within the pad 855. A supply wire can be operably coupled with the first electrode 882 and a return wire can be operably coupled with the second electrode 883 such that current can be supplied thereto from a power source, such as the generator 112, for example. Furthermore, the electrodes 882, 883 can be positioned within the pad 855 such that the electrodes 882, 883 do not contact the blade 146 and create an electrical short thereto. In one embodiment, the clamp arm supporting pad 885, and/or a sheath rotatably supporting the clamp arm, may further comprise a stop which can be configured to prevent the pad 855 from rotating into a position in which the electrodes 882, 883 contact the blade 146. Although the illustrated embodiment comprises one supply point electrode and one return point electrode positioned within a pad, other embodiments are envisioned in which a pad includes more than one supply point electrode and/or more than one return point electrode. Various embodiments are envisioned in which a pad includes an array of supply point electrodes and/or an array of return point electrodes.


In various embodiments, as described above, a surgical instrument may comprise a clamp arm including both a supply electrode and a return electrode. In one embodiment, the surgical instrument may comprise a waveguide which does not comprise an electrode. In certain embodiments, a supply electrode and a return electrode can be configured such that current can flow therebetween along a predetermined path. In various embodiments, such a path can be one-dimensional. Embodiments having two point electrodes, for example, can permit such a path. In other embodiments, such a path can be two-dimensional. Embodiments having an array of point electrodes, for example, can permit such a path. A two-dimensional path can be referred to as a field. In certain embodiments, a path can be three-dimensional. In at least one such embodiment, a clamp arm assembly can have a supply electrode and a return electrode while the waveguide may comprise one of a supply electrode or a return electrode. In embodiments where the waveguide comprises a return electrode, current can flow from the supply electrode of the clamp arm assembly to the return electrode of the clamp arm assembly and the return electrode of the waveguide. In one such embodiment, the return electrodes may comprise a common ground. In embodiments where the waveguide comprises a supply electrode, current can flow from the waveguide and the supply electrode of the clamp arm assembly to the return electrode of the clamp arm assembly. Such arrangements can permit the current to flow in a three-dimensional path, or field.


In various embodiments, referring now to FIG. 14, the surgical instrument 110 may comprise a sheath encompassing, or at least partially encompassing, a portion of the blade 146 wherein a sheath may comprise both at least one supply conductor and at least one return conductor. In one embodiment, a sheath may comprise a plurality of conductive inserts, such as a first conductive insert 957a and a second conductive inserts 957b, for example, wherein the first conductive insert 957a may comprise a supply conductor and wherein the second conductive insert 957b may comprise a return conductor. In various embodiments, a non-electrically conductive or insulative material 958, such as plastic and/or rubber, for example, can be overmolded onto the first and second conductive inserts 957a, 957b in order to comprise the sheath. In various other embodiments, the surgical instrument 110 may comprise, referring now to FIG. 15, a sheath assembly encompassing, or at least partially encompassing, a portion of a waveguide wherein the sheath assembly may comprise an inner sheath, such as an inner sheath 1057, for example, and an outer sheath, such as an outer sheath 1058, for example. In one embodiment, the inner sheath 1057 may comprise a supply conductor operably coupled with a supply electrode in a clamp arm assembly, wherein the outer sheath 1058 may comprise a return conductor operably coupled with a return electrode in the clamp arm assembly. In certain embodiments, the inner sheath 1057 and/or the outer sheath 1058 may be comprised of an electrically conductive material, such as medical grade stainless steel, for example, wherein, in one embodiment, one or more surfaces of the inner sheath 1057 and/or the outer sheath 1058 can be coated, or at least partially coated, in a non-conductive material, such as a material comprising poly(p-xylylene) polymers, for example. Materials comprised of poly(p-xylylene) polymers are often sold under the tradename of Parylene™.


In various embodiments, a clamp arm can be moved between open and closed positions in order position and/or compress tissue T against a blade. In one embodiment, referring to FIG. 16, a clamp arm 1151 may comprise a base 1149 and a pad 1155 mounted to the base 1149, wherein the pad 1155 can be configured to contact and compress tissue T against the blade 146, for example. As illustrated in FIG. 16, the pad 1155 may comprise a tissue-contacting surface 1175 which, although it may include various serrations, ridges, and/or surface texturing, is planar, or at least substantially planar. In such embodiments, especially when the blade 146 has a round or arcuate cross-section, only a small portion of the tissue T positioned intermediate the blade 146 and the pad 1155 may contact the surface area, or perimeter, of the blade 146. As illustrated in FIG. 16, the tissue T may contact the blade 146 at a contact point P. Various alternative embodiments are envisioned in which the clamp arm 1251, for example, may comprise downwardly-extending sidewalls 1274 which extend below a tissue-contacting surface 1275 of the pad 1255, for example, although a clamp arm may comprise a tissue-contacting surface with or without a pad. In one embodiment, referring to FIG. 17, the sidewalls 1274 can be configured to contact the tissue T positioned laterally with respect to the blade 146 and push the tissue T downwardly. As illustrated in FIG. 17, the sidewalls 1274 can push the tissue T downwardly such that the tissue T positioned intermediate the sidewalls 1274 contacts a larger surface area, or perimeter, on the blade 146 as compared to the embodiment illustrated in FIG. 16. Owing to the larger contact area, the blade 146 may be more efficient in cutting, coagulating, and/or otherwise treating the tissue. In embodiments where the blade 146 may comprise a circular or arcuate cross-section, the perimeter contact distance, i.e., the distance in which the tissue is in contact with the perimeter of the blade 146, may comprise an arclength (s) which can equal the product of the radius of curvature of the arc R and the sweep angle θ defined between the two contact points P. As illustrated in FIG. 17, the contact points P can represent the endpoints of the perimeter in which the tissue T contacts the blade 146. Although the illustrated blade 146 is depicted as having a curved or arcuate cross-section, any other suitable cross-section may be used.


In various embodiments, the tissue-contacting surface 1275 of the clamp arm 1251 can define a plane 1298 which can represent the portions of the pad 1255 which contact the tissue T positioned within the end effector when the clamp arm 1251 is rotated between its open and closed positions. As illustrated in FIG. 17, the sidewalls 1274 of the clamp arm 1251 can extend through the plane 1298, wherein, when the clamp arm 1251 is rotated from an open position into a closed position, the sidewalls 1274 can be positioned laterally along the opposite sides of the blade 146 and, in addition, the tissue-contacting surface 1275 can be positioned against, or adjacent to, the top surface of the blade 146 such that the plane 1298 is aligned with, or respect to, a plane 1299 extending through the top surface of the blade 146. In one embodiment, the plane 1299 can be defined as a tangential plane which is tangential to the perimeter of the blade 146. In one embodiment, the plane 1299 can be tangential to the top tissue-contacting surface of the blade 146, for example, wherein the top tissue-contacting surface of the 146 may comprise the surface closest to the clamp tissue-contacting surface 1275 when the clamp arm 1271 is in its closed position. In the illustrated embodiment, still referring to FIG. 17, the planes 1298, 1299 can be parallel, or at least substantially parallel, to one another when the tissue-contacting surface 1275 is positioned adjacent to the blade 146, while the planes 1298, 1299 can be co-planar, or at least substantially co-planar, with one another when the tissue-contacting surface 1275 is in contact with the blade 146. The sidewalls 1274 can be sized and configured such that they extend through the blade plane 1299 when the clamp arm 1271 is in the closed position. In various embodiments, the sidewalls 1274 may not extend through the plane 1299 when the clamp arm 1251 is in the open position. In one embodiment, the sidewalls 1274 may “break” the plane 1299 as the clamp arm 1251 is being closed, but before it is completely closed. In one embodiment, the sidewalls 1274 may break the plane 1299 just before the clamp arm 1251 reaches its completely closed position.



FIG. 18 illustrates one embodiment of a drive system 32 of the ultrasonic generator module 180 shown in FIG. 1, which creates an ultrasonic electrical signal for driving an ultrasonic transducer. With reference now to FIGS. 1 and 18, the drive system 32 is flexible and can create an ultrasonic electrical drive signal 416 at a desired frequency and power level setting for driving the ultrasonic transducer 114. In various embodiments, the generator 112 may comprise several separate functional elements, such as modules and/or blocks. Although certain modules and/or blocks may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used and still fall within the scope of the embodiments. Further, although various embodiments may be described in terms of modules and/or blocks to facilitate description, such modules and/or blocks may be implemented by one or more hardware components, e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.


In one embodiment, the ultrasonic generator module 180 drive system 32 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. The ultrasonic generator module 180 drive system 32 may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in nonvolatile memory (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The NVM may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).


In one embodiment, the ultrasonic generator module 180 drive system 32 comprises a hardware component implemented as a processor 400 for executing program instructions for monitoring various measurable characteristics of the ultrasonic surgical instrument 110 and generating a corresponding output control signal for operating the surgical instrument 110. In various embodiments, the output control signal is for driving the ultrasonic transducer 114 in cutting and/or coagulation operating modes, measuring electrical characteristics of the surgical instrument 110 and/or the tissue T, and providing feedback to use. It will be appreciated by those skilled in the art that the ultrasonic generator module 180 and the drive system 32 may comprise additional or fewer components and only a simplified version of the ultrasonic generator module 180 and the drive system 32 are described herein for conciseness and clarity. In various embodiments, as previously discussed, the hardware component may be implemented as a DSP, PLD, ASIC, circuits, and/or registers. In one embodiment, the processor 400 may be configured to store and execute computer software program instructions to generate the step function output signals for driving various components of the ultrasonic surgical instrument 110, such as the transducer 114, the end effector 150, and/or the blade 146.


In one embodiment, under control of one or more software program routines, the processor 400 executes the methods in accordance with the described embodiments to perform a variety of functions, such as, for example, generating a step function formed by a stepwise waveform of drive signals comprising current (I), voltage (V), and/or frequency (f) for various time intervals or periods (T), driving the ultrasonic transducer 114, driving the end effector 150 using therapeutic and/or subtherapeutic electrical signals (e.g., RF signal), measuring the impedance (Z) of the transducer 114, measuring the impedance (Zt) of the tissue T, and/or providing feedback to the user. In one embodiment, stepwise waveforms of the drive signals may be generated by forming a piecewise linear combination of constant functions over a plurality of time intervals created by stepping the ultrasonic generator module 180 drive signals, e.g., output drive current (I), voltage (V), and/or frequency (f). The time intervals or periods (T) may be predetermined (e.g., fixed and/or programmed by the user) or may be variable. Variable time intervals may be defined by setting the drive signal to a first value and maintaining the drive signal at that value until a change is detected in a monitored characteristic. Examples of monitored characteristics may comprise, for example, transducer impedance, tissue impedance, tissue heating, tissue transection, tissue coagulation, and the like. The ultrasonic drive signals generated by the ultrasonic generator module 180 include, without limitation, ultrasonic drive signals that excite various vibratory modes of the ultrasonic transducer 114 such as the primary longitudinal mode and harmonics thereof as well flexural and torsional vibratory modes.


In one embodiment, the executable modules comprise one or more algorithm(s) 402 stored in memory that when executed causes the processor 400 to perform a variety of functions, such as, for example, generating a step function formed by a stepwise waveform of drive signals comprising current (I), voltage (V), and/or frequency (f) for various time intervals or periods (T), driving the ultrasonic transducer 114, driving the end effector 150 using a therapeutic and/or subtherapeutic electrical signal (e.g., RF signal), measuring the impedance (Z) of the transducer 114, measuring the impedance (Zt) of the tissue T, and/or providing feedback in accordance with a state of the tissue T. In one embodiment, an algorithm 402 is executed by the processor 400 to generate a step function formed by a stepwise waveform of drive signals comprising current (I), voltage (V), and/or frequency (f) for various time intervals or periods (T). The stepwise waveforms of the drive signals may be generated by forming a piecewise linear combination of constant functions over two or more time intervals created by stepping the generator's 30 output drive current (I), voltage (V), and/or frequency (f). The drive signals may be generated either for predetermined fixed time intervals or periods (T) of time or variable time intervals or periods of time in accordance with the one or more stepped output algorithm(s) 402. Under control of the processor 400, the ultrasonic generator module 180 steps (e.g., increment or decrement) the current (I), voltage (V), and/or frequency (f) up or down at a particular resolution for a predetermined period (T) or until a predetermined condition is detected, such as a change in a monitored characteristic (e.g., transducer impedance, tissue impedance). The steps can change in programmed increments or decrements. If other steps are desired, the ultrasonic generator module 180 can increase or decrease the step adaptively based on measured system characteristics. In other embodiments, algorithms 402 may be executed by the processor 400 to drive the ultrasonic transducer 114, drive the end effector 150 using a therapeutic and/or subtherapeutic electrical signal (e.g., RF signal), measure the impedance (Z) of the transducer 114, measure the impedance (Zt) of the tissue T, and/or to provide feedback in accordance with a state of the tissue T.


In operation, the user can program the operation of the ultrasonic generator module 180 using the input device 406 located on the front panel of the ultrasonic generator module 180 console. The input device 406 may comprise any suitable device that generates signals 408 that can be applied to the processor 400 to control the operation of the ultrasonic generator module 180. In various embodiments, the input device 406 includes buttons, switches, thumbwheels, keyboard, keypad, touch screen monitor, pointing device, remote connection to a general purpose or dedicated computer. In other embodiments, the input device 406 may comprise a suitable user interface. Accordingly, by way of the input device 406, the user can set or program the current (I), voltage (V), frequency (f), and/or period (T) for programming the step function output of the ultrasonic generator module 180. The processor 400 then displays the selected power level by sending a signal on line 410 to an output indicator 412.


In various embodiments, the output indicator 412 may provide visual, audible, and/or tactile feedback to the surgeon to indicate the status of a surgical procedure, such as, for example, when tissue cutting and coagulating is complete based on a measured characteristic of the ultrasonic surgical instrument 110, e.g., transducer impedance, tissue impedance, or other measurements as subsequently described. By way of example, and not limitation, visual feedback comprises any type of visual indication device including incandescent lamps or light emitting diodes (LEDs), graphical user interface, display, analog indicator, digital indicator, bar graph display, digital alphanumeric display. By way of example, and not limitation, audible feedback comprises any type of buzzer, computer generated tone, computerized speech, voice user interface (VUI) to interact with computers through a voice/speech platform. By way of example, and not limitation, tactile feedback comprises any type of vibratory feedback provided through the instrument handpiece assembly 160 or simply housing handle assembly.


In one embodiment, the processor 400 may be configured or programmed to generate a digital current signal 414 and a digital frequency signal 418. These signals 414, 418 are applied to a direct digital synthesizer (DDS) circuit 420 to adjust the amplitude and the frequency (f) of the current output signal 416 to the transducer 114. The output of the DDS circuit 420 is applied to an amplifier 422 whose output is applied to a transformer 424. The output of the transformer 424 is the signal 416 applied to the ultrasonic transducer 114, which is coupled to the blade 146 by way of the waveguide 147.


In one embodiment, the ultrasonic generator module 180 comprises one or more measurement modules or components that may be configured to monitor measurable characteristics of the ultrasonic instrument 110. In embodiment illustrated in FIG. 18, the processor 400 may be employed to monitor and calculate system characteristics. As shown, the processor 400 measures the impedance Z of the transducer 114 by monitoring the current supplied to the transducer 114 and the voltage applied to the transducer 114. In one embodiment, a current sense circuit 426 is employed to sense the current flowing through the transducer 114 and a voltage sense circuit 428 is employed to sense the output voltage applied to the transducer 114. These signals may be applied to the analog-to-digital converter 432 (ADC) via an analog multiplexer 430 circuit or switching circuit arrangement. The analog multiplexer 430 routes the appropriate analog signal to the ADC 432 for conversion. In other embodiments, multiple ADCs 432 may be employed for each measured characteristic instead of the multiplexer 430 circuit. The processor 400 receives the digital output 433 of the ADC 432 and calculates the transducer impedance Z based on the measured values of current and voltage. In response to the transducer impedance (Z), the processor 400 controls the operation of the surgical instrument 110. For example, the processor 400 can adjust the power delivered to the transducer 114, can shut off the power to the transducer 114, and/or provide feedback to the user. In one embodiment, the processor 400 adjusts the output drive signal 416 such that it can generate a desired power versus load curve. In one embodiment, in accordance with a programmed step function algorithms 402, the processor 400 can step the drive signal 416, e.g., the current or frequency, in any suitable increment or decrement in response to the transducer impedance Z.


With reference back now to FIGS. 1 and 18, to actually cause the surgical blade 146 to vibrate, e.g., actuate the blade 146, the user activates the foot switch 144 or the switch 143 on the handpiece assembly 160, as discussed above. This activation outputs the drive signal 416 to the transducer 114 based on programmed values of current (I), frequency (f), and corresponding time periods (T). After a predetermined fixed time period (T), or variable time period based on a measurable system characteristic such as changes in the impedance Z of the transducer 114, the processor 400 changes the output current step or frequency step in accordance with the programmed values. The output indicator 412 communicates the particular state of the process to the user.


The operation of the ultrasonic generator module 180 may be programmed to provide a variety of output drive signals to measure electrical properties of current, voltage, power, impedance, and frequency associated with the transducer 114 in an unloaded state, a lightly loaded state, and a heavily loaded state, for example. When the ultrasonic transducer 114 is in an unloaded state, the ultrasonic generator module 180 output may be stepped in a first sequence, for example. In one embodiment, the ultrasonic generator module 180 is initially activated at about time 0 resulting in a drive current rising to a first set point I1 of about 100 mA. The current is maintained at the first set point I1, for a first period T1. At the end of the first period T1, e.g., about 1 second, the current set point is changed, e.g., stepped, by the ultrasonic generator module 180 in accordance with the software, e.g., the step function algorithm(s) 402, to a second set point I2 of about 175 mA for a second period T2, e.g., about 2 seconds. At the end of the second period T2, e.g., at about 3 seconds, the ultrasonic generator module 180 software changes the current to a third set point I3 of about 350 mA. The voltage, current, power, and frequency respond only slightly because there is no load on the system.


When the ultrasonic transducer 114 is in a lightly loaded state, the ultrasonic generator module 180 is activated at about time 0 resulting in the current rising to the first current set point I1 of about 100 mA. At about 1 second the current set point is changed within the ultrasonic generator module 180 by the software to I2 of about 175 mA, and then again at about 3 seconds the ultrasonic generator module 180 changes the current 300 set point to I3 of about 350 mA. The voltage, current, power, and frequency respond to the light load.


When the ultrasonic transducer 114 is in a heavily loaded state, the ultrasonic generator module 180 is activated at about time 0 resulting in the current rising to the first set point I1 of about 100 mA. At about 1 second the current set point is changed within the ultrasonic generator module 180 by the software to I2 of about 175 mA, and then again at about 3 seconds the ultrasonic generator module 180 changes the current 300 set point to I3 of about 350 mA. The voltage, current, power, and frequency respond to the heavy load.


It will be appreciated by those skilled in the art that the current step function set points (e.g., I1, I2, I3) and the time intervals or periods (e.g., T1, T2) of duration for each of the step function set points described above are not limited to the values described herein and may be adjusted to any suitable value as may be desired for a given set of surgical procedures. Additional or fewer current set points and periods of duration may be selected as may be desired for a given set of design characteristics or performance constraints. As previously discussed, the periods may be predetermined by programming or may be variable based on measurable system characteristics. The embodiments are not limited in this context.


Having described operational details of various embodiments of the surgical system 100, operations for the above surgical system 100 may be further described in terms of a process for cutting and coagulating a blood vessel employing a surgical instrument comprising the input device 406 and the transducer impedance measurement capabilities described with reference to FIG. 18. Although a particular process is described in connection with the operational details, it can be appreciated that the process merely provides an example of how the general functionality described herein can be implemented by the surgical system 100. Further, the given process does not necessarily have to be executed in the order presented herein unless otherwise indicated. As previously discussed, the input device 406 may be employed to program the stepped output (e.g., current, voltage, frequency) to the ultrasonic transducer 114/blade 146 assembly.


Accordingly, one technique for sealing a vessel includes separating and moving the inner muscle layer of the vessel away from the adventitia layer prior to the application of standard ultrasonic energy to transect and seal the vessel. Although conventional methods have achieved this separation by increasing the force applied to the clamp member 151, disclosed is an alternative apparatus and method for cutting and coagulating tissue without relying on clamp force alone. In order to more effectively separate the tissue layers of a vessel, for example, the ultrasonic generator module 180 may be programmed to apply a frequency step function to the ultrasonic transducer 114 to mechanically displace the blade 146 in multiple modes in accordance with the step function. In one embodiment, the frequency step function may be programmed by way of the user interface 406, wherein the user can select a stepped-frequency program, the frequency (f) for each step, and the corresponding time period (T) of duration for each step for which the ultrasonic transducer 114 will be excited. The user may program a complete operational cycle by setting multiple frequencies for multiple periods to perform various surgical procedures.


In one embodiment, a first ultrasonic frequency may be set initially to mechanically separate the muscle tissue layer of a vessel prior to applying a second ultrasonic frequency to cut and seal the vessel. By way of example, and not limitation, in accordance with one implementation of the program, initially, the ultrasonic generator module 180 is programmed to output a first drive frequency f1 for a first period T1 of time (for example less than approximately 1 second), wherein the first frequency f1 is significantly off resonance, for example, f0/2, 2f0 or other structural resonant frequencies, where f0 is the resonant frequency (e.g., 55.5 kHz). The first frequency f1 provides a low level of mechanical vibration action to the blade 146 that, in conjunction with the clamp force, mechanically separates the muscle tissue layer (subtherapeutic) of the vessel without causing significant heating that generally occurs at resonance. After the first period T1, the ultrasonic generator module 180 is programmed to automatically switch the drive frequency to the resonant frequency f0 for a second period T2 to transect and seal the vessel. The duration of the second period T2 may be programmed or may be determined by the length of time it actually takes to cut and seal the vessel as determined by the user or may be based on measured system characteristics such as the transducer impedance Z as described in more detail below.


In one embodiment, the tissue/vessel transection process (e.g., separating the muscle layer of the vessel from the adventitia layer and transecting/sealing the vessel) may be automated by sensing the impedance Z characteristics of the transducer 114 to detect when the transection of the tissue/vessel occurs. The impedance Z can be correlated to the transection of the muscle layer and to the transection/sealing of the vessel to provide a trigger for the processor 400 to generate the frequency and/or current step function output. As previously discussed with reference to FIG. 18, the impedance Z of the transducer 114 may be calculated by the processor 400 based on the current flowing through transducer 114 and the voltage applied to the transducer 114 while the blade 146 is under various loads. Because the impedance Z of the transducer 114 is proportional to the load applied to the blade 146, as the load on the blade 146 increases the impedance Z of the transducer 114 increases and as the load on the blade 146 decreases the impedance Z of the transducer 114 decreases. Accordingly, the impedance Z of the transducer 114 can be monitored to detect the transection of the inner muscle tissue layer of the vessel from the adventitia layer and can also be monitored to detect when the vessel has been transected and sealed.


In one embodiment, the ultrasonic surgical instrument 110 may be operated in accordance with a programmed step function algorithm responsive to the transducer impedance Z. In one embodiment, a frequency step function output may be initiated based on a comparison of the transducer impedance Z and one or more predetermined thresholds that have been correlated with tissue loads against the blade 146. When the transducer impedance Z transitions above or below (e.g., crosses) a threshold, the processor 400 applies a digital frequency signal 418 to the DDS circuit 420 to change the frequency of the drive signal 416 by a predetermined step in accordance with the step function algorithm(s) 402 responsive to the transducer impedance Z. In operation, the blade 146 is first located at the tissue treatment site. The processor 400 applies a first digital frequency signal 418 to set a first drive frequency f1 that is off resonance (e.g., f0/2, 2f0 or other structural resonant frequencies, where f0 is the resonant frequency). The drive signal 416 is applied to the transducer 114 in response to activation of the switch 312a on the handpiece assembly 160 or the foot switch 434. During this period the ultrasonic transducer 114 mechanically activates the blade 146 at the first drive frequency f1. A force or load may be applied to the clamp member 151 and the blade 146 to facilitate this process. During this period, the processor 400 monitors the transducer impedance Z until the load on the blade 146 changes and the transducer impedance Z crosses a predetermined threshold to indicate that the tissue layer has been transected. The processor 400 then applies a second digital frequency signal 418 to set a second drive frequency f2, e.g., the resonant frequency f0 or other suitable frequency for transecting, coagulating, and sealing tissue. Another portion of the tissue (e.g., the vessel) is then grasped between the clamp member 151 and the blade 146. The transducer 114 is now energized by the drive signal 416 at the second drive frequency f2 by actuating either the foot switch 434 or the switch 312a on the handpiece assembly 160. It will be appreciated by those skilled in the art that the drive current (I) output also may be stepped as described with reference to FIGS. 6-8 based on the transducer impedance Z.


According to one embodiment of a step function algorithm 402, the processor 400 initially sets a first drive frequency f1 that is significantly off resonance to separate the inner muscle layer of the vessel from the adventitia layer. During this period of operation the processor 400 monitors the transducer impedance Z to determine when the inner muscle layer is transected or separated from the adventitia layer. Because the transducer impedance Z is correlated to the load applied to the blade 146, for example, cutting more tissue decrease the load on the blade 146 and the transducer impedance Z. The transection of the inner muscle layer is detected when the transducer impedance Z drops below a predetermined threshold. When the change in transducer impedance Z indicates that the vessel has been separated from the inner muscle layer, the processor 400 sets the drive frequency to the resonant frequency f0. The vessel is then grasped between the blade 146 and the clamp member 151 and the transducer 114 is activated by actuating either the foot switch or the switch on the handpiece assembly 160 to transect and seal the vessel. In one embodiment, the impedance Z change may range between about 1.5 to about 4 times a base impedance measurements from an initial point of contact with the tissue to a point just before the muscle layer is transected and sealed.


With reference now to FIGS. 1, 8, and 19, as previously discussed, in one embodiment, the surgical system 100, and the ultrasonic surgical instrument 110, comprises the signal generator module 102. In one embodiment, the signal generator module 102 may be implemented as a tissue impedance module 502. Although in the presently disclosed embodiment, the signal generator module 102 is shown separate from the surgical instrument 110, in one embodiment, the signal generator module 102 may be formed integrally with the surgical instrument 110, as shown in phantom in FIG. 1, such that the surgical instrument 110 forms a unitary surgical system. In one embodiment, surgical instrument the signal generator module 102 may be configured to monitor the electrical impedance Zt of the tissue T (FIGS. 5, 10, 16, 17) to control the characteristics of time and power level based on the impedance Zt of the tissue T. In one embodiment, the tissue impedance Zt may be determined by applying a subtherapeutic radio frequency (RF) signal to the tissue T and measuring the current through the tissue T by way of a return electrode on the clamp member 151, as previously discussed. In the schematic diagram shown in FIG. 19, an end effector portion of the surgical system 100 comprises the clamp arm assembly 451 (FIG. 8) connected to the distal end of the outer sheath 158. The blade 146 forms a first (e.g., energizing) electrode and the clamp arm assembly 451 comprises an electrically conductive portion that forms a second (e.g., return) electrode. The tissue impedance module 502 is coupled to the blade 146 and the clamp arm assembly 451 through a suitable transmission medium such as a cable 137. The cable 137 comprises multiple electrical conductors for applying a voltage to the tissue T and providing a return path for current flowing through the tissue T back to the impedance module 502. In various embodiments, the tissue impedance module 502 may be formed integrally with the generator 112 or may be provided as a separate circuit coupled to the generator 112 (shown in phantom to illustrate this option).


Still with reference to FIGS. 1, 8, and 19 illustrates one embodiment of an integrated generator module 320 comprising the ultrasonic generator module 180 and the signal generator module 102. As shown, the signal generator module 102 is configured as a tissue impedance module 502. The integrated generator module 320 generates the ultrasonic electrical drive signal 416 to drive the ultrasonic transducer 114. In one embodiment, the tissue impedance module 502 may be configured to measure the impedance Zt of the tissue T (FIGS. 5, 10, 16, 17) grasped between the blade 146 and the clamp arm assembly 451. The tissue impedance module 502 comprises an RF oscillator 506, a voltage sensing circuit 508, and a current sensing circuit 510. The voltage and current sensing circuits 508, 510 respond to the RF voltage vrf applied to the blade 146 electrode and the RF current irf flowing through the blade 146 electrode, the tissue, and the conductive portion of the clamp arm assembly 451. The sensed voltage vrf and current irf are converted to digital form by the ADC 432 via the analog multiplexer 430. The processor 400 receives the digitized output 433 of the ADC 432 and determines the tissue impedance Zt by calculating the ratio of the RF voltage vrf to current irf measured by the voltage sense circuit 508 and the current sense circuit 510. In one embodiment, the transection of the inner muscle layer and the tissue may be detected by sensing the tissue impedance Zt. Accordingly, detection of the tissue impedance Zt may be integrated with an automated process for separating the inner muscle layer from the outer adventitia layer prior to transecting the tissue without causing a significant amount of heating, which normally occurs at resonance. Additional clamp arm and sheath assemblies comprising an electrode as shown in FIGS. 9-17 may be employed without limitation.



FIG. 20 is a schematic diagram of the signal generator module 102 configured as the tissue impedance module 502 coupled to the blade 146 and the clamp arm assembly 415 with tissue T located therebetween. With reference now to FIGS. 1, 8, and 18-20, the generator 112 comprises the signal generator module 102 configured as the tissue impedance module 502 configured for monitoring the impedance Zt of the tissue T located between the blade 146 and the clamp arm assembly 451 during the tissue transection process. The tissue impedance module 502 may is coupled to the ultrasonic surgical instrument 110 by way of the cables 137, 139. The cable includes a first “energizing” conductor 139 connected to the blade 146 (e.g., positive [+] electrode) and a second “return” conductor 137 connected to the conductive jacket 472 (e.g., negative [−] electrode) of the clamp arm assembly 451. In one embodiment, RF voltage vrf is applied to the blade 146 to cause RF current irf to flow through the tissue T. The second conductor 137 provides the return path for the current irf back to the tissue impedance module 502. The distal end of the return conductor 137 is connected to the conductive jacket 472 such that the current irf can flow from the blade 146, through the tissue T positioned intermediate the conductive jacket 472 and the blade 146, and the conductive jacket 472 to the return conductor 137. The impedance module 502 connects in circuit, by way of the first and second conductors 137, 139. In one embodiment, the RF energy may be applied to the blade 146 through the ultrasonic transducer 114 and the waveguide 147. It is worthwhile noting that the RF energy applied to the tissue T for purposes of measuring the tissue impedance Zt is a low level subtherapeutic signal that does not contribute in a significant manner, or at all, to the treatment of the tissue T.


Having described operational details of various embodiments of the surgical system 100, operations for the above surgical system 100 may be further described with reference to FIGS. 1, 8, and 18-20 in terms of a process for cutting and coagulating a blood vessel employing a surgical instrument comprising the input device 406 and the tissue impedance module 502. Although a particular process is described in connection with the operational details, it can be appreciated that the process merely provides an example of how the general functionality described herein can be implemented by the surgical system 100. Further, the given process does not necessarily have to be executed in the order presented herein unless otherwise indicated. As previously discussed, the input device 406 may be employed to program the step function output (e.g., current, voltage, frequency) to the ultrasonic transducer 114/blade 146 assembly.


In one embodiment, the ultrasonic surgical instrument 110 may be operated in accordance with a programmed step function algorithm 402 responsive to the tissue impedance Zt. In one embodiment, a frequency step function output may be initiated based on a comparison of the tissue impedance Zt and predetermined thresholds that have been correlated with various tissue states (e.g., desiccation, transection, sealing). When the tissue impedance Zt transitions above or below (e.g., crosses) a threshold, the processor 400 applies a digital frequency signal 418 to the DDS circuit 420 to change the frequency of an ultrasonic oscillator by a predetermined step in accordance with the step function algorithm 402 responsive to the tissue impedance Zt.


In operation, the blade 146 is located at the tissue treatment site. The tissue T is grasped between the blade 146 and the clamp arm assembly 451 such that the blade 146 and the conductive jacket 472 make electrical contact with the tissue T. The processor 400 applies a first digital frequency signal 418 to set a first drive frequency f1 that is off resonance (e.g., f0/2, 2f0 or other structural resonant frequencies, where f0 is the resonant frequency). The blade 146 is electrically energized by the low level subtherapeutic RF voltage vrf supplied by the tissue impedance module 502. The drive signal 416 is applied to the transducer 114/blade 146 in response to actuation of the switch 143 on the handpiece assembly 160 or the foot switch 144434 until the tissue impedance Zt of the tissue T changes by a predetermined amount. A force or load is then applied to the clamp arm assembly 451 and the blade 146. During this period the ultrasonic transducer 114 mechanically activates the blade 146 at the first drive frequency f1 and as a result, the tissue T begins to desiccate from the ultrasonic action applied between the blade 146 and the one or more clamp pads 155 of the clamp arm assembly 451 causing the impedance Zt of the tissue T to increase. Eventually, as the tissue T is transected by the ultrasonic action and applied clamp force, the impedance Zt of the tissue T becomes very high or infinite. It will be appreciated by those skilled in the art that the drive current (I) output also may be stepped as described above based on measured impedance Zt of the tissue T.


In one embodiment, the impedance Zt of tissue T may be monitored by the impedance module 502 in accordance with the following process. A measurable RF current i1 is conveyed through the first energizing conductor 139 to the blade 146, through the tissue T, and back to the impedance module 502 through the conductive jacket 472 and the second conductor 137. As the tissue T is desiccated and cut by the ultrasonic action of the blade 146 acting against the one or more clamp pads 155, the impedance of the tissue 514 increases and thus the current in the return path, i.e., the second conductor 137, decreases. The impedance module 502 measures the tissue impedance Zt and conveys a representative signal to the ADC 432 whose digital output 433 is provided to the processor 400. The processor 400 calculates the tissue impedance Zt based on these measured values of vrf and irf. In response to the transducer impedance (Zt), the processor 400 controls the operation of the surgical instrument 110. For example, the processor 400 can adjust the power delivered to the transducer 114, can shut off the power to the transducer 114, and/or provide feedback to the user. In one embodiment, the processor 400 steps the frequency by any suitable increment or decrement in response to changes in the impedance Zt of the tissue T. In other embodiments, the processor 400 controls the drive signals 416 and can make any necessary adjustments in amplitude and frequency in response to the tissue impedance Zt. In one embodiment, the processor 400 can cut off the drive signal 416 when the tissue impedance Zt reaches a predetermined threshold value.


Accordingly, by way of example, and not limitation, in one embodiment, the ultrasonic surgical instrument 110 may be operated in accordance with a programmed stepped output algorithm to separate the inner muscle layer of a vessel from the adventitia layer prior to transecting and sealing the vessel. As previously discussed, according to one step function algorithm, the processor 400 initially sets a first drive frequency f1 that is significantly off resonance. The transducer 114 is activated to separate the inner muscle layer of the vessel from the adventitia layer and the tissue impedance module 502 applies a subtherapeutic RF voltage vrf signal to the blade 146. During this period T1 of operation the processor 400 monitors the tissue impedance Zt to determine when the inner muscle layer is transected or separated from the adventitia layer. The tissue impedance Zt is correlated to the load applied to the blade 146, for example, when the tissue becomes desiccated or when the tissue is transected the tissue impedance Zt becomes extremely high or infinite. The change in tissue impedance Zt indicates that the vessel has been separated or transected from the inner muscle layer and the generator 112 is deactivated for a second period of time T2. The processor 400 then sets the drive frequency to the resonant frequency f0. The vessel is then grasped between the blade 146 and the clamp arm assembly 451 and the transducer 114 is reactivated to transect and seal the vessel. Continuous monitoring of the tissue impedance Zt provides an indication of when the vessel is transected and sealed. Also, the tissue impedance Zt may be monitored to provide an indication of the completeness of the tissue cutting and/or coagulating process or to stop the activation of the generator 112 and/or the ultrasonic generator module 180 when the impedance Zt of the tissue T reaches a predetermined threshold value. The threshold for the tissue impedance Zt may be selected, for example, to indicate that the vessel has been transected. In one embodiment, the tissue impedance Zt may range between about 10 Ohms to about 1000 Ohms from an initial point to a point just before the muscle layer is transected and sealed.


The applicants have discovered that experiments that run varying current set points (both increasing and decreasing) and dwell times indicate that the described embodiments can be used to separate the inner muscle layer from the outer adventitia layer prior to completing the transection resulting in improved hemostasis and potentially lower total energy (heat) at the transection site. Furthermore, although the surgical instrument 110 has been described in regards to impedance threshold detection schemes to determine when the muscle layer is separated from the adventitia, other embodiments that do not employ any detection scheme are within the scope of the present disclosure. For example, embodiments of the surgical instrument 110 may be employed in simplified surgical systems wherein non-resonant power is applied to separate the layers for a predetermined time of approximately 1 second or less, prior to applying a resonant power to cut the tissue. The embodiments are not limited in this context.


In various embodiments, the surgical instrument 110 may be programmed for detecting a change of state of tissue being manipulated by an ultrasonic surgical instrument and providing feedback to the user to indicate that the tissue has undergone such change of state or that there is a high likelihood that the tissue has undergone such change of state. As used herein, the tissue may undergo a change of state when the tissue is separated from other layers of tissue or bone, when the tissue is cut or transected, when the tissue is coagulated, and so forth while being manipulated with an end effector of an ultrasonic surgical instrument, such as, for example, the end effector 150 of the ultrasonic surgical instrument 110. A change in tissue state may be determined based on the likelihood of an occurrence of a tissue separation event.


With reference to FIGS. 1, 5, and 18-20, in various embodiments, the impedance Z and the tissue Zt, as well as any other suitable electrical measurements, that can be made with the surgical system 100, may be used to provide feedback by the output indicator 412 shown in FIGS. 18 and 19. The output indicator 412 is particularly useful in applications where the tissue being manipulated by the end effector 151 is out of the user's field of view and the user cannot see when a change of state occurs in the tissue T. The output indicator 412 communicates to the user that a change in tissue state has occurred as determined in accordance with the operations described with respect to various logic flows. As previously discussed, the output indicator 412 may be configured to provide various types of feedback to the user including, without limitation, visual, audible, and/or tactile feedback to indicate to the user (e.g., surgeon, clinician) that the tissue has undergone a change of state of the tissue. By way of example, and not limitation, as previously discussed, visual feedback comprises any type of visual indication device including incandescent lamps or LEDs, graphical user interface, display, analog indicator, digital indicator, bar graph display, digital alphanumeric display. By way of example, and not limitation, audible feedback comprises any type of buzzer, computer generated tone, computerized speech, VUI to interact with computers through a voice/speech platform. By way of example, and not limitation, tactile feedback comprises any type of vibratory feedback provided through the instrument housing handpiece assembly 160.


The processor 400 to determines a change in tissue state in accordance with the operations described above and provides feedback to the user by way of the output indicator 412. The processor 400 monitors and evaluates the voltage, current, and/or frequency signal samples available from the generator 32, 320 and according to the evaluation of such signal samples determines whether a change in tissue state has occurred. A change in tissue state may be determined based on the type of ultrasonic instrument and the power level that the instrument is energized at. In response to the feedback, the operational mode of the ultrasonic surgical instrument 110 may be controlled by the user or may be automatically or semi-automatically controlled.


In one embodiment, the processor 400 portion of the drive system 32, 320 samples the voltage (v), current (i), and frequency (f) signals of the ultrasonic generator module 180 and/or the signal generator module 102. As previously discussed, the output indicator 412 may provide visual, audible, and/or tactile feedback to alert the user of the ultrasonic surgical instrument 110 that a change in tissue state has occurred. In various embodiments, in response to the feedback from the output indicator 412, the operational modes of the generator 112, the ultrasonic generator module 180, the signal generator module 102, and/or the ultrasonic instrument 110 may be controlled manually, automatically, or semi-automatically. The operational modes include, without limitation, disconnecting or shutting down the output power, reducing the output power, cycling the output power, pulsing the output power, and/or outputting momentary surge of high-power. In one embodiment, the operational modes include, operating the surgical instrument 110 in a first operating mode in which the transducer 14 produces mechanical energy, or vibrations, that are transmitted to the end effector 151 and a second operating mode in which electrical energy, or current, can flow through the end effector 151 to perform electrosurgery. The operational modes of the ultrasonic instrument 110 in response to the change in tissue state can be selected, for example, to minimize heating effects of the end effector 151, e.g., of the clamp pad 155, to prevent or minimize possible damage to the surgical instrument 110, and/or surrounding tissue. This is advantageous because heat is generated exponentially when the transducer 114 is activated with nothing between the jaws of the end effector 151 as is the case when a change in tissue state occurs.


In various embodiments, the change of state of the tissue may be determined based on transducer and tissue impedance measurements as previously described, or based on voltage, current, and frequency measurements in accordance with the operations described in the disclosure of the following commonly-owned U.S. patent application, which is incorporated herein by reference in its entirety: U.S. patent application Ser. No. 12/503,775, entitled “ULTRASONIC DEVICE FOR CUTTING AND COAGULATING WITH STEPPED OUTPUT,” now U.S. Pat. No. 8,058,771.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Sterilization can also be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.


In various embodiments, an ultrasonic surgical instrument can be supplied to a surgeon with a waveguide and/or end effector already operably coupled with a transducer of the surgical instrument. In at least one such embodiment, the surgeon, or other clinician, can remove the ultrasonic surgical instrument from a sterilized package, plug the ultrasonic instrument into a generator, as outlined above, and use the ultrasonic instrument during a surgical procedure. Such a system can obviate the need for a surgeon, or other clinician, to assemble a waveguide and/or end effector to the ultrasonic surgical instrument. After the ultrasonic surgical instrument has been used, the surgeon, or other clinician, can place the ultrasonic instrument into a sealable package, wherein the package can be transported to a sterilization facility. At the sterilization facility, the ultrasonic instrument can be disinfected, wherein any expended parts can be discarded and replaced while any reusable parts can be sterilized and used once again. Thereafter, the ultrasonic instrument can be reassembled, tested, placed into a sterile package, and/or sterilized after being placed into a package. Once sterilized, the reprocessed ultrasonic surgical instrument can be used once again.


Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical instrument, comprising: a housing;an acoustic assembly supported within the housing, wherein the acoustic assembly is configured to produce vibrations;a waveguide comprising a proximal end and a distal end, wherein the proximal end is mounted to the acoustic assembly to transmit the vibrations produced by the acoustic assembly to the waveguide;an ultrasonic blade coupled to the distal end of the waveguide;a clamp, comprising: a distal abutment surface comprising an electrode; andan electrically non-conductive pad terminating at a distal end, wherein the distal abutment surface is distal to the distal end of the electrically non-conductive pad; anda conductor in electrical communication with the electrode, wherein the conductor and the ultrasonic blade are configured to be placed in electrical communication with a power source to conduct current through tissue positioned adjacent to the distal abutment surface and the ultrasonic blade.
  • 2. The surgical instrument of claim 1, wherein the ultrasonic blade extends along a blade axis, wherein the clamp extends along a clamp axis, and wherein, in a clamp closed position, the clamp axis is parallel to the blade axis.
  • 3. The surgical instrument of claim 2, wherein, in the clamp closed position, the electrically non-conductive pad is positioned adjacent to the ultrasonic blade.
  • 4. The surgical instrument of claim 1, wherein the ultrasonic blade comprises a return electrode.
  • 5. The surgical instrument of claim 1, wherein the clamp is rotatable.
  • 6. The surgical instrument of claim 1, wherein the ultrasonic blade comprises a supply electrode.
  • 7. The surgical instrument of claim 1, wherein the surgical instrument is configured to toggle between a first operating mode, in which the acoustic assembly is configured to produce vibrations, and a second operating mode, in which the power source is configured to supply current to the electrode.
  • 8. The surgical instrument of claim 1, further comprising a sheath assembly at least partially surrounding the waveguide, wherein the sheath assembly comprises an inner sheath and an outer sheath.
  • 9. The surgical instrument of claim 8, wherein the conductor extends between the inner sheath and the outer sheath.
  • 10. The surgical instrument of claim 8, wherein the conductor comprises a conductive insert positioned intermediate the inner sheath and the outer sheath.
  • 11. A surgical instrument, comprising: a housing;an acoustic assembly supported within the housing, wherein the acoustic assembly is configured to produce vibrations;a waveguide comprising a proximal end and a distal end, wherein the proximal end is configured to receive the vibrations produced by the acoustic assembly;an ultrasonic blade extending from the distal end of the waveguide; anda movable clamp arm, comprising: a distal abutment surface comprising an electrode; andan electrically non-conductive pad terminating at a distal end, wherein the distal abutment surface is distal to the distal end of the electrically non-conductive pad;wherein the surgical instrument is configured to toggle between a first operating mode, in which the acoustic assembly is configured to produce vibrations, and a second operating mode, in which a power source is configured to supply current to the electrode.
  • 12. The surgical instrument of claim 11, further comprising a conductor in electrical communication with the electrode, wherein the conductor and the ultrasonic blade are configured to be placed in electrical communication with the power source to conduct current through tissue positioned adjacent to the electrode and the ultrasonic blade.
  • 13. The surgical instrument of claim 11, wherein the ultrasonic blade extends along a blade axis, wherein the movable clamp arm extends along a clamp axis, and wherein, in a clamp closed position, the clamp axis is parallel to the blade axis.
  • 14. The surgical instrument of claim 13, wherein, in the clamp closed position, the electrically non-conductive pad is positioned adjacent to the ultrasonic blade.
  • 15. The surgical instrument of claim 11, wherein the ultrasonic blade comprises a return electrode.
  • 16. The surgical instrument of claim 11, wherein the movable clamp arm is rotatable.
  • 17. The surgical instrument of claim 11, wherein the ultrasonic blade comprises a supply electrode.
  • 18. The surgical instrument of claim 11, further comprising: a first button actuatable to select the first operating mode; anda second button actuatable to select the second operating mode.
  • 19. The surgical instrument of claim 18, further comprising a handpiece comprising the first button and the second button.
  • 20. A surgical instrument, comprising: a housing;an acoustic assembly supported within the housing, wherein the acoustic assembly is configured to produce vibrations;a waveguide comprising a proximal end and a distal end, wherein the proximal end is configured to receive the vibrations produced by the acoustic assembly;an ultrasonic blade extending from the distal end of the waveguide; anda movable clamp arm, comprising: a distal abutment surface comprising an electrode; andan electrically non-conductive pad terminating at a distal end, wherein the distal abutment surface is distal to the distal end of the electrically non-conductive pad; andmeans for selectively conducting current to tissue abutting the distal abutment surface and a distal portion of the ultrasonic blade.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application under 35 U.S.C. § 121 of U.S. patent application Ser. No. 14/136,836, filed on Dec. 20, 2013 entitled ULTRASONIC SURGICAL INSTRUMENTS, which issued on Sep. 19, 2017 as U.S. Pat. No. 9,764,164, which is a divisional application under 35 U.S.C. § 121 of U.S. patent application Ser. No. 12/503,769 entitled ULTRASONIC SURGICAL INSTRUMENTS, filed on Jul. 15, 2009, which issued on Mar. 4, 2014 as U.S. Pat. No. 8,663,220, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (2544)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4244371 Farin Jan 1981 A
4281785 Brooks Aug 1981 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 Van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4353371 Cosman Oct 1982 A
4409981 Lundberg Oct 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4593691 Lindstrom et al. Jun 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5009661 Michelson Apr 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451161 Sharp Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5854590 Dalstein Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
H001904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205383 Hermann Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6232899 Craven May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405184 Bohme et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H002037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6459363 Walker et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083613 Treat Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7113831 Hooven Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7649410 Andersen et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7744615 Couture Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815238 Cao Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7862561 Swanson et al. Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8002770 Swanson et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8055208 Lilla et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398394 Sauter et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430874 Newton et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8471685 Shingai Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512337 Francischelli et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8617194 Beaupre Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663214 Weinberg et al. Mar 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8777945 Floume et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8874220 Draghici et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968296 McPherson Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
8998891 Garito et al. Apr 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9037259 Mathur May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066720 Ballakur et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072538 Suzuki et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9427279 Muniz-Medina et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9442288 Tanimura Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603669 Govari et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724120 Faller et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9878184 Beaupre Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080609 Hancock et al. Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10123835 Keller et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
10154848 Chernov et al. Dec 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172665 Heckel et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10188455 Hancock et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10194999 Bacher et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10245104 McKenna et al. Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10271840 Sapre Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10285750 Coulson et al. May 2019 B2
10299810 Robertson et al. May 2019 B2
10299821 Shelton, IV et al. May 2019 B2
10314638 Gee et al. Jun 2019 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030065321 Carmel Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Iino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iljima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070066971 Podhajsky Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20070299895 Johnson et al. Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080132887 Masuda Jun 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090204114 Odom Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110071523 Dickhans Mar 2011 A1
20110106141 Nakamura May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110273465 Konishi et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120136386 Kishida et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140194868 Sanai et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140276659 Juergens et al. Sep 2014 A1
20140276754 Gilbert et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276806 Heim Sep 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150094703 Zikorus et al. Apr 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150282879 Ruelas Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20150320480 Cosman, Jr. et al. Nov 2015 A1
20150320481 Cosman, Jr. et al. Nov 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160144204 Akagane May 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287311 Friedrichs Oct 2016 A1
20160296249 Robertson Oct 2016 A1
20160296250 Olson et al. Oct 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160317217 Batross et al. Nov 2016 A1
20160324537 Green et al. Nov 2016 A1
20160338726 Stulen et al. Nov 2016 A1
20160346001 Vakharia et al. Dec 2016 A1
20160367281 Gee et al. Dec 2016 A1
20160374708 Wiener et al. Dec 2016 A1
20160374709 Timm et al. Dec 2016 A1
20160374712 Stulen et al. Dec 2016 A1
20170000512 Conlon et al. Jan 2017 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170000554 Yates et al. Jan 2017 A1
20170056056 Wiener et al. Mar 2017 A1
20170056058 Voegele et al. Mar 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170086910 Wiener et al. Mar 2017 A1
20170086911 Wiener et al. Mar 2017 A1
20170086912 Wiener et al. Mar 2017 A1
20170086913 Yates et al. Mar 2017 A1
20170086914 Wiener et al. Mar 2017 A1
20170095267 Messerly et al. Apr 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170105782 Scheib et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170105791 Yates et al. Apr 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170143371 Witt et al. May 2017 A1
20170143877 Witt et al. May 2017 A1
20170164994 Smith Jun 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170189096 Danziger et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170196587 Witt et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202592 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170202609 Shelton, IV et al. Jul 2017 A1
20170207467 Shelton, IV et al. Jul 2017 A1
20170209167 Nield Jul 2017 A1
20170238991 Worrell et al. Aug 2017 A1
20170245875 Timm et al. Aug 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170319228 Worrell et al. Nov 2017 A1
20170319265 Yates et al. Nov 2017 A1
20170325874 Noack et al. Nov 2017 A1
20170348064 Stewart et al. Dec 2017 A1
20170360468 Eichmann et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180036061 Yates et al. Feb 2018 A1
20180036065 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180078277 Illizaliturri-Sanchez et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180098808 Yates et al. Apr 2018 A1
20180146976 Clauda et al. May 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20180280083 Parihar et al. Oct 2018 A1
20190021783 Asher et al. Jan 2019 A1
20190105067 Boudreaux et al. Apr 2019 A1
20190201048 Stulen et al. Jul 2019 A1
20190209201 Boudreaux et al. Jul 2019 A1
20190262030 Faller et al. Aug 2019 A1
20190274700 Robertson et al. Sep 2019 A1
20190282288 Boudreaux Sep 2019 A1
20190282292 Wiener et al. Sep 2019 A1
Foreign Referenced Citations (143)
Number Date Country
2535467 Apr 1993 CA
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
101474081 Jul 2009 CN
202027624 Nov 2011 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
102012109037 Apr 2014 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0705571 Apr 1996 EP
1698289 Sep 2006 EP
1862133 Dec 2007 EP
1972264 Sep 2008 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
2131760 Dec 2009 EP
1214913 Jul 2010 EP
1946708 Jun 2011 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2668922 Dec 2013 EP
2076195 Dec 2015 EP
2510891 Jun 2016 EP
2032221 Apr 1980 GB
2317566 Apr 1998 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04152942 May 1992 JP
H 0541716 Feb 1993 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336545 Dec 1996 JP
H09130655 May 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
10127654 May 1998 JP
H10295700 Nov 1998 JP
H11128238 May 1999 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2002059380 Feb 2002 JP
2002186901 Jul 2002 JP
2002263579 Sep 2002 JP
2002330977 Nov 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005074088 Mar 2005 JP
2005337119 Dec 2005 JP
2006068396 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006217716 Aug 2006 JP
2006288431 Oct 2006 JP
2007037568 Feb 2007 JP
200801876 Jan 2008 JP
200833644 Feb 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2010009686 Jan 2010 JP
2010121865 Jun 2010 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2405603 Dec 2010 RU
2013119977 Nov 2014 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9639086 Dec 1996 WO
WO-9800069 Jan 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0128444 Apr 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-03095028 Nov 2003 WO
WO-2004037095 May 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2007008710 Jan 2007 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012150567 Nov 2012 WO
Non-Patent Literature Citations (53)
Entry
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220.
Related Publications (1)
Number Date Country
20180064961 A1 Mar 2018 US
Divisions (2)
Number Date Country
Parent 14136836 Dec 2013 US
Child 15703577 US
Parent 12503769 Jul 2009 US
Child 14136836 US