The present disclosure relates generally to ultrasonic devices used for non-destructive testing and more particularly to ultrasonic testing devices having a conical array of separate transducer elements with gaps therebetween and methods of assembly thereof.
Non-destructive testing such as ultrasonic testing may be used to inspect various types of materials and components. Specifically, ultrasonic testing is a suitable method for finding internal flaws and/or material characteristics such as thickness and the like in most types of sound conducting materials. Such sound conducting materials include most metals and other types of substantially rigid materials. Generally described, such flaws or characteristics may be detected based upon changes in the reflection of sound waves on a boundary surface of the component with a generally high degree of accuracy.
Ultrasonic testing of, for example, tubes or axles with bores therein may require the use of a conical array to test under a certain angle of incidence. In creating the conical array, a large number of transducer elements may be positioned about the circumference so as to ensure complete coverage in the direction of rotation. Moreover, the ability to phase requires a couple of transducer elements with a width in range of a given wavelength. To position the transducer elements, however, may be time consuming given the need for manually positioning and attaching the elements thereon. Moreover, although a substrate material may be used to contact a large number of elements in a linear array, such a substrate has not been capable of accommodating the configuration of a conical array.
There is thus a desire for an improved ultrasonic testing device using a conical array and a method of assembling the same. Preferably such a conical array can accommodate a large number of transducer elements with the use of a flexible printed circuit substrate material while avoiding the time and expense required with manual assembly.
In one exemplary embodiment, an ultrasonic testing device is provided.
The ultrasonic testing device may include a conical backing and an ultrasonic transducer assembly positioned on the conical backing. The ultrasonic transducer assembly may include a printed circuit substrate with a number of separate transducer elements.
In a further exemplary embodiment, a method of assembling an ultrasonic testing device is provided. The method may include the steps of attaching at least one transducer to a printed circuit substrate, arranging a number of separate transducer elements on the printed circuit substrate, attaching the printed circuit substrate to a backing, and folding the separate transducer elements over the backing into a conical array.
In a further exemplary embodiment, an ultrasonic testing device is provided. The ultrasonic testing device may include a backing configured as a conical array, a printed circuit substrate positioned on the backing, and means for producing a plurality of separated ultrasound waves attached to the printed circuit substrate.
These and other features and improvements of the present disclosure will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The ultrasonic testing device 100 also may include an ultrasonic transducer assembly 130. The ultrasonic transducer assembly 130 may include a printed circuit substrate 140 for positioning on the conical backing 120. The substrate 140 may be any type of thin film, flexible, printed circuit material such as, by way of example and not by limitation, a polyimide film, an electrodeposited copper foil, and the like. Non-metallic materials also may be used. A transducer 150 may be attached to the printed circuit substrate 140. The transducer 150 may be any type of piezoelectric element that converts electrical energy into sound waves. Moreover, a number of individual transducers 150 may be applied to the printed circuit substrate 140. Other components and other configurations may be used herein.
In order to accommodate the shape of the conical array 110, the transducer 150 of the ultrasonic transducer assembly 130 may have a number of separation cuts 160 performed thereon. The separation cuts 160 may be made manually or in an automated fashion including laser cutting, die cutting, and other techniques. Once the separation cuts 160 are complete, a number of separate transducer elements 170 remain with a gap 180 therebetween. The separation cuts 160 may continue beyond the transducer 150 and into the printed circuit substrate 140. The separate transducer elements 170 with the gaps 180 therebetween may be expanded as is shown in
Each of the separate transducer elements 170 may be in communication with a conductor 190. The conductors 190, in turn, may be in communication with a connector/soldering terminal 200 and the like. The conductors 190 and the connector/soldering terminal may be of conventional design. As is illustrated, in
The ultrasonic testing device 100 thus provides the conical array 110 with the ultrasonic transducer assembly 130 without having to individually position and glue or otherwise attach a number of the transducers 150. Rather, the separation cuts 160 produce the separate transducer elements 170 with the gaps 180 therebetween so as to accommodate the shape of the conical array 110 by folding the separate transducer elements 170 about the conical backing 120. Similarly, the separation cuts 160 into the printed circuit substrate 140 also may accommodate multiple individual transducers 150. The ultrasonic testing device 100 thus may be assembled as a phased array in less time and with less labor as compared to known ultrasonic devices typically used with conical arrays.
It should be apparent that the foregoing relates only to certain embodiments of the present invention. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention herein as defined by the following claims and the equivalents thereof.