The invention relates to the manufacture of ultrasonic array probe transducers for non-destructive testing/inspection (NDT/NDI), and more specifically to the use of a synthetic colloidal mixture aerogel for manufacture of a piezoelectric composite transducer having an air-like filler between the ultrasonic posts of the composite.
Ultrasonic probe array transducers are commonly used for NDT/NDI. A transducer typically comprises a composite of an array of polarized piezoelectric ceramic elements, the ceramic usually being in the form of posts, with each post being mechanically supported and acoustically isolated from its neighbors by a filler material which fills kerf spaces between the posts. In transducers of existing practice the filler material is usually a rigid epoxy material.
Electrical activation of the posts in a transducer's composite element causes the posts to expand and contract in the direction of polarization. This expansion and contraction creates a shear wave at the interface between the post and the filler material. The shear wave should be absorbed by the filler material, however the rigid epoxy of existing practice allows transmission of mechanical vibrations in a direction perpendicular to the polarization direction. These mechanical vibrations transmitted through the epoxy are called lateral mode resonances, planar coupling or acoustical cross-talk, and they cause noise in the returned acoustic signal and a reduction of resolution during the inspection.
A further problem with filler materials in existing practice is that some filler materials have high Poisson ratios. As a result, internal stresses are generated within the filler material that oppose the stress applied to the piezoelectric in order to generate sound waves. This leads to performance loss of the transducer.
Yet a further problem with filler materials in existing practice is that their performance degrades in high temperature operation. Typical epoxy materials have continuous operating temperatures in the range of 50 to 200° C., with degradation occurring above 400° C. As a result, existing filler materials are not compatible with high temperature operation.
Yet a further problem with filler materials in existing practice is that rigid epoxy is not flexible, and therefore the transducer cannot easily be made flexible in order to form complex transducer shapes.
An ideal transducer would be one manufactured with no filler material. In other words there would be only air in the gaps between ceramic posts. One advantage of air is that the acoustic impedance difference between ceramic and air is so great that lateral vibrations would be subject to very high transmission loss at the ceramic/air interfaces, so that almost no acoustical energy could be transmitted to a neighboring post. Therefore the received image quality would be improved and acoustic noise would be reduced.
Alternatively, the improved performance with air isolation would allow flexibility in the design of the ceramic dicing pattern. The kerf width or the amount of material removed to create a post is based on the shear velocity of the filler material. Use of air filler would lead to more design opportunities to develop higher performing ceramic patterns. It would also be possible to develop ceramic post patterns that can eliminate grating lobes, which are undesirable off-axis secondary ultrasound beams.
A further advantage of the use of air filler is that air cannot have a Poisson ratio, and therefore there would be minimal material stresses resisting the expansion and contraction of the posts to generate sound waves.
Yet a further advantage of the use of air instead of epoxy is that the acoustic impedance of the transducer can be lowered, which allows easier coupling to low impedance materials. For example, water, which is a common coupling medium, has an acoustic impedance over 20 times lower than raw ceramic, and about 9 times lower than transducers in existing practice. The smaller the acoustic impedance difference between the transducer and the coupling medium, the higher will be the transmission of acoustic energy across the interface. The acoustic impedance of water is significantly less than 9 times lower than the acoustic impedance of an air-filled transducer, allowing improved acoustic transmission with the air-filled transducer compared with transducers in existing practice.
Oakley (PCT patent publication WO90/16087) discloses a piezoelectric device with air-filled kerf. However, Oakley's manufacturing method is to bond the piezoelectric elements directly to electrodes. While this method may be applicable to large piezoelectric posts within an element, it is clearly not possible to bond a micron-sized post to an electrode without support of some kind of matrix.
Bhardwaj (U.S. Pat. No. 7,125,468) discloses a gas matrix composite transducer, but the manufacturing method requires the rods to be mechanically stable enough to be placed in rows on sheets of adhesive. Another layer of fabric or adhesive material is placed to separate the next row of rods, until a stack is created. The stack is plated and then the separating layers are removed to create a gas filled matrix. This method requires the rods be at the proper length and their physical location in relation to the neighboring posts to be very accurate. However, it should be noted that at ultrasound operating frequencies in present use, rod separation of as little as 15 microns is required. Achieving accurate placement of rods with such small separation is clearly very difficult and Bhardwaj's method will not be manufacturable.
Therefore there exists a need to provide a manufacturable method of making ultrasonic transducers having filler material which is as close as possible to air only.
Accordingly, it is a general objective of the present disclosure to provide an ultrasonic probe transducer with a filler that is nearly true air-filled and a manufacturing method thereof, wherein the transducer and the manufacturing method are suitable for micron-sized structures.
It is further an objective of the present disclosure to provide a nearly true air-filled ultrasonic probe array transducer in which acoustic performance is improved by reducing lateral mode resonances and reducing acoustic crosstalk.
It is further an objective of the present disclosure to provide a nearly true air-filled ultrasonic probe array transducer which has better performance at elevated temperature.
It is further an objective of the present disclosure to provide a nearly true air-filled ultrasonic probe array transducer which has lower acoustic impedance.
It is further an objective of the present disclosure to provide a filler material which may be customized to be more rigid or flexible depending on the application.
These objectives are achieved by utilizing a filler which is a precursor of an aerogel type material that has the mechanical properties required to stabilize the ceramic posts in place. After filling, the aerogel precursor may be dried either using evaporative (sub-critical) drying or using the technology of supercritical drying. After drying, the ceramic posts are supported by filler material with a low density, high strength dendritic microstructure which closely approximates all the desirable properties of air.
In
In a piezoelectric composite array according to the present disclosure, the rigid epoxy filler material of existing practice is replaced by an aerogel material. An aerogel is a synthetic porous ultralight material (density less than 10 mg/cm3) which is derived from a gel in which the liquid component of the gel has been replaced with a gas. Aerogels created from silica, carbon and metal oxide are known in the art.
Silica aerogels are typically synthesized using a sol-gel process or homogenous solution, in which a colloidal suspension of solid particles (“sol”) is hydrolyzed to form a gel having a jellylike consistency. The gel has a liquid component which contains a network of solid bridge material linking the colloidal particles. Finally, during the drying process of the aerogel, the liquid surrounding the network is carefully removed and replaced with air, while keeping the aerogel intact. The resulting aerogel filler material may comprise greater than 96% air. However the remaining micro-dendritic structure within the filler provides stabilization of the micron-sized posts of piezoelectric ceramic.
An aerogel may be dried either using evaporative (sub-critical) drying or using the technology of supercritical drying. Supercritical drying is used in cases where evaporative or subcritical drying would cause the aerogel structure to collapse on itself due to internal stresses caused by surface tension of the liquid-gas interface. Supercritical drying allows creation of lower density (higher porosity) aerogels, but usually requires high pressure and multiple solvents. Subcritical or evaporative drying is typically used for higher compressive strength aerogels or aerogels that need enhanced hydrophobicity. Subcritical or evaporative drying requires multiple solvents and specialized preparations and may create slightly higher density aerogels than supercritical drying. However, aerogels having porosity as high as 95% may be produced.
Supercritical drying, also known as critical point drying, may be used to achieve aerogels with high porosity and low density. In supercritical drying, the liquid in the aerogel is replaced by a carrier fluid which is forced into a supercritical fluid state by increasing the temperature and pressure. By subsequently dropping the pressure, the carrier fluid is instantly gasified and thereby removed from the aerogel.
Aerogels which may be suitable for the above manufacturing process include, but are not limited to the following:
.001 to 0.35 g/cm3
Table 1 compares the properties of a commonly used filler epoxy in current practice (Epo-Tek 301) with the range of properties exhibited by silica aerogels. Of particular note is the low density of the aerogel, the low sound velocity and the high continuous operating temperature and degradation temperature. The aerogel properties shown in Table 1 are particularly desirable for use as a filler material.
Although the present invention has been described in relation to particular embodiments thereof, it can be appreciated that various designs can be conceived based on the teachings of the present disclosure, and all are within the scope of the present disclosure.
This application claims the benefit and priority of U.S. Provisional patent application Ser. No. 62/565,326 filed Sep. 29, 2017 entitled ULTRASONIC MATRIX COMPOSITE TRANSDUCER USING AEROGEL AS FILLER MATERIAL, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62565326 | Sep 2017 | US |