The present disclosure relates generally to systems for ultrasonically mixing various phases to prepare an emulsion. More particularly an ultrasonic mixing system is disclosed for ultrasonically mixing at least a first phase and a second phase to prepare an emulsion. The ultrasonic mixing system can be used to prepare emulsions that include salts and that have low levels of surfactants.
Many currently used products consist of one or more emulsions. Specifically, there is a large array of cosmetic emulsions utilized for application of skin health benefits to the skin, hair, and body of a user. Additionally, many other emulsions are used to provide benefits to inanimate objects such as, for example, cleaning countertops, glass, and the like. Generally, emulsions consist of a dispersed phase and a continuous phase and are generally formed with the addition of a surfactant or a combination of surfactants with varying hydrophilic/lipophilic balances (HLB). Although emulsions are useful, current mixing procedures have multiple problems, which can waste time, energy, and money for manufacturers of these emulsions.
Specifically, emulsions are currently prepared in a batch-type process, either by a cold mix or a hot mix procedure. The cold mix procedure generally consists of multiple ingredients or phases being added into a kettle in a sequential order with agitation being applied via a blade, baffles, or a vortex. The hot mix procedure is conducted similarly to the cold mix procedure with the exception that the ingredients or phases are generally heated above room temperature, for example to temperatures of from about 40 to about 100° C., prior to mixing, and are then cooled back to room temperature after the ingredients and phases have been mixed. In both procedures, the various phases are added manually by one of a number of methods including dumping, pouring, and/or sifting.
These conventional methods of mixing phases into emulsions have several problems. For example, as noted above, all phases are manually added in a sequential order. Prior to adding the phases, the ingredients for each phase need to be weighed, which can create human error. Specifically, as the ingredients need to be weighed one at a time, misweighing can occur with the additive amounts. Furthermore, by manually adding the ingredients, there is a risk of spilling or of incomplete transfers of the ingredients from one container to the next.
One other major issue with conventional methods of mixing phases to prepare emulsions is that batching processes (e.g., cold and hot mix procedures described above) require heating times, mixing times, and additive times that are entirely manual and left up to the individual compounders to follow the instructions. These practices can lead to inconsistencies from batch-to-batch and from compounder to compounder. Furthermore, these procedures required several hours to complete, which can get extremely expensive.
Based on the foregoing, there is a need in the art for a mixing system that provides ultrasonic energy to enhance the mixing of two or more phases into emulsions. Furthermore, it would be advantageous if the system could be configured to enhance the cavitation mechanism of the ultrasonics, thereby increasing the probability that the phases will be effectively mixed to form the emulsions. There is also a need in the art for a system that forms stable emulsions that include salts, but require little to no surfactant. Further, there is a need in the art for a system capable of forming stable emulsions with low ratios of the amount of surfactant component to the amount of oil components.
In one aspect, an ultrasonic mixing system for mixing at least two phases to prepare an emulsion generally comprises a treatment chamber comprising an elongate housing having longitudinally opposite ends and an interior space. The housing is generally closed at least one of its longitudinal ends and has at least a first inlet port for receiving at least a first phase into the interior space of the housing, and a second inlet port for receiving at least a second phase into the interior space of the housing, and at least one outlet port through which an emulsion is exhausted from the housing following ultrasonic mixing of the first and second phases. The outlet port is spaced longitudinally from the first and second inlet ports such that liquid (i.e., first and/or second phases) flows longitudinally within the interior space of the housing from the first and second inlet ports to the outlet port. In one embodiment, the housing includes more than two separate ports for receiving additional phases to be mixed to prepare the emulsion. At least one elongate ultrasonic waveguide assembly extends longitudinally within the interior space of the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize and mix the first and second phases (and any additional phases) flowing within the housing.
The waveguide assembly generally comprises an elongate ultrasonic horn disposed at least in part intermediate the first and second inlet ports and the outlet port of the housing and has an outer surface located for contact with the first and second phases flowing within the housing from the first and second inlet ports to the outlet port. A plurality of discrete agitating members are in contact with and extend transversely outward from the outer surface of the horn intermediate the first and second inlet ports and the outlet port in longitudinally spaced relationship with each other. The agitating members and the horn are constructed and arranged for dynamic motion of the agitating members relative to the horn upon ultrasonic vibration of the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the first and second phases being mixed within the chamber.
As such the present disclosure is directed to an ultrasonic mixing system for preparing an emulsion. The mixing system comprises a treatment chamber comprising an elongate housing having longitudinally opposite ends and an interior space, and an elongate ultrasonic waveguide assembly extending longitudinally within the interior space of the housing and being operable at a predetermined ultrasonic frequency to ultrasonically energize and mix a first and a second phase flowing within the housing to prepare the emulsion. The housing is closed at least one of its longitudinal ends and has at least a first inlet port for receiving a first phase into the interior space of the housing, and a second inlet port for receiving a second phase into the interior space of the housing, and at least one outlet port through which an emulsion is exhausted from the housing following ultrasonic mixing of the first and second phases. The outlet port is spaced longitudinally from the first and second inlet ports such that the first and second phases flow longitudinally within the interior space of the housing from the first and second inlet ports to the outlet port.
The waveguide assembly comprises an elongate ultrasonic horn disposed at least in part intermediate the first and second inlet ports and the outlet port of the housing and having an outer surface located for contact with the first and second phases flowing within the housing from the first and second inlet ports to the outlet port. Additionally, the waveguide assembly comprises a plurality of discrete agitating members in contact with and extending transversely outward from the outer surface of the horn intermediate the first and second inlet ports and the outlet port in longitudinally spaced relationship with each other. The agitating members and the horn are constructed and arranged for dynamic motion of the agitating members relative to the horn upon ultrasonic vibration of the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the first and second phases being mixed in the chamber.
The present invention is further directed to an ultrasonic mixing system for preparing an oil-in-water emulsion. The mixing system comprises a treatment chamber comprising an elongate housing having longitudinally opposite ends and an interior space, and an elongate ultrasonic waveguide assembly extending longitudinally within the interior space of the housing and being operable at a predetermined ultrasonic frequency to ultrasonically energize and mix an oil phase and a water phase flowing within the housing. The housing is generally closed at least one of its longitudinal ends and has at least a first inlet port for receiving the oil phase into the interior space of the housing, and a second inlet port for receiving the water phase into the interior space of the housing, and at least one outlet port through which an oil-in-water emulsion is exhausted from the housing following ultrasonic mixing of the oil phase and water phase. The outlet port is spaced longitudinally from the first and second inlet ports such that the oil and water phases flow longitudinally within the interior space of the housing from the first and second inlet ports to the outlet port.
The waveguide assembly comprises an elongate ultrasonic horn disposed at least in part intermediate the first and second inlet ports and the outlet port of the housing and having an outer surface located for contact with the oil and water phases flowing within the housing from the first and second inlet ports to the outlet port; a plurality of discrete agitating members in contact with and extending transversely outward from the outer surface of the horn intermediate the first and second inlet ports and the outlet port in longitudinally spaced relationship with each other; and a baffle assembly disposed within the interior space of the housing and extending at least in part transversely inward from the housing toward the horn to direct longitudinally flowing oil and water phases in the housing to flow transversely inward into contact with the agitating members. The agitating members and the horn are constructed and arranged for dynamic motion of the agitating members relative to the horn upon ultrasonic vibration of the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the oil phase and water phase being mixed in the chamber.
The ultrasonic mixing system of the invention can be used to form emulsions that previously could not be formed and remain stable. Such emulsions include components that are believed to prevent the formation of stable emulsions, such as salts or other electrolytes. At the same time, the emulsions contain little to no surfactant components, that are known to enhance the stability of the emulsion. Therefore, the ultrasonic mixing system of the invention permits formation of emulsions that include salts and little to no surfactants. The ultrasonic mixing system of the invention also permits formation of stable emulsions including difficult to blend ingredients, such as dimethicone, with low levels or no surfactants. Such emulsions have utility for various applications, including use as the cleansing solution applied to the base sheet of a wet wipe product that may be used in conjunction with a personal care absorbent article, such as an incontinence article, or during use of a bathroom. Wet wipes saturated with such emulsions are capable of effective cleaning with reduced irritation to the skin of the person with whom the wet wipe is being used. Additionally, such emulsions can be used to improve the strength of dispersible base sheets used as wet wipe products while providing a composition having isotonic saline levels similar to the chemistry of skin.
The ultrasonic mixing system can be used to form emulsions having a salt content of at least 1%. The ultrasonic mixing system can also be used to form emulsions having even higher salt contents of at least 2%, at least 5% or at least 10% where the emulsions remain stable and do not separate into their original components.
In addition to providing the capability to form stable emulsions including components that are typically thought to de-stabilize emulsions, the ultrasonic mixing system of the invention also enables the formation of such emulsions with little to no surfactant being present. Those of skill in the art understand surfactants to provide stability to multiple-phase emulsions that have been formed. While stable emulsions containing one or more salt components were not previously thought possible, the system of the invention permits their formation with little to no (zero) surfactant being present.
The ultrasonic mixing system of the invention also permits the formation of stable emulsions having low levels to no surfactant—whether a salt component is present or not. The presence of surfactant can be assessed as a ratio between the amount of surfactant and the relative amount of oil phase component(s). Emulsions formed using the ultrasonic mixing system of the invention can have a surfactant:oil ratio of 1:15 (that is, one part (by weight) surfactant component(s) to fifteen parts (by weight) oil component(s)). Therefore, there are at least 15 parts (by weight) of oil component(s) to one part (by weight) of surfactant. Such a ratio represents a very low level of surfactant. Similarly, emulsions can be formed having a surfactant:oil ratio of 1:25, a surfactant:oil ratio of 1:50 or a surfactant:oil ratio of 1:100 using the ultrasonic mixing system of the invention. These ratios of surfactant:oil can also be used with emulsions having salt contents of at least 1%, at least 2%, at least 5% or at least 10%. Such emulsions with low levels of emulsion relative to the amount of oil components and having relatively high salt contents remain stable and do not separate into their original components.
The present disclosure is further directed to a method for preparing an emulsion using the ultrasonic mixing system described above. The method comprises delivering the first phase via the first inlet port into the interior space of the housing; delivering the second phase via the second inlet port into the interior space of the housing; and ultrasonically mixing the first and second phases via the elongate ultrasonic waveguide assembly operating in the predetermined ultrasonic frequency.
Other features of the present disclosure will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
With particular reference now to
It is generally believed that as ultrasonic energy is created by the waveguide assembly, increased cavitation of the phases occurs, creating microbubbles. As these microbubbles then collapse, the pressure within the chamber is increased forcibly mixing the various phases to form an emulsion.
The terms “liquid” and “emulsion” are used interchangeably to refer to a formulation comprised of two or more phases, typically one phase being a dispersed phase and one phase being a continuous phase. Furthermore, at least one of the phases is a liquid such as a liquid-liquid emulsion, a liquid-gas emulsion, or a liquid emulsion in which particulate matter is entrained, or other viscous fluids.
The ultrasonic mixing system 121 is illustrated schematically in
In one particularly preferred embodiment, as illustrated in
The terms “upper” and “lower” are used herein in accordance with the vertical orientation of the treatment chamber 151 illustrated in the various drawings and are not intended to describe a necessary orientation of the chamber in use. That is, while the chamber 151 is most suitably oriented vertically, with the outlet end 127 of the chamber above the inlet end 125 as illustrated in the drawing, it should be understood that the chamber may be oriented with the inlet end above the outlet end and the two phases are mixed as they travel downward through the chamber, or it may be oriented other than in a vertical orientation and remain within the scope of this disclosure.
The terms “axial” and “longitudinal” refer directionally herein to the vertical direction of the chamber 151 (e.g., end-to-end such as the vertical direction in the illustrated embodiment of
The inlet end 125 of the treatment chamber 151 is typically in fluid communication with at least one suitable delivery system that is operable to direct one phase to, and more suitably through, the chamber 151. More specifically, as illustrated in
It is understood that the delivery systems 128, 129 may be configured to deliver more than one phase to the treatment chamber 151 without departing from the scope of this disclosure. It is also contemplated that delivery systems other than that illustrated in
The treatment chamber 151 comprises a housing defining an interior space 153 of the chamber 151 through which at least two phases delivered to the chamber 151 flow from the inlet end 125 to the outlet end 127 thereof. The chamber housing 151 suitably comprises an elongate tube 155 generally defining, at least in part, a sidewall 157 of the chamber 151. The tube 155 may have one or more inlet ports (two inlet ports are generally indicated in
It should also be recognized by one skilled in the art that, while preferably the inlet ports are disposed in close proximity to one another in the inlet end, the inlet ports may be spaced farther along the sidewall of the chamber from one another (see
Referring back to
In the illustrated embodiment of
A waveguide assembly, generally indicated at 203, extends longitudinally at least in part within the interior space 153 of the chamber 151 to ultrasonically energize the phases (and their resulting-emulsions) flowing through the interior space 153 of the chamber 151. In particular, the waveguide assembly 203 of the illustrated embodiment extends longitudinally from the lower or inlet end 125 of the chamber 151 up into the interior space 153 thereof to a terminal end 113 of the waveguide assembly disposed intermediate the inlet port (e.g., inlet port 156 where it is present) and outlet port (e.g., outlet port 165 where it is present). Although illustrated in
Still referring to
The waveguide assembly 203, and more particularly the booster is suitably mounted on the chamber housing 151, e.g., on the tube 155 defining the chamber sidewall 157, at the upper end thereof by a mounting member (not shown) that is configured to vibrationally isolate the waveguide assembly (which vibrates ultrasonically during operation thereof) from the treatment chamber housing. That is, the mounting member inhibits the transfer of longitudinal and transverse mechanical vibration of the waveguide assembly 203 to the chamber housing 151 while maintaining the desired transverse position of the waveguide assembly (and in particular the horn assembly 133) within the interior space 153 of the chamber housing and allowing both longitudinal and transverse displacement of the horn assembly within the chamber housing. The mounting member also at least in part (e.g., along with the booster, lower end of the horn assembly) closes the inlet end 125 of the chamber 151. Examples of suitable mounting member configurations are illustrated and described in U.S. Pat. No. 6,676,003, the entire disclosure of which is incorporated herein by reference to the extent it is consistent herewith.
In one particularly suitable embodiment the mounting member is of single piece construction. Even more suitably the mounting member may be formed integrally with the booster (and more broadly with the waveguide assembly 203). However, it is understood that the mounting member may be constructed separately from the waveguide assembly 203 and remain within the scope of this disclosure. It is also understood that one or more components of the mounting member may be separately constructed and suitably connected or otherwise assembled together.
In one suitable embodiment, the mounting member is further constructed to be generally rigid (e.g., resistant to static displacement under load) so as to hold the waveguide assembly 203 in proper alignment within the interior space 153 of the chamber 151. For example, the rigid mounting member in one embodiment may be constructed of a non-elastomeric material, more suitably metal, and even more suitably the same metal from which the booster (and more broadly the waveguide assembly 203) is constructed. The term “rigid” is not, however, intended to mean that the mounting member is incapable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 203. In other embodiments, the rigid mounting member may be constructed of an elastomeric material that is sufficiently resistant to static displacement under load but is otherwise capable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 203.
A suitable ultrasonic drive system 131 including at least an exciter (not shown) and a power source (not shown) is disposed exterior of the chamber 151 and operatively connected to the booster (not shown) (and more broadly to the waveguide assembly 203) to energize the waveguide assembly to mechanically vibrate ultrasonically. Examples of suitable ultrasonic drive systems 131 include a Model 20A3000 system available from Dukane Ultrasonics of St. Charles, Ill., and a Model 2000CS system available from Herrmann Ultrasonics of Schaumberg, Ill.
In one embodiment, the drive system 131 is capable of operating the waveguide assembly 203 at a frequency in the range of about 15 kHz to about 100 kHz, more suitably in the range of about 15 kHz to about 60 kHz, and even more suitably in the range of about 20 kHz to about 40 kHz. Such ultrasonic drive systems 131 are well known to those skilled in the art and need not be further described herein.
In some embodiments, however not illustrated, the treatment chamber can include more than one waveguide assembly having at least two horn assemblies for ultrasonically treating and mixing the phases together to prepare the emulsion. As noted above, the treatment chamber comprises a housing defining an interior space of the chamber through which the phases are delivered from an inlet end. The housing comprises an elongate tube defining, at least in part, a sidewall of the chamber. As with the embodiment including only one waveguide assembly as described above, the tube may have more than two inlet ports formed therein, through which at least two phases to be mixed within the chamber are delivered to the interior space thereof, and at least one outlet port through which the emulsion exits the chamber.
In such an embodiment, two or more waveguide assemblies extend longitudinally at least in part within the interior space of the chamber to ultrasonically energize and mix the phases (and resulting-emulsion) flowing through the interior space of the chamber. Each waveguide assembly separately includes an elongate horn assembly, each disposed entirely within the interior space of the housing intermediate the inlet ports and the outlet port for complete submersion within the phases being mixed within the chamber. Each horn assembly can be independently constructed as described more fully herein (including the horns, along with the plurality of agitating members and baffle assemblies).
Referring back to
In one embodiment (not shown), the agitating members 137 comprise a series of five washer-shaped rings that extend continuously about the circumference of the horn in longitudinally spaced relationship with each other and transversely outward from the outer surface of the horn. In this manner the vibrational displacement of each of the agitating members relative to the horn is relatively uniform about the circumference of the horn. It is understood, however, that the agitating members need not each be continuous about the circumference of the horn. For example, the agitating members may instead be in the form of spokes, blades, fins or other discrete structural members that extend transversely outward from the outer surface of the horn. For example, as illustrated in
By way of a dimensional example, the horn assembly 133 of the illustrated embodiment of
It is understood that the number of agitating members 137 (e.g., the rings in the illustrated embodiment) may be less than or more than five without departing from the scope of this disclosure. It is also understood that the longitudinal spacing between the agitating members 137 may be other than as illustrated in
In particular, the locations of the agitating members 137 are at least in part a function of the intended vibratory displacement of the agitating members upon vibration of the horn assembly 133. For example, in the illustrated embodiment of
In the illustrated embodiment of
It is understood that the horn 105 may be configured so that the nodal region is other than centrally located longitudinally on the horn member without departing from the scope of this disclosure. It is also understood that one or more of the agitating members 137 may be longitudinally located on the horn so as to experience both longitudinal and transverse displacement relative to the horn upon ultrasonic vibration of the horn 105.
Still referring to
As used herein, the ultrasonic cavitation mode of the agitating members refers to the vibrational displacement of the agitating members sufficient to result in cavitation (i.e., the formation, growth, and implosive collapse of bubbles in a liquid) of the emulsion being prepared at the predetermined ultrasonic frequency. For example, where at least one of the phases for the emulsion flowing within the chamber comprises an aqueous phase, and the ultrasonic frequency at which the waveguide assembly 203 is to be operated (i.e., the predetermined frequency) is about 20 kHZ, one or more of the agitating members 137 are suitably constructed to provide a vibrational displacement of at least 1.75 mils (i.e., 0.00175 inches, or 0.044 mm) to establish a cavitation mode of the agitating members. Similarly, when at least one of the phases for the emulsion is a hydrophobic phase (e.g., oil), and the ultrasonic frequency is about 20 kHz, one or more of the agitating members 137 are suitable constructed to provide a vibrational displacement of at least 1.75 mils. To establish a cavitation mode of the agitating members.
It is understood that the waveguide assembly 203 may be configured differently (e.g., in material, size, etc.) to achieve a desired cavitation mode associated with the particular emulsion to be prepare. For example, as the viscosity of the phases being mixed to prepare the emulsion changes, the cavitation mode of the agitating members may need to be changed.
In particularly suitable embodiments, the cavitation mode of the agitating members corresponds to a resonant mode of the agitating members whereby vibrational displacement of the agitating members is amplified relative to the displacement of the horn. However, it is understood that cavitation may occur without the agitating members operating in their resonant mode, or even at a vibrational displacement that is greater than the displacement of the horn, without departing from the scope of this disclosure.
In one suitable embodiment, a ratio of the transverse length of at least one and, more suitably, all of the agitating members to the thickness of the agitating member is in the range of about 2:1 to about 6:1. As another example, the rings each extend transversely outward from the outer surface 107 of the horn 105 a length of about 0.5 inches (12.7 mm) and the thickness of each ring is about 0.125 inches (3.2 mm), so that the ratio of transverse length to thickness of each ring is about 4:1. It is understood, however that the thickness and/or the transverse length of the agitating members may be other than that of the rings as described above without departing from the scope of this disclosure. Also, while the agitating members 137 (rings) may suitably each have the same transverse length and thickness, it is understood that the agitating members may have different thicknesses and/or transverse lengths.
In the above described embodiment, the transverse length of the agitating member also at least in part defines the size (and at least in part the direction) of the flow path along which the phases or other flowable components in the interior space of the chamber flows past the horn. For example, the horn may have a radius of about 0.875 inches (22.2 mm) and the transverse length of each ring is, as discussed above, about 0.5 inches (12.7 mm). The radius of the inner surface of the housing sidewall is approximately 1.75 inches (44.5 mm) so that the transverse spacing between each ring and the inner surface of the housing sidewall is about 0.375 inches (9.5 mm). It is contemplated that the spacing between the horn outer surface and the inner surface of the chamber sidewall and/or between the agitating members and the inner surface of the chamber sidewall may be greater or less than described above without departing from the scope of this disclosure.
In general, the horn 105 may be constructed of a metal having suitable acoustical and mechanical properties. Examples of suitable metals for construction of the horn 105 include, without limitation, aluminum, monel, titanium, stainless steel, and some alloy steels. It is also contemplated that all or part of the horn 105 may be coated with another metal such as silver, platinum, gold, palladium, lead dioxide, and copper to mention a few. In one particularly suitable embodiment, the agitating members 137 are constructed of the same material as the horn 105, and are more suitably formed integrally with the horn. In other embodiments, one or more of the agitating members 137 may instead be formed separate from the horn 105 and connected thereto.
While the agitating members 137 (e.g., the rings) illustrated in
As best illustrated in
Providing the illustrated buffer zone is particularly suitable where the chamber 151 is used for mixing phases together to form an emulsion as the longitudinal spacing between the terminal end 113 of the waveguide assembly 203 and the outlet port 165 of the chamber 151 provides sufficient space for the agitated flow of the mixed emulsion to generally settle prior to the emulsion exiting the chamber via the outlet port 127. This is particularly useful where, as in the illustrated embodiment, one of the agitating members 137 is disposed at or adjacent the terminal end of the horn 113. While such an arrangement leads to beneficial back-mixing of the emulsion as it flows past the terminal end of the horn 113, it is desirable that this agitated flow settle out at least in part before exiting the chamber. It is understood, though, that the terminal end 113 of the horn 105 may be nearer to the outlet end 127 than is illustrated in
Additionally, a baffle assembly, generally indicated at 245 is disposed within the interior space 153 of the chamber housing 151, and in particular generally transversely adjacent the inner surface 167 of the sidewall 157 and in generally transversely opposed relationship with the horn 105. In one suitable embodiment, the baffle assembly 245 comprises one or more baffle members 247 disposed adjacent the inner surface 167 of the housing sidewall 157 and extending at least in part transversely inward from the inner surface of the sidewall 167 toward the horn 105. More suitably, the one or more baffle members 247 extend transversely inward from the housing sidewall inner surface 167 to a position longitudinally intersticed with the agitating members 137 that extend outward from the outer surface 107 of the horn 105. The term “longitudinally intersticed” is used herein to mean that a longitudinal line drawn parallel to the longitudinal axis of the horn 105 passes through both the agitating members 137 and the baffle members 247. As one example, in the illustrated embodiment, the baffle assembly 245 comprises four, generally annular baffle members 247 (i.e., extending continuously about the horn 105) longitudinally intersticed with the five agitating members 237.
As a more particular example, the four annular baffle members 247 illustrated in
It will be appreciated that the baffle members 247 thus extend into the flow path of the phases (and resulting-emulsion) that flow within the interior space 153 of the chamber 151 past the horn 105 (e.g., within the ultrasonic treatment zone). As such, the baffle members 247 inhibit the phases from flowing along the inner surface 167 of the chamber sidewall 157 past the horn 105, and more suitably the baffle members facilitate the flow of the phases transversely inward toward the horn for flowing over the agitating members of the horn to thereby facilitate ultrasonic energization (i.e., agitation) of the phases to initiate mixing of the phases to form an emulsion.
In one embodiment, to inhibit gas bubbles against stagnating or otherwise building up along the inner surface 167 of the sidewall 157 and across the face on the underside of each baffle member 247, e.g., as a result of agitation of the phases within the chamber, a series of notches (broadly openings) may be formed in the outer edge of each of the baffle members (not shown) to facilitate the flow of gas (e.g., gas bubbles) between the outer edges of the baffle members and the inner surface of the chamber sidewall. For example, in one particularly preferred embodiment, four such notches are formed in the outer edge of each of the baffle members in equally spaced relationship with each other. It is understood that openings may be formed in the baffle members other than at the outer edges where the baffle members abut the housing, and remain within the scope of this disclosure. It is also understood, that these notches may number more or less than four, as discussed above, and may even be completely omitted.
It is further contemplated that the baffle members 247 need not be annular or otherwise extend continuously about the horn 105. For example, the baffle members 247 may extend discontinuously about the horn 105, such as in the form of spokes, bumps, segments or other discrete structural formations that extend transversely inward from adjacent the inner surface 167 of the housing sidewall 157. The term “continuously” in reference to the baffle members 247 extending continuously about the horn does not exclude a baffle member as being two or more arcuate segments arranged in end-to-end abutting relationship, i.e., as long as no significant gap is formed between such segments. Suitable baffle member configurations are disclosed in U.S. application Ser. No. 11/530,311 (filed Sep. 8, 2006), which is hereby incorporated by reference to the extent it is consistent herewith.
Also, while the baffle members 247 illustrated in
As described above, in some embodiments, the waveguide assembly may be inverted within the chamber. Specifically, as shown in
In one embodiment, although not illustrated, the ultrasonic mixing system may further comprise a filter assembly disposed at the outlet end of the treatment chamber. Many emulsions, when initially prepared, can contain one or more components within the various phases that attract one another and can clump together in large balls. Furthermore, many times, particles within the prepared emulsions can settle out over time and attract one another to form large balls; referred to as reagglomeration. As such, the filter assembly can filter out the large balls of particles that form within the emulsions prior to the emulsion being delivered to an end-product for consumer use. Specifically, the filter assembly is constructed to filter out particles sized greater than about 0.2 microns.
Specifically, in one particularly preferred embodiment, the filter assembly covers the inner surface of the outlet port. The filter assembly includes a filter having a pore size of from about 0.5 micron to about 20 microns. More suitably, the filter assembly includes a filter having a pore size of from about 1 micron to about 5 microns, and even more suitably, about 2 microns. The number and pour size of filters for use in the filter assembly will typically depend on the formulation (and its components) to be mixed within the treatment chamber.
A degasser may also be included in the ultrasonic mixing system. For example, once the prepared emulsion exits the treatment chamber, the emulsion flows into a degasser in which excess gas bubbles are removed from the emulsion prior to the emulsion being used into a consumer end-products, such as a cosmetic formulation.
One particularly preferred degasser is a continuous flow gas-liquid cyclone separator, such as commercially available from NATCO (Houston, Tex.). It should be understood by a skilled artisan, however, that any other system that separates gas from an emulsion by centrifugal action can suitably be used without departing from the present disclosure.
In operation according to one embodiment of the ultrasonic mixing system of the present disclosure, the mixing system (more specifically, the treatment chamber) is used to mix two or more phases together to form an emulsion. Specifically, at least a first phase is delivered (e.g., by the pumps described above) via conduits to a first inlet port formed in the treatment chamber housing and a second phase is delivered (e.g., by the pumps described above) via separate conduits to a second inlet port formed in the treatment chamber housing. The phases can be any suitable phases for forming emulsions known in the art. Suitable phases can include, for example, an oil phase, a water phase, a silicone phase, a glycol phase, and combinations thereof. When mixed in various combinations, the phases form emulsions such as oil-in-water emulsions, water-in-oil emulsions, water-in-oil-in-water emulsions, oil-in-water-in-oil emulsions, water-in-silicone emulsions, water-in-silicone-in-water emulsions, glycol-in-silicone emulsion, high internal phase emulsions, hydrogels, and the like. High internal phase emulsions are well known in the art and typically refer to emulsions having from about 70% (by total weight emulsion) to about 80% (by total weight emulsion) of an oil phase. Furthermore, as known by one skilled in the art, “hydrogel” typically refers to a hydrophilic base that is thickened with rheology modifiers and or thickeners to form a gel. For example a hydrogel can be formed with a base consisting of water that is thickened with a carbomer that has been neutralized with a base.
Without being limited, the present disclosure will describe a method of preparing an oil-in-water emulsion using the ultrasonic mixing system as described herein. It should be recognized that while described in terms of preparing an oil-in-water emulsion, any of the above-listed emulsions may be prepared using the general process described without departing from the scope of the present disclosure. Generally, the method for preparing the oil-in-water emulsion includes: delivering a first phase (i.e., an oil phase) via a first inlet port into the interior space of the treatment chamber housing and a second phase (i.e., a water phase) via a second inlet port into the interior space of the treatment chamber housing. Typically, as described more fully above, the first and second inlet ports are disposed in parallel along the sidewall of the treatment chamber housing. In an alternative embodiment, the first and second inlet ports are disposed on opposite sidewalls of the treatment chamber housing. While described herein as having two inlet ports, it should be understood by one skilled in the art that more than two inlet ports can be used to deliver the various phases to be mixed without departing from the scope of the present disclosure.
Particularly preferred oil-in-water emulsions can be prepared with an oil phase including from about 0.1% (by total weight of oil phase) to about 99% (by total weight of oil phase) oil. More suitably, the oil phase includes from about 1% (by total weight of oil phase) to about 80% (by total weight of oil phase) oil and, even more suitably, from about 5% (by total weight of oil phase) to about 50% (by total weight of oil phase) oil. The oils can be natural oil, synthetic oils, and combinations thereof.
The term “natural oil” is intended to include oils, essential oils, and combinations thereof. Suitable oils include Apricot Kernel Oil, Avocado Oil, Babassu Oil, Borage Seed Oil, Camellia Oil, Canola Oil, Carrot Oil, Cashew Nut Oil, Castor Oil, Cherry Pit Oil, Chia Oil, Coconut Oil, Cod Liver Oil, Corn Germ Oil, Corn Oil, Cottonseed Oil, Egg Oil, Epoxidized Soybean Oil, Evening Primrose Oil, Grape Seed Oil, Hazelnut Oil, Hybrid Safflower Oil, Hybrid Sunflower Seed Oil, Hydrogenated Castor Oil, Hydrogenated Castor Oil Laurate, Hydrogenated Coconut Oil, Hydrogenated Cottonseed Oil, Hydrogenated Fish Oil, Hydrogenated Menhaden Oil, Hydrogenated Mink Oil, Hydrogenated Orange Roughy Oil, Hydrogenated Palm Kernel Oil, Hydrogenated Palm Oil, Hydrogenated Peanut Oil, Hydrogenated Shark Liver Oil, Hydrogenated Soybean Oil, Hydrogenated Vegetable Oil, Lanolin and Lanolin Derivatives, Lesquerella Oil, Linseed Oil, Macadamia Nut Oil, Maleated Soybean Oil, Meadowfoam Seed Oil, Menhaden Oil, Mink Oil, Moringa Oil, Mortierella Oil, Neatsfoot Oil, Olive Husk Oil, Olive Oil, Orange Roughy Oil, Palm Kernel Oil, Palm Oil, Peach Kernel Oil, Peanut Oil, Pengawar Djambi Oil, Pistachio Nut Oil, Rapeseed Oil, Rice Bran Oil, Safflower Oil, Sesame Oil, Shark Liver Oil, Soybean Oil, Sunflower Seed Oil, Sweet Almond Oil, Tall Oil, Vegetable Oil, Walnut Oil, Wheat Bran Lipids, Wheat Germ Oil, Zadoary Oil, oil extracts of various other botanicals, and other vegetable or partially hydrogenated vegetable oils, and the like, as well as mixtures thereof.
Suitable essential oils include Anise Oil, Balm Mint Oil, Basil Oil, Bee Balm Oil, Bergamot Oil, Birch Oil, Bitter Almond Oil, Bitter Orange Oil, Calendula Oil, California Nutmeg Oil, Caraway Oil, Cardamom Oil, Chamomile Oil, Cinnamon Oil, Clary Oil, Cloveleaf Oil, Clove Oil, Coriander Oil, Cypress Oil, Eucalyptus Oil, Fennel Oil, Gardenia Oil, Geranium Oil, Ginger Oil, Grapefruit Oil, Hops Oil, Hyptis Oil, Indigo Bush Oil, Jasmine Oil, Juniper Oil, Kiwi Oil, Laurel Oil, Lavender Oil, Lemongrass Oil, Lemon Oil, Linden Oil, Lovage Oil, Mandarin Orange Oil, Matricaria Oil, Musk Rose Oil, Nutmeg Oil, Olibanum, Orange Flower Oil, Orange Oil, Patchouli Oil, Pennyroyal Oil, Peppermint Oil, Pine Oil, Pine Tar Oil, Rose Hips Oil, Rosemary Oil, Rose Oil, Rue Oil, Sage Oil, Sambucus Oil, Sandalwood Oil, Sassafras Oil, Silver Fir Oil, Spearmint Oil, Sweet Marjoram Oil, Sweet Violet Oil, Tar Oil, Tea Tree Oil, Thyme Oil, Wild Mint Oil, Yarrow Oil, Ylang Ylang Oil, and the like, as well as mixtures thereof.
Some preferred natural oils include, but are not limited to Avocado Oil, Apricot Oil, Babassu Oil, Borage Oil, Camellia oil, Canola oil, Castor Oil, Coconut oil, Corn Oil, Cottonseed Oil, Evening Primrose Oil, Hydrogenated Cottonseed Oil, Hydrogenated Palm Kernel Oil, Maleated Soybean Oil, Meadowfoam Oil, Palm Kernel Oil, Phospholipids, Rapeseed Oil, Rose Hip Oil, Sunflower Oil, Soybean Oil, and the like, as well as mixtures thereof.
The term “synthetic oil” is intended to include synthetic oils, esters, silicones, other emollients, and combinations thereof. Examples of suitable synthetic oils include petrolatum and petrolatum based oils, mineral oils, mineral jelly, isoparaffins, polydimethylsiloxanes such as methicone, cyclomethicone, dimethicone, dimethiconol, trimethicone, alkyl dimethicones, alkyl methicones, alkyldimethicone copolyols, organo-siloxanes (i.e., where the organic functionality can be selected from alkyl, phenyl, amine, polyethylene glycol, amine-glycol, alkylaryl, carboxal, and the like), silicones such as silicone elastomer, phenyl silicones, alkyl trimethylsilanes, dimethicone crosspolymers, cyclomethicone, gums, resins, fatty acid esters (esters of C6-C28 fatty acids and C6-C28 fatty alcohols), glyceryl esters and derivatives, fatty acid ester ethoxylates, alkyl ethoxylates, C12-C28 fatty alcohols, C12-C28 fatty acids, C12-C28 fatty alcohol ethers, propylene glycol esters and derivatives, alkoxylated carboxylic acids, alkoxylated alcohols, fatty alcohols, Guerbet alcohols, Guerbet Acids, Guerbet Esters, and other cosmetically acceptable emollients.
Specific examples of suitable esters may include, but are not limited to, cetyl palmitate, stearyl palmitate, cetyl stearate, isopropyl laurate, isopropyl myristate, isopropyl palmitate, and combinations thereof.
In addition to the oil, the oil phase of the oil-in-water emulsion may further include one or more surfactants and/or antioxidants. It should be recognized, however, that the oil phase may not contain a surfactant/antioxidant without departing from the scope of the present disclosure. Furthermore, due to the cavitation produced with the ultrasonic treatment system, when surfactants are used, less surfactant needs to be added. While described herein in the oil phase, it should be recognized by one skilled in the art, that one or more surfactants can be added to the water phase in addition to or as an alternative to being added to the oil phase without departing from the scope of the present disclosure.
As noted above, emulsions are typically prepared using surfactants as the surfactants may contribute to the overall cleansing, emulsification properties of the emulsion. Additionally, the surfactants may be utilized to provide emulsions that are mild to the skin and have a low likelihood of stripping essential oils from the user, thereby creating irritation. Preferably, the oil phase contains from about 0.1% (by total weight oil phase) to about 20% (by total weight oil phase) surfactant. More suitably, the oil phase contains from about 1% (by total weight oil phase) to about 15% (by total weight oil phase) surfactant and, even more suitably, from about 2% (by total weight oil phase) to about 10% (by total weight oil phase) surfactant. Similarly, it is preferable for the overall composition to contain from 0.1% (by total weight) to 20% (by total weight) of surfactant. More suitably, the composition contains from 1% (by total weight) to 15% (by total weight) surfactant and, even more suitably, from 2% (by total weight) to 10% (by total weight) surfactant.
Suitable surfactants can be nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and combinations thereof. Suitable anionic surfactants include, for example, alkyl sulfates, alkyl ether sulfates, alkyl aryl sulfonates, alpha-olefin sulfonates, alkali metal or ammonium salts of alkyl sulfates, alkali metal or ammonium salts of alkyl ether sulfates, alkyl phosphates, silicone phosphates, alkyl glyceryl sulfonates, alkyl sulfosuccinates, alkyl taurates, acyl taurates, alkyl sarcosinates, acyl sarcosinates, sulfoacetates, alkyl phosphate esters, mono alkyl succinates, monoalkyl maleates, sulphoacetates, acyl isethionates, alkyl carboxylates, phosphate esters, sulphosuccinates (e.g., sodium dioctylsulphosuccinate), and combinations thereof. Specific examples of anionic surfactants include sodium lauryl sulphate, sodium lauryl ether sulphate, ammonium lauryl sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauroyl isethionate, sodium N-lauryl sarcosinate, and combinations thereof.
Suitable cationic surfactants include, for example, alkyl ammonium salts, polymeric ammonium salts, alkyl pyridinium salts, aryl ammonium salts, alkyl aryl ammonium salts, silicone quaternary ammonium compounds, and combinations thereof. Specific examples of cationic surfactants include behenyltrimonium chloride, stearlkonium chloride, distearalkonium chloride, chlorohexidine diglutamate, polyhexamethylene biguanide (PHMB), cetyl pyridinium chloride, benzammonium chloride, benzalkonium chloride, palmitamidopropyltrimonium chloride and combinations thereof.
Suitable amphoteric surfactants include, for example, betaines, alkylamido betaines, sulfobetaines, N-alkyl betaines, sultaines, amphoacetates, amophodiacetates, imidazoline carboxylates, sarcosinates, acylamphoglycinates, such as cocamphocarboxyglycinates and acylamphopropionates, and combinations thereof. Specific examples of amphoteric surfactants include cocamidopropyl betaine, lauramidopropyl betaine, meadowfoamamidopropyl betaine, sodium cocoyl sarcosinate, sodium cocamphoacetate, disodium cocoamphodiacetate, ammonium cocoyl sarcosinate, sodium cocoamphopropionate, and combinations thereof.
Suitable zwitterionic surfactants include, for example, alkyl amine oxides, silicone amine oxides, and combinations thereof. Specific examples of suitable zwitterionic surfactants include, for example, 4-[N,N-di(2-hydroxyethyl)-N-octadecylammonio]-butane-1-carboxylate, S—[S-3-hydroxypropyl-5-hexadecylsulfonio]-3-hydroxypentane-1-sulfate, 3-[P,P-diethyl-P-3,6,9-trioxatetradexopcylphosphonio]-2-hydroxypropane-1-phosphate, 3-[N,N-dipropyl-N-3-dodecoxy-2-hydroxypropylammonio]-propane-1-phosphonate, 3-(N,N-dimethyl-N-hexadecylammonio)propane-1-sulfonate, 3-(N,N-dimethyl-N-hexadecylammonio)-2-hydroxypropane-1-sulfonate, 4-[N,N-di(2-hydroxyethyl)-N-(2-hydroxydodecyl)ammonio]-butane-1-carboxylate, 3-[S-ethyl-S-(3-dodecoxy-2-hydroxypropyl)sulfonio]-propane-1-phosphate, 3-[P,P-dimethyl-P-dodecylphosphonio]-propane-1-phosphonate, 5-[N,N-di(3-hydroxypropyl)-N-hexadecylammonio]-2-hydroxy-pentane-1-sulfate, and combinations thereof.
Suitable non-ionic surfactants include, for example, mono- and di-alkanolamides such as, for example, cocamide MEA and cocamide DEA, amine oxides, alkyl polyglucosides, ethoxylated silicones, ethoxylated alcohols, ethoxylated carboxylic acids, ethoxylated amines, ethoxylated amides, ethoxylated alkylolamides, ethoxylated alkylphenols, ethoxylated glyceryl esters, ethoxylated sorbitan esters, ethoxylated phosphate esters, glycol stearate, glyceryl stearate, and combinations thereof.
Additionally, the oil phase may include one or more antioxidants. Suitable antioxidants include, for example, BHT, BHA, Vitamin E, ceramide or ceramide derivatives, such as glucosylceramides, acylceramide, bovine ceramides, sphingolipid E, and combinations thereof.
Additionally, the oil-in-water emulsion includes a water phase having from about 0.1% (by total weight of the composition) to about 99% (by total weight of the composition) water, and a balance of components including humectants, chelating agents, and preservatives. Suitable humectants may include glycerin, glycerin derivatives, sodium hyaluronate, betaine, amino acids, glycosaminoglycans, honey, sorbitol, glycols, polyols, sugars, hydrogenated starch hydrolysates, salts of PCA, lactic acid, lactates, and urea. A particularly preferred humectant is glycerin.
Chelating agents may act to enhance preservative efficacy, and bind metals that could discolor the emulsion or hinder emulsion stability. Suitable chelating agents include, for example, disodium ethylenediamine tetraacetic acid (EDTA), commercially available from the Dow Chemical Company under the name VERSENE Na2.
Additionally, as noted above, the water phase may include one or more preservatives. Suitable preservatives include, for example, the lower alkyl esters of para-hydroxybenzoates such as methylparaben, propylparaben, isobutylparaben, and mixtures thereof, benzyl alcohol, DMDM Hydantoin, and benzoic acid.
In one embodiment, the phases are mixed with one or more thickeners to provide a thicker emulsion. Specifically, when the emulsion is a hydrogel, basic pH adjusters, such as sodium hydroxide, are preferably used to thicken the emulsion.
A variety of thickeners may be used in the phases described herein. In one embodiment, the thickener may be a cellulosic thickener or gum. Examples of suitable cellulosic or gum thickeners include xanthan gum, agar, alginates, carrageenan, furcellaran, guar, cationic guar, gum arabic, gum tragacanth, karaya gum, locust bean gum, dextran, starch, modified starches, gellan gum, carboxymethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, propylene glycol alginate, hydroxypropyl guar, amylopectin, cellulose gum, chitosan, modified chitosan, hydroxypropyl methylcellulose, microcrystalline cellulose, silica, fumed silica, colloidal silica, dehydroxanthan gum, non-acrylic based carbomers, and combinations thereof.
Alternately or in addition, the thickener may be an acrylic based polymer. Non-limiting examples of suitable acrylic based polymer thickeners include acrylates/C10-C30 alkyl acrylate crosspolymers, certain carbomers, acrylates copolymers, aminoacrylates copolymers, and combinations thereof. Examples of commercially available acrylic based polymer thickeners include Structure® Plus (National Starch & Chemical, Bridgewater, N.J.), which is an acrylates/aminoacrylates/C10-30 alkyl PEG-20 itaconate copolymer, Carbopol® Aqua SF-1 Polymer (Noveon, Cleveland Ohio), which is an acrylates copolymer, Pemulen® TR-1 and TR-2 and Carbopol® ETD 2020 (available from Noveon), which are acrylates/C10-30 alkyl acrylates crosspolymers, and the Carbopol® Ultrez series of polymers (available from Noveon), which are carbomers.
In one embodiment, such when using a hydrogel as described above, the phase (e.g., hydrogel) may be formulated using an acid-sensitive thickener and/or a base-sensitive thickener. As the names suggest, acid-sensitive thickeners are activated (i.e., swell or “thicken”) upon contact with an acidic agent, while base-sensitive thickeners are activated upon contact with an alkaline agent. An acid- or base-sensitive thickener may be combined with other phase components prior to activation, and activated by contact with an acidic or alkaline agent after the acid- or base-sensitive thickener is dispersed throughout the phase.
Examples of suitable acid-sensitive thickeners for use in the phases include the Structure® Plus (National Starch & Chemical, Bridgewater, N.J.) thickener, described above. The acid-sensitive thickeners may be activated by contact with any of a wide range of acidic agents including, for example, glycolic acid, lactic acid, phosphoric acid, citric acid, other organic acids, and similar acidic agents. Acid sensitive thickeners are generally activated over a pH range of from about 3 to about 9, and more typically over a pH range of from about 3 to about 7. The Structure® Plus thickener is typically activated over a pH range of from about 3 to about 9.
Examples of suitable base-sensitive thickeners include the Carbopol® Aqua SF-1 Polymer (Noveon, Cleveland Ohio) thickener, described above, as well as the Pemulen® TR-1 and TR-2 thickeners (available from Noveon), the Carbopol® ETD 2020 thickeners (available from Noveon), and the Carbopol® Ultrez series of thickeners (available from Noveon), all described above, and other carbomers and starches, and combinations thereof. The base-sensitive thickeners may be activated by contact with any of a wide range of alkaline agents including, for example, various metal hydroxides and amines, and other similar alkaline agents. Non-limiting examples of suitable metal hydroxides include potassium hydroxide and sodium hydroxide. Non-limiting examples of suitable amines include triethanolamine, diethanolamine, monoethanolamine, tromethamine, aminomethylpropanol, triisopropanolamine, diisopropanolamine, tetrahydroxypropylethylenediamine, and PEG-15 cocoamine. Base sensitive thickeners are generally activated over a pH range of from about 5 to about 11, and more typically over a pH range of from about 6 to about 11.
Although described above as using a thickener with a hydrogel, it should be recognized by one skilled in the art that the above thickeners can be used with any of the phases described herein for preparing an emulsion.
In certain embodiments, one or more of the phases may include two or more different types of thickeners. For instance, the phases may include any combination of cellulosic thickeners, gum thickeners, acid-sensitive thickeners, base-sensitive thickeners, and/or acrylic based polymer thickeners.
While as disclosed herein in terms of mixing phases to prepare the emulsions, it should it be recognized that one emulsion, prepared using any method known in the art, can be mixed with one or more additional phases to make a second emulsion using the ultrasonic mixing system and the methods described herein without departing from the scope of the present disclosure. For example, in one embodiment, a water-in-oil-in-water emulsion is prepared and is delivered via a first inlet port into the interior space of the treatment chamber housing and a separate phase (i.e., a water phase, as described above) is delivered via a second inlet port into the interior space of the treatment chamber housing. The ultrasonic mixing system (and, more particularly, the waveguide assembly), operating in the predetermined frequency as described above, mixes the water-in-oil emulsion with the water phase to produce a water-in-oil-in-water emulsion.
In one embodiment, one or more the phases are heated prior to being delivered to the treatment chamber. Specifically, with some emulsions, while some or all of the individual phases have a relatively low viscosity (i.e., a viscosity below 100 cps), the other phases or the resulting-emulsion that is prepared from the phases has a high viscosity (i.e., a viscosity greater than 100 cps), which can result in clumping of the emulsion and clogging of the outlet port of the treatment chamber. For example, many water-in-oil emulsions can suffer from clumping during mixing. In these types of emulsions, the water and/or oil phases are typically heated to a temperature of approximately 40° C. or higher prior to being mixed. Suitably, one or more of the phases can be heated to a temperature of from about 70° C. to about 100° C. prior to being delivered to the treatment chamber via the inlet ports.
Typically, the oil phase and water phase are delivered to the treatment chamber at a flow rate of from about 1 gram per minute to about 100,000 grams per minute. In one embodiment, the oil phase and water phase have different flow rates. By way of example, in one particular embodiment, the oil phase can be delivered via the first inlet port at a flow rate of from about 1 gram per minute to about 10,000 grams per minute, and the water phase can be delivered via the second inlet port at a flow rate of from about 1 gram per minute to about 10,000 grams per minute. In an alternative embodiment, the oil phase and water phase are delivered into the interior of the treatment chamber at equal flow rates.
In accordance with the above embodiment, as the water and oil phases continue to flow upward within the chamber, the waveguide assembly, and more particularly the horn assembly, is driven by the drive system to vibrate at a predetermined ultrasonic frequency to mix the phases, thereby preparing the emulsion. Specifically, in response to ultrasonic excitation of the horn, the agitating members that extend outward from the outer surface of the horn dynamically flex/bend relative to the horn, or displace transversely (depending on the longitudinal position of the agitating member relative to the nodal region of the horn).
The phases continuously flow longitudinally along the flow path between the horn assembly and the inner surface of the housing sidewall so that the ultrasonic vibration and the dynamic motion of the agitating members cause cavitation in the phases to further facilitate agitation. The baffle members disrupt the longitudinal flow of liquid along the inner surface of the housing sidewall and repeatedly direct the flow transversely inward to flow over the vibrating agitating members.
As the mixed emulsion flows longitudinally downstream past the terminal end of the waveguide assembly, an initial back mixing of the emulsion also occurs as a result of the dynamic motion of the agitating member at or adjacent the terminal end of the horn. Further downstream flow of the emulsion results in the agitated liquid providing a more uniform mixture of the phases prior to exiting the treatment chamber via the outlet port.
The ultrasonic mixing system of the invention can be used to form stable emulsions including components that have traditionally been viewed as preventing the stability of an emulsion that includes them. Such components thought to hinder or prevent stability include salts and other electrolytes. At the same time, such an emulsion can be formed using the ultrasonic mixing system of the invention with little to no surfactants. As previously described herein, surfactants typically improve the stability of emulsions. Therefore, the ultrasonic mixing system of the invention permits the formation of stable emulsions including components that typically prevent stability while not including components that typically improve or permit stability. Emulsions of this sort have beneficial applications. For example, an emulsion having a water-like consistency (or a viscosity similar to water) that includes one or more salts and little to no surfactant is advantageously used as the cleaning solution applied to the base sheet of a wet wipe product. Such wet wipe products are typically used for cleaning skin after use of a personal care absorbent article, such as an incontinence article, or after use of the bathroom. The presence of the salt allows for isotonic saline levels and the absence of surfactant reduces irritation to the skin. When used with a wet wipe product that is intended to be dispersible when flushed, the presence of the salt maintains the strength of the dispersible base sheet (prior to flushing).
The ultrasonic mixing system of the invention may be used to form emulsions that have at least 1% salt content. The systems of the invention may also be used to form emulsions having higher salt contents including at least 2% salt, at least 5% salt, at least 10% salt, at least 20% salt, at least 30% salt and at least 40% salt. Examples of salts and other electrolytes that can be used in the formation of such emulsions include calcium chloride, calcium phosphate, calcium sulfate, cupric chloride, dipotassium phosphate, disodium phosphate, ferric chloride, ferric sulfate, hydroxylamine HCl, hydroxylamine sulfate, iodine trichloride, magnesium aluminum silicate, magnesium bromide, magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium phosphate, magnesium silicate, magnesium sulfate, magnesium sulfide, manganese chloride, manganese sulfate, pentapotassium triphosphate, pentasodium triphosphate, potassium bicarbonate, potassium borate, potassium bromate, potassium bromide, potassium carbonate, potassium chloride, potassium fluoride, potassium iodide, potassium metabisulfate, potassium nitrate, potassium phosphate, potassium sulfate, silver chloride, silver nitrate, silver sulfate, sodium alum, sodium aluminate, sodium bicarbonate, sodium bisulfate, sodium bisulfite, sodium borate, sodium bromate, sodium carbonate, sodium chlorate, sodium chloride, sodium fluoride, sodium hexametaphosphate, sodium iodate, sodium iodide, sodium magnesium silicate, sodium metabisulfate, sodium metaphosphate, sodium metasilicate, sodium nitrate, sodium nitrite, sodium perborate, sodium silicate, sodium sulfate, sodium sulfide, sodium sulfite, zinc borate, zinc carbonate, zinc chloride, zinc hexametaphosphate, zinc silicate, zinc sulfate, zinc sulfide, zirconium chlorohydrate, zirconium silicate, zirconium chloride, aluminum citrate, aluminum lactate, aluminum PCA, ammonium glycyrrizate, ammonium lactate, arginine glutamate, arginine PCA, bismuth citrate, calcium ascorbate, calcium aspartate, calcium chitosan, calcium citrate, calcium disodium EDTA, calcium lactate, calcium pantetheine sulfonate, calcium pantothenate, calcium salicylate, calcium sorbate, calcium stearoyl, lactylate calcium, tartrate chitosan salicylate, ciclopiroxolamine, cobalt gluconate dipotassium glycyrrhizate, disodium ascorbyl sulfate, disodium glycyrrhizate, disodium succinate, disodium succinoyl glycyrrhetinate, disodium tartrate, lysine glutamate, magnesium acetate, magnesium ascorbate, magnesium ascorbate/PCA, magnesium ascorbylborate, magnesium ascorbyl phosphate, magnesium citrate, magnesium lactate, magnesium PCA, magnesium salicylate, oxyquinoline benzoate, oxyquinoline sulfate, potassium ascorbyl tocopheryl phosphate, potassium benzoate, potassium citrate, potassium ethylparaben, potassium gluconate, potassium lactate, potassium methoxycinnamate, potassium methylparaben, potassium propylparaben, potassium salicylate, potassium sodium tartrate, potassium sorbate, potassium tartrate, potassium taurate, potassium thioglycolate, pyridoxine HCl, silver citrate, sodium allantoin PCA, sodium ascorbate, sodium ascorbyl phosphate, sodium benzoate, sodium butylparaben, sodium p-chloro-m-cresol, sodium citrate, sodium citronellate, sodium dehydroacetate, sodium ethylparaben, sodium gluconate, sodium hinokitiol, sodium hydroxymethane sulfonate, sodium isobutylparaben, sodium isopropylparaben, sodium lactate, sodium malate, sodium methylparaben, sodium oxalate, sodium pantothenate, sodium PCA, sodium propionate, sodium propylparaben, sodium pyruvate, sodium saccharin, sodium salicylate, sodium sorbate, sodium succinate, tetrapotassium etidronate, tetrasodium EDTA, tetrasodium etidronate, zinc acetate, zinc adenosine triphosphate, zinc ascorbate, zinc citrate, zinc cysteinate, zinc gluconate, zinc glycyrrhetinate, zinc lactate, zinc PCA, zinc pyrithione and zinc salicylate. In addition to the salts and other electrolytes identified herein, other halide, acid and oxyanion salts of alkali, alkaline earth and transition metals may also be used in emulsions formed using the ultrasonic mixing system of the invention.
Because of the excellent mixing achieved with the ultrasonic mixing system of the invention, the salt-containing emulsions can be formed and remain stable with low levels of surfactants. For example, stable emulsions (whether salt-containing or not) can be formed with a surfactant content of less than 1%. Additionally, stable emulsions can be formed with a surfactant content of less than 0.5%, less than 0.2% or less than 0.1%. Further, salt-containing emulsions and emulsions without salt may be formed and remain stable without any surfactant being used.
In another aspect, the ultrasonic system of the invention may be used to form emulsions that have a very low ratio of surfactant to oil phase. The ultrasonic system permits very efficient use of the surfactant that is present in an emulsion. For example, the ultrasonic mixing system of the invention may be used to form emulsions that have a surfactant:oil ratio of 1:15 (that is, one part (by weight) surfactant to fifteen parts (by weight) oil component(s)). Therefore, there are at least fifteen parts (by weight) of oil component(s) to one part (by weight) of surfactant. Additionally, the system may be used to form emulsions that have a surfactant:oil ratio of 1:25, 1:50 or even 1:100.
The present disclosure is illustrated by the following examples which are merely for the purpose of illustration and are not to be regarded as limiting the scope of the disclosure or manner in which it may be practiced.
In this Example, the ability of the ultrasonic mixing system of the present disclosure to mix an oil phase and aqueous liquid phase to form an oil-in-water type emulsion was analyzed. Specifically, the ability of the ultrasonic mixing system to mix dispersions of mineral oil into a diluted wet wipes solution was analyzed.
The diluted wet wipe solution included 4.153% (by weight) KIMSPEC AVE® (commercially available from Rhodia, Inc., Cranbury, N.J.) and 95.848% (by weight) purified water. The solution was prepared by mixing the KIMSPEC AVE® into water using a propeller mixer, available from IKA® EUROSTAR, IKA Works Co., Wilmington, N.C.), rotating at a speed of about 540 revolutions per minute (rpm). Four separate samples of the diluted wet wipe solution were prepared. The solution for each sample was delivered to a first inlet port of the ultrasonic mixing system of
Additionally, a flow of mineral oil, available as Penreco® Drakeol® LT mineral oil N.F. from Penreco Co., The Woodlands, Tex.) was delivered to a second inlet port of the ultrasonic mixing system shown in
The ultrasonic mixing system was then ultrasonically activated using the ultrasonic drive system at a frequency of 20 kHz. After mixing in the treatment chamber, the wet wipe solutions (now having the mineral oil incorporated therein) exited the treatment chamber via the outlet port. The physical appearances of the emulsions observed are summarized in Table 1. The size and distribution of oil droplets within the emulsions so prepared were analyzed using the Laser Light Scattering Method by Micromeritics Analytical Services (Norcross, Ga.) after thirteen days of the experiment. The data on mean particle size and size distribution of the mineral oil droplets in the wet wipe solutions are shown in Table 2.
As shown in Table 2, the wet wipe solutions C and D, which were mixed in the ultrasonic mixing system for two minutes, had smaller particle sizes of mineral oil droplets, showing a better dispersion of mineral oil within the aqueous wet wipe solution.
Additionally, after 40 days, the appearances of the wet wipe solution samples were analyzed visually. All wet wipe solutions contained a thin creamy layer on top, but the layer was miscible with the remaining portion of the sample with slight agitation.
In this Example, the ultrasonic mixing system of the present disclosure was used to emulsify an oil phase into a water phase to produce an oil-in-water emulsion. The ability of the ultrasonic mixing system to prepare a stable oil-in-water emulsion was analyzed and compared to an oil-in-water emulsion prepared using a traditional cold mix procedure as described above.
Three oil-in-water emulsions were prepared. Specifically, the oil-in-water emulsions were prepared by mixing 1 part mineral oil (available as Penreco® Drakeol® LT mineral oil N.F. from Penreco Co., The Woodlands, Tex.)) to 199 parts water for a mixing period of approximately 2 minutes. The first emulsion sample (Sample 1) was prepared using a propeller mixer (IKA® EUROSTAR, IKA Works, Co., Wilmington, N.C.) and using the standard cold mix batch procedure.
The other two oil-in-water emulsions (Samples 2 and 3) were prepared in the ultrasonic mixing system of
Sample 3 was prepared by additionally mixing in a surfactant (Solubilisant LRI, LCW, South Plainfield, N.J.) with the oil phase in a weight ratio of surfactant to oil of 1:1. The mixed oil phase (including the surfactant) was then added at a flow rate of 24 grams per minute into the first inlet port of the ultrasonic mixing system of
As shown in Table 3, both of the emulsions produced using the ultrasonic mixing system remained stable until 30 hours after exiting the chamber while the emulsion prepare in the batch process separated within a couple minutes. While Sample 2 finally separated completely after about 3 days, the emulsion prepared using the oil phase that comprised SOLUBILISANT LRI remained stable for 40 days.
The oil droplets from the batch-produced oil-in-water emulsion were sized from several micrometers to several hundreds of micrometers. For the two emulsions produced using the ultrasonic mixing system, after five days of aging) the oil droplets ranged from sub-micrometers in size to a couple of micrometers.
In this Example, the ultrasonic mixing system of the present disclosure was used to emulsify an oil phase into a salt-containing water phase to produce an oil-in-water emulsion. The ability of the ultrasonic mixing system to prepare a stable oil-in-water emulsion having a salt content of at least 1% was analyzed.
A preserved saltwater solution was prepared by mixing the ingredients and amounts of ingredients described in Table 4. The ingredients were mixed using a stirbar or paddle mixer until a solution was formed.
Salt-containing emulsion #1 was formed using the ultrasonic mixing system shown in
In another example utilizing a high salt concentration, an emulsion was formed utilizing ultrasonic mixing and was analyzed and compared to a similar mixture prepared using a traditional cold mix procedure.
In this example, a salt-containing emulsion #2 was processed using a SILVERSON L4RT-W homogenizer in a 2 liter beaker. The following components were added to the beaker and mixed at 9700 RPMs for 5 minutes at room temperature: (1) 36 grams of Dimethicone (available as DC200 100 cts from Dow Corning; 2%); (2) 9 grams of Polysilicone-20 (available as SILFACTANT D-20-6 from Siltech; 0.5%); and (3) 1755 grams of Preserved Saltwater Solution (described in Table 4. above; 97.5%). After mixing, the beaker was covered with clear plastic wrap and allowed to sit on a counter. Separation of the ingredients was seen immediately. Separately, salt-containing emulsion #2 was prepared utilizing an ultrasonic mixing system as is depicted in
This example shows that a stable emulsion remains even when a solution formed using the ultrasonic mixing system of the invention is saturated with salt.
Salt-containing emulsion #3 was formed using the ultrasonic mixing system depicted in
Example 4 shows that when salt-containing emulsions are formed using an ultrasonic mixing system as depicted in
This example shows that a stable emulsion can be formed using the ultrasonic mixing system of the invention where the emulsion has a very low surfactant:oil ratio.
Using an ultrasonic mixing system such as the one depicted in
When introducing elements of the present disclosure or preferred embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation-in-part application of U.S. Ser. No. 11/966,458 filed Dec. 28, 2007. The entirety of U.S. Ser. No. 11/966,458 is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2115056 | Wynn | Apr 1938 | A |
2307206 | Fischer | Jan 1943 | A |
2584053 | Seavey et al. | Jan 1952 | A |
2620894 | Peterson et al. | Dec 1952 | A |
2661192 | Horsley et al. | Dec 1953 | A |
2946981 | O'Neill | Jul 1960 | A |
3066232 | Branson | Nov 1962 | A |
3160138 | Platzman | Dec 1964 | A |
3202281 | Weston | Aug 1965 | A |
3239998 | Carter et al. | Mar 1966 | A |
3246881 | Davidson et al. | Apr 1966 | A |
3249453 | Schnoring et al. | May 1966 | A |
3273631 | Neuman | Sep 1966 | A |
3275787 | Newberry | Sep 1966 | A |
3278165 | Gaffney | Oct 1966 | A |
3284991 | Ploeger et al. | Nov 1966 | A |
3325348 | Bennett | Jun 1967 | A |
3326470 | Loudin et al. | Jun 1967 | A |
3338992 | Kinney | Aug 1967 | A |
3341394 | Kinney | Sep 1967 | A |
3425951 | Ishiwata | Feb 1969 | A |
3463321 | Vaningen | Aug 1969 | A |
3479873 | Hermanns | Nov 1969 | A |
3490584 | Balamuth | Jan 1970 | A |
3502763 | Hartman | Mar 1970 | A |
3519251 | Hammitt et al. | Jul 1970 | A |
3542345 | Kuris | Nov 1970 | A |
3542615 | Dobo et al. | Nov 1970 | A |
3567185 | Ross et al. | Mar 1971 | A |
3591946 | Loe | Jul 1971 | A |
3664191 | Hermanns | May 1972 | A |
3692618 | Dorschner et al. | Sep 1972 | A |
3782547 | Dietert | Jan 1974 | A |
3802817 | Matsuki et al. | Apr 1974 | A |
3865350 | Burtis | Feb 1975 | A |
3873071 | Tatebe | Mar 1975 | A |
3904392 | Vaningen et al. | Sep 1975 | A |
4035151 | Czerny et al. | Jul 1977 | A |
4062768 | Elliot | Dec 1977 | A |
4070167 | Barbee et al. | Jan 1978 | A |
4118797 | Tarpley, Jr. | Oct 1978 | A |
4122797 | Kawamura et al. | Oct 1978 | A |
4168295 | Sawyer | Sep 1979 | A |
4218221 | Cottell | Aug 1980 | A |
4249986 | Obeda | Feb 1981 | A |
4259021 | Goudy, Jr. | Mar 1981 | A |
4260389 | Lister | Apr 1981 | A |
4266879 | McFall | May 1981 | A |
4340563 | Appel et al. | Jul 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4398925 | Trinh et al. | Aug 1983 | A |
4425718 | Kawaguchi | Jan 1984 | A |
4511254 | North et al. | Apr 1985 | A |
4556467 | Kuhn et al. | Dec 1985 | A |
4612016 | Jaeger et al. | Sep 1986 | A |
4612018 | Tsuboi et al. | Sep 1986 | A |
4663220 | Wisneski et al. | May 1987 | A |
4673512 | Schram | Jun 1987 | A |
4693879 | Yoshimura et al. | Sep 1987 | A |
4699636 | Bofinger et al. | Oct 1987 | A |
4706509 | Riebel | Nov 1987 | A |
4708878 | Hagelauer et al. | Nov 1987 | A |
4726522 | Kokubo et al. | Feb 1988 | A |
4743361 | Schram | May 1988 | A |
4848159 | Kennedy et al. | Jul 1989 | A |
4877516 | Schram | Oct 1989 | A |
4879011 | Schram | Nov 1989 | A |
4929279 | Hays | May 1990 | A |
4983045 | Taniguchi | Jan 1991 | A |
5006266 | Schram | Apr 1991 | A |
5032027 | Berliner, III | Jul 1991 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5110403 | Ehlert | May 1992 | A |
5122165 | Wang et al. | Jun 1992 | A |
5164094 | Stuckart | Nov 1992 | A |
5169067 | Matsusaka et al. | Dec 1992 | A |
5242557 | Jones et al. | Sep 1993 | A |
5258413 | Isayev | Nov 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5326164 | Logan | Jul 1994 | A |
5330100 | Malinowski | Jul 1994 | A |
5335449 | Beatty | Aug 1994 | A |
5372634 | Monahan | Dec 1994 | A |
5373212 | Beau | Dec 1994 | A |
5375926 | Omasa | Dec 1994 | A |
5391000 | Taniguchi | Feb 1995 | A |
5466722 | Stoffer et al. | Nov 1995 | A |
5519670 | Walter | May 1996 | A |
5536921 | Hedrick et al. | Jul 1996 | A |
5583292 | Karbach et al. | Dec 1996 | A |
5585565 | Glascock et al. | Dec 1996 | A |
5665383 | Grinstaff et al. | Sep 1997 | A |
5681457 | Mahoney | Oct 1997 | A |
5711888 | Trampler et al. | Jan 1998 | A |
5770124 | Marecki et al. | Jun 1998 | A |
5810037 | Sasaki et al. | Sep 1998 | A |
5831166 | Kozuka et al. | Nov 1998 | A |
5853456 | Bryan et al. | Dec 1998 | A |
5868153 | Cohen et al. | Feb 1999 | A |
5873968 | Pike et al. | Feb 1999 | A |
5902489 | Yasuda et al. | May 1999 | A |
5916203 | Brandon et al. | Jun 1999 | A |
5922355 | Parikh et al. | Jul 1999 | A |
5935883 | Pike | Aug 1999 | A |
5937906 | Kozyuk | Aug 1999 | A |
5964926 | Cohen | Oct 1999 | A |
5979664 | Brodeur | Nov 1999 | A |
6010592 | Jameson et al. | Jan 2000 | A |
6053028 | Kraus, Jr. et al. | Apr 2000 | A |
6053424 | Gipson et al. | Apr 2000 | A |
6055859 | Kozuka et al. | May 2000 | A |
6060416 | Kobata et al. | May 2000 | A |
6074466 | Iwasa | Jun 2000 | A |
6090731 | Pike et al. | Jul 2000 | A |
6106590 | Ueno et al. | Aug 2000 | A |
6169045 | Pike et al. | Jan 2001 | B1 |
6200486 | Chahine et al. | Mar 2001 | B1 |
6218483 | Muthiah et al. | Apr 2001 | B1 |
6221258 | Feke et al. | Apr 2001 | B1 |
6254787 | Kimura et al. | Jul 2001 | B1 |
6266836 | Gallego Juarez et al. | Jul 2001 | B1 |
6322240 | Omasa | Nov 2001 | B1 |
6332541 | Coakley et al. | Dec 2001 | B1 |
6361697 | Coury et al. | Mar 2002 | B1 |
6368414 | Johnson | Apr 2002 | B1 |
6383301 | Bell et al. | May 2002 | B1 |
6467350 | Kaduchak et al. | Oct 2002 | B1 |
6482327 | Mori et al. | Nov 2002 | B1 |
6506584 | Chandler et al. | Jan 2003 | B1 |
6547903 | McNichols et al. | Apr 2003 | B1 |
6547935 | Scott | Apr 2003 | B2 |
6547951 | Maekawa | Apr 2003 | B1 |
6551607 | Minerath, III et al. | Apr 2003 | B1 |
6576042 | Kraus et al. | Jun 2003 | B2 |
6582611 | Kerfoot | Jun 2003 | B1 |
6593436 | Austin et al. | Jul 2003 | B2 |
6605252 | Omasa | Aug 2003 | B2 |
6620226 | Hutton et al. | Sep 2003 | B2 |
6627265 | Kutilek | Sep 2003 | B2 |
6655826 | Leanos | Dec 2003 | B1 |
6659365 | Gipson et al. | Dec 2003 | B2 |
6676003 | Ehlert et al. | Jan 2004 | B2 |
6689730 | Hortel et al. | Feb 2004 | B2 |
6739524 | Taylor McCune et al. | May 2004 | B2 |
6770600 | Lamola et al. | Aug 2004 | B1 |
6817541 | Sands et al. | Nov 2004 | B2 |
6818128 | Minter | Nov 2004 | B2 |
6837445 | Tsai | Jan 2005 | B1 |
6841921 | Stegelmann | Jan 2005 | B2 |
6858181 | Aoyagi | Feb 2005 | B2 |
6878288 | Scott | Apr 2005 | B2 |
6883724 | Adiga et al. | Apr 2005 | B2 |
6889528 | Sen et al. | May 2005 | B2 |
6890593 | Tian | May 2005 | B2 |
6897628 | Gunnerman et al. | May 2005 | B2 |
6902650 | Park et al. | Jun 2005 | B2 |
6911153 | Minter | Jun 2005 | B2 |
6929750 | Laurell et al. | Aug 2005 | B2 |
6935770 | Schueler | Aug 2005 | B2 |
6936151 | Lock et al. | Aug 2005 | B1 |
7018546 | Kurihara et al. | Mar 2006 | B2 |
7083322 | Moore et al. | Aug 2006 | B2 |
7108137 | Lal et al. | Sep 2006 | B2 |
7150779 | Meegan, Jr. | Dec 2006 | B2 |
7156201 | Peshkovskiy et al. | Jan 2007 | B2 |
7188993 | Howe et al. | Mar 2007 | B1 |
7293909 | Taniguchi | Nov 2007 | B2 |
7322431 | Ratcliff | Jan 2008 | B2 |
7338551 | Kozyuk | Mar 2008 | B2 |
7404666 | Tessien | Jul 2008 | B2 |
7419519 | Li et al. | Sep 2008 | B2 |
7424883 | McNichols et al. | Sep 2008 | B2 |
7438875 | Do et al. | Oct 2008 | B2 |
7465426 | Kerherve et al. | Dec 2008 | B2 |
7516664 | Meier et al. | Apr 2009 | B2 |
7533830 | Rose | May 2009 | B1 |
7582156 | Tanaka et al. | Sep 2009 | B2 |
7597277 | Kawakami et al. | Oct 2009 | B2 |
7673516 | Janssen et al. | Mar 2010 | B2 |
7703698 | Janssen et al. | Apr 2010 | B2 |
7712353 | Janssen et al. | May 2010 | B2 |
7780743 | Greaves et al. | Aug 2010 | B2 |
20010040935 | Case | Nov 2001 | A1 |
20020164274 | Haggett et al. | Nov 2002 | A1 |
20030042174 | Austin | Mar 2003 | A1 |
20030048692 | Cohen et al. | Mar 2003 | A1 |
20030051989 | Austin | Mar 2003 | A1 |
20030116014 | Possanza et al. | Jun 2003 | A1 |
20030143110 | Kritzler et al. | Jul 2003 | A1 |
20030194692 | Purdum | Oct 2003 | A1 |
20030234173 | Minter | Dec 2003 | A1 |
20040022695 | Simon et al. | Feb 2004 | A1 |
20040079580 | Manna et al. | Apr 2004 | A1 |
20040120904 | Lye et al. | Jun 2004 | A1 |
20040202728 | Shanker et al. | Oct 2004 | A1 |
20050000914 | Dahlberg et al. | Jan 2005 | A1 |
20050008560 | Kataoka et al. | Jan 2005 | A1 |
20050017599 | Puskas | Jan 2005 | A1 |
20050025797 | Wang et al. | Feb 2005 | A1 |
20050082234 | Solenthaler | Apr 2005 | A1 |
20050084464 | McGrath et al. | Apr 2005 | A1 |
20050085144 | MacDonald et al. | Apr 2005 | A1 |
20050092931 | Gadgil et al. | May 2005 | A1 |
20050129161 | Laberge | Jun 2005 | A1 |
20050207431 | Monai | Sep 2005 | A1 |
20050235740 | Desie et al. | Oct 2005 | A1 |
20050260106 | Marhasin | Nov 2005 | A1 |
20060000034 | McGrath | Jan 2006 | A1 |
20060008442 | MacDonald et al. | Jan 2006 | A1 |
20060029525 | Laugharn et al. | Feb 2006 | A1 |
20060120212 | Taniguchi et al. | Jun 2006 | A1 |
20070119785 | Englehardt et al. | May 2007 | A1 |
20070131034 | Ehlert et al. | Jun 2007 | A1 |
20070294935 | Waldron et al. | Dec 2007 | A1 |
20080061000 | Janssen et al. | Mar 2008 | A1 |
20080063718 | Janssen et al. | Mar 2008 | A1 |
20080067418 | Ross | Mar 2008 | A1 |
20080069887 | Baran et al. | Mar 2008 | A1 |
20080084438 | Sheahan et al. | Apr 2008 | A1 |
20080117711 | Omasa | May 2008 | A1 |
20080155763 | Janssen et al. | Jul 2008 | A1 |
20080192568 | Hielscher et al. | Aug 2008 | A1 |
20080251375 | Hielscher et al. | Oct 2008 | A1 |
20090014377 | Janssen et al. | Jan 2009 | A1 |
20090014393 | Janssen et al. | Jan 2009 | A1 |
20090017225 | Janssen et al. | Jan 2009 | A1 |
20090147905 | Janssen et al. | Jun 2009 | A1 |
20090158936 | Janssen et al. | Jun 2009 | A1 |
20090162258 | Janssen et al. | Jun 2009 | A1 |
20090165223 | Braunecker et al. | Jul 2009 | A1 |
20090165654 | Koenig et al. | Jul 2009 | A1 |
20090166177 | Wenzel et al. | Jul 2009 | A1 |
20090168590 | Koenig et al. | Jul 2009 | A1 |
20090168591 | Wenzel et al. | Jul 2009 | A1 |
20090262597 | Kieffer et al. | Oct 2009 | A1 |
20100150859 | Do et al. | Jun 2010 | A1 |
20100206742 | Janssen et al. | Aug 2010 | A1 |
20100296975 | Peshkovsky et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2175065 | May 1995 | CA |
657067 | Aug 1986 | CH |
1535249 | Oct 2004 | CN |
1247628 | Mar 2006 | CN |
101153138 | Apr 2008 | CN |
262553 | Dec 1988 | DE |
090 17 338 | Apr 1991 | DE |
044 44 525 | Jun 1996 | DE |
198 54 013 | May 2000 | DE |
199 13 397 | Sep 2000 | DE |
199 38 254 | Feb 2001 | DE |
10 2004 040 233 | Mar 2006 | DE |
10 2005 025 118 | Jan 2007 | DE |
10 2005 034 629 | Jan 2007 | DE |
0 269 941 | Jun 1988 | EP |
0 347 891 | Dec 1989 | EP |
0 459 967 | Dec 1991 | EP |
0 625 482 | Nov 1994 | EP |
0 648 531 | Apr 1995 | EP |
0 983 968 | Mar 2000 | EP |
2 793 811 | Nov 2000 | FR |
2 832 703 | Jan 2005 | FR |
1 404 575 | Sep 1975 | GB |
2 250 930 | Jun 1992 | GB |
56-028221 | Mar 1981 | JP |
57-119853 | Jul 1982 | JP |
58-034051 | Feb 1983 | JP |
62-001413 | Jan 1987 | JP |
62-039839 | Mar 1987 | JP |
63-072364 | Apr 1988 | JP |
63-104664 | May 1988 | JP |
01-108081 | Apr 1989 | JP |
02-025602 | Jan 1990 | JP |
02-281185 | Nov 1990 | JP |
03-053195 | Mar 1991 | JP |
03-086258 | Apr 1991 | JP |
03-157129 | Jul 1991 | JP |
06-228824 | Aug 1994 | JP |
08-304388 | Nov 1996 | JP |
09-286943 | Nov 1997 | JP |
10-060331 | Mar 1998 | JP |
11-133661 | May 1999 | JP |
2000-158364 | Jun 2000 | JP |
2001-017970 | Jan 2001 | JP |
2001-252588 | Sep 2001 | JP |
2003-103152 | Apr 2003 | JP |
2004-020176 | Jan 2004 | JP |
2004-256783 | Sep 2004 | JP |
2005-118688 | May 2005 | JP |
2007-144446 | Jun 2007 | JP |
10-2002-0073778 | Nov 2002 | KR |
10-2005-0013858 | Feb 2005 | KR |
10-2005-0113356 | Dec 2005 | KR |
203582 | Jan 1967 | SU |
WO 9400757 | Jan 1994 | WO |
WO 9420833 | Sep 1994 | WO |
WO 9429873 | Dec 1994 | WO |
WO 9609112 | Mar 1996 | WO |
WO 9743026 | Nov 1997 | WO |
WO 9817373 | Apr 1998 | WO |
WO 9844058 | Oct 1998 | WO |
WO 9933520 | Jul 1999 | WO |
WO 0004978 | Feb 2000 | WO |
WO 0041794 | Jul 2000 | WO |
WO 0139200 | May 2001 | WO |
WO 0222252 | Mar 2002 | WO |
WO 0250511 | Jun 2002 | WO |
WO 02080668 | Oct 2002 | WO |
WO 03012800 | Feb 2003 | WO |
WO 03102737 | Dec 2003 | WO |
WO 2004026452 | Apr 2004 | WO |
WO 2004064487 | Aug 2004 | WO |
WO 2005011804 | Feb 2005 | WO |
WO 2006037591 | Apr 2006 | WO |
WO 2006043970 | Apr 2006 | WO |
WO 2006073645 | Jul 2006 | WO |
WO 2006074921 | Jul 2006 | WO |
WO 2006093804 | Sep 2006 | WO |
WO 2007095871 | Aug 2007 | WO |
WO 2008047259 | Apr 2008 | WO |
WO 2008085806 | Jul 2008 | WO |
Entry |
---|
“After-Shave Wipes,” Formulation Information sheet: Men's Grooming—Skin Care, Dow Corning, Internet web page “http://www.dowcorning.com/content/publishedlit/00510.pdf”, Jan. 7, 2004, pp. 1-2. |
“Controlled Thermonuclear Fusion,” Internet web page “http://library.thinkquest.org/17940/texts/fusion—controlled/fusion—controlled.html”, viewed and printed Oct. 23, 2007, pp. 1-3. |
“Dry Skin Body Lotion,” by Induchem, Cosmetics & Toiletries, Internet web page “http://www.cosmeticsandtoiletries.com/formulating/category/skincare/43225507.html”, Apr. 18, 2009, pp. 1-2. |
“Report of the Review of Low Energy Nuclear Reactions”, U.S. Department of Energy (USDOE), Dec. 1, 2004, pp. 1-5, including “2004 U.S. Department of Energy Cold Fusion Review: Reviewer Comments,” “http://www.newenergytimes.com/DOE/DOE.htm”, pp. 1-45. |
Artsimovich, L.A., Controlled Thermonuclear Reactions, Chapter 1, Introduction, Gordon and Breach Science Publishers, New York, English Edition, 1964, pp. 1-16. |
Blume, Torben and Uwe Neis, “Improved Wastewater Disinfection by Ultrasonic Pre-Treatment,” Ultrasonics Sonochemistry, Elsevier, 2004, No. 11, pp. 333-336. |
Brenner, Michael P. et al, “Single-Bubble Sonoluminescence,” Reviews of Modern Physics, vol. 74, Apr. 2002, pp. 425-484. |
Flannigan, David J. et al., “Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble,” Physical Review Letters, PRL 96, May 26, 2006, pp. 204301-1 through 204301-4. |
Kloeppel, James E., “Temperature Inside Collapsing Bubble Four Times That of Sun,” News Bureau, University of Illinois at Urbana-Champaign, Mar. 2, 2005, pp. 1-2. |
Kuo, Sheng-Lung et al., “Nano-Particles Dispersion Effect on Ni/A12O3 Composite Coatings,” Materials Chemistry and Physics, vol. 86, 2004, pp. 5-10. |
Lahey, Richard F. et al., “Bubble Power,” IEEE Spectrum, May 2005, pp. 39-43. |
Lawson, J.D., “Some Criteria for a Power Producing Thermonuclear Reactor”, Proc. Phys. Soc. B70, 1957, pp. 6-10. |
Lister, J., Book Review of “Fusion: The Energy of the Universe,” by McCracken & Stott, Plasma Physics and Controlled Fusion, vol. 48, 2006, pp. 715-716. |
Moriguchi, Takeshi et al. “Metal-Modified Silica Adsorbents for Removal of Humic Substances in Water,” Journal of Colloid and Interface Science, vol. 283, 2005, pp. 300-310. |
Morrison, Douglas R.O., “Cold Fusion Update No. 9”, from Newsgroups sci.physics.fusion, Internet web page “http://groups.google.com”, Feb. 11, 1994, pp. 1-10. |
Ongena, J. et al., “Energy for Future Centuries,” updated version of article from Transactions of Fusion Technology, vol. 37, No. 2T, 2000, pp. 3-15, Internet web page Thermonuclear Fusion—Energy Source for Future Generations, “http://crppwww.epfl.ch/crppfusion/”, viewed and printed Oct. 23, 2007, pp. 2-9. |
Peplow, Mark, “Desktop Fusion is Back on the Table,” Nature News, Internet web page, “http://nature.com/news/2006/060109/full/060109-5.html”, Jan. 10, 2006, pp. 1-5. |
Sivakumar, M. et al., “Preparation of Nanosized TiO2 Supported on Activated Alumina by a Sonochemical Method: Observation of an Increased Photocatalytic Decolourisation Efficiency,” Research on Chemical Intermediates, vol. 30, No. 7-8, 2004, pp. 785-792. |
Taleyarkhan, R.P. et al., “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” Physical Review E, vol. 69, No. 3, Mar. 2004, pp. 036109-1 through 036109-11. |
Taleyarkhan, R.P. et al., “Evidence for Nuclear Emissions During Acoustic Cavitation,” Science, vol. 295, Mar. 8, 2002, pp. 1868-1873. |
Tal-Figiel, B., “The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field,” Institution of Chemical Engineers, Internet web page “http://www.atypon-link.com/ICHEME/doi/abs/10.1205/cherd06199”, May 2007, pp. 1-2. |
Barbaglia, M. et al., “Search of Fusion Reactions During the Cavitation of a Single Bubble in Deuterated Liquids,” Physica Scripta, vol. 72, No. 1, 2005, pp. 75-78. |
Number | Date | Country | |
---|---|---|---|
20090262597 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11966458 | Dec 2007 | US |
Child | 12491735 | US |