The present disclosure relates to subject matter contained in priority Japanese Patent Application No. 2001-12675, filed on Jan. 22, 2001, the contents of which is herein expressly incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to an ultrasonic vibration tool for applying ultrasonic vibration originating from an ultrasonic vibration source evenly across the width of the output end face thereof, and to a fixing device and a heating device employing the same.
2. Description of Related Art
As one of conventional ultrasonic vibration tools capable of applying ultrasonic vibration over a wide width range at one time, there is known an ultrasonic vibration tool 31 as shown in
However, the above stated ultrasonic vibration tool has the following disadvantage. As shown in
To overcome such a problem, for example, an ultrasonic vibration tool as shown in
Such a problem has a significant adverse effect particularly on a fixing device for use in an image forming apparatus which is required to ensure a uniform amplitude distribution with high accuracy.
The present invention has been made in light of the above stated problems with the conventional art, and accordingly an object of the present invention is to provide an ultrasonic vibration tool capable of achieving a uniform amplitude distribution in an output end face, and fixing and heating devices employing the same.
To achieve the above object, according to one aspect of the present invention, an ultrasonic vibration tool is made of a block of substantially rectangular parallelepiped form, and has its one end face formed as an output end face, and has its other end face opposite the output end face formed as an input end face. An ultrasonic vibration source is connected to the input end face, so that a longitudinal standing wave is transmitted to the output end face. A mass distribution is provided in the vicinity of the input end face so as to obtain a uniform amplitude distribution in the output end face. In this construction, a uniform amplitude distribution is achieved by the mass distribution provided near the input end face. Accordingly, the ultrasonic vibration tool is free from adverse effects such as parasitic oscillation of bending mode, and, despite having a simple structure, achieves a uniform amplitude distribution.
According to another aspect of the present invention, an ultrasonic vibration tool is made of a block of substantially rectangular parallelepiped form, and has its one end face formed as an output end face, and has its other end face opposite the output end face formed as an input end face. An ultrasonic vibration source is connected to the input end face, so that a longitudinal standing wave is transmitted to the output end face. In this construction, peripheries of the output and input end faces of the block each constitute a mass portion, and, between the mass portions are formed slits at a pitch which is less than a half, more preferably, equal to or less than a quarter, of an oscillation wavelength, whereby a plurality of elastic portions are formed. The elastic portions have mutually different elastic coefficients so as to achieve a uniform amplitude distribution in the output end face.
According to still another aspect of the present invention, a fixing device is provided with: the ultrasonic vibration tool; an ultrasonic vibration source; and a supporting member disposed opposite the output end face of the ultrasonic vibration tool. A fixation sheet is supplied between the output end face of the ultrasonic vibration tool and the supporting member. In this construction, since the amplitude distribution of the ultrasonic vibration tool is made uniform with high accuracy, vibrational energy is applied evenly across the entire width of the sheet while a developer is fixed, whereby high-quality images are realized with stability.
According to yet another aspect of the present invention, a fixing device is provided with: the ultrasonic vibration tool; an ultrasonic vibration source; a heat-transfer rotary body which is disposed opposite the output end face of the ultrasonic vibration tool, and has in its outer peripheral portion a heat generating and transferring layer; and a supporting member disposed opposite the heat-transfer rotary body. In this construction, a fixation sheet is supplied between the heat-transfer rotary body and the supporting member.
According to a further aspect of the present invention, a heating device is provided with: the ultrasonic vibration tool; an ultrasonic vibration source; and a supporting member disposed opposite the output end face of the ultrasonic vibration tool. A sheet being heated is supplied and discharged between the output end face of the ultrasonic vibration tool and the supporting member. In this construction, since the amplitude distribution of the ultrasonic vibration tool is made uniform with high accuracy, vibrational energy is applied evenly across the entire width of the sheet being heated, whereby the sheet is heated uniformly.
While novel features of the invention are set forth in the preceding, the invention, both as to organization and content, can be further understood and appreciated, along with other objects and features thereof, from the following detailed description and examples when taken in conjunction with the attached drawings.
(First Embodiment)
First, with reference to
In
As for the block 2, the longitudinal dimension is set at a required value, the height dimension is set to be substantially equal to a half of an oscillation wavelength, and the thickness dimension is set to be equal to or less than a half, more preferably, equal to or less than a quarter, of the oscillation wavelength. The ultrasonic oscillator 3 is composed of a piezoelectric element 3a, block components 3b fastened against both ends of the piezoelectric element 3a with bolts, and a horn 3c fixed to one end of the block component 3b.
In the block 2, the input and output end faces 4 and 5 each have a portion which is longitudinally continuous therewith to form mass portions 6 and 7. Between these mass portions 6 and 7 are formed slits 9 at a pitch which is less than a half, more preferably, equal to or less than a quarter, of the oscillation wavelength, whereby a plurality of elastic portions 8 are formed. When the block 2 is excited into resonance, the mass portion 6, 7 and the elastic portion 8 absorb and release kinetic energy and elastic energy, respectively.
In the mass portion 6 on the side of the input end face 4 is formed a protrusion 10 having a height equal to or less than a quarter of the oscillation wavelength so as to correspond to each of the elastic portions 8. This allows the mass portion 6 to have a mass distribution. In the illustrative example, the ultrasonic oscillator 3 is connected to the center of the input end face 4 of the block 2, and the input end face 4 is stepped to provide protrusions 11a and 11b. The protrusion height increases with distance from the central portion. That is, in the input end face 4, no protrusion is formed in a part adjoining the central portion; formed in a part located outwardly adjacent to the central part is a protrusion 11a of height h1 (from the level of the central part); and formed in a part further located adjacent thereto is a protrusion 11b of height h2. The relationship between the heights h1 and h2 is given as: h1<h2.
According to the construction described above, by providing a mass distribution for the mass portion 6 arranged close to the input end face 4, a uniform amplitude distribution across the entire width of the output end face 5 is achieved when the block 2 is excited into resonance. That is, as shown in
Hence, the ultrasonic vibration tool achieves a uniform amplitude distribution despite having a simple structure. Moreover, since the protrusion 10 has a height equal to or less than a quarter of the oscillation wavelength, parasitic oscillation of bending mode never occurs.
Further, the height of the protrusion 10 increases with distance from the central portion of the input end face 4. Thus, by employing the single ultrasonic oscillator 3 connected to the central portion, a uniform amplitude distribution is achieved across the entire length of the block 2.
The protrusion 10 (11a and 11b) is so configured as to correspond to each of the elastic portions 8, and thereby a uniform amplitude distribution is achieved in a simple structure. Further, since the protrusion 10 is formed integrally with the block 2, the number of constituent components is reduced, and the structural strength is not adversely affected.
In the example shown in
The use of the separately provided projection forming members 12a, 12b, and 12c, despite leading to an increase in the number of constituent components and requiring care to see that adequate mounting strength is maintained, allows fine adjustments in accordance with the condition of the block 2.
Although explanation has been given to the case where the height of the protrusion 10 is changed gradually in conformity with the elastic portions 8 to vary the mass distribution of the mass portion 6, the protrusion 10 may also be so configured that its height varies continuously in the longitudinal direction of the block 2.
(Second Embodiment)
Next, with reference to
In this embodiment, as shown in
According to the second embodiment, a mass distribution is obtained by forming the recess 15 in the block 2. This helps prevent occurrence of parasitic oscillation of bending mode. Moreover, by composing the recess 15 of the circular holes 16a and 16b, the working operation is facilitated, additional components are eliminated, and adverse effects on the structural strength are prevented. Further, the depth of the recess 15 decreases with distance from the central portion of the input end face 4. Thus, by employing the single ultrasonic oscillator 3 connected to the central-portion, a uniform amplitude distribution is achieved across the entire length of the block 2.
Further, the recess 15 is so configured as to correspond to the elastic portions 8. This makes it possible to achieve a uniform amplitude distribution in a simple structure. Note that the recess 15 may also be so configured that its depth varies continuously in the longitudinal direction of the block 2 to achieve the same effect.
(Third Embodiment)
Next, with reference to
In this embodiment, the elastic portions 8 have mutually different elastic coefficients so as for the output end face 5 to have a uniform amplitude distribution.
In
As described above, the mass distribution of the mass portion 6 is made uniform, and the elastic portions 8 (8a, 8b, and 8c) have mutually different elastic coefficients. Also in this case, a uniform amplitude distribution across the length of the output end face 5 is achieved when the block 2 is excited into resonance. Moreover, since the elastic portion 8 is so configured that the elastic coefficient decreases with distance from the central portion of the input end face 4, by employing the single ultrasonic oscillator 3 connected to the central portion, a uniform amplitude distribution is achieved across the entire length of the block 2. Further, the sectional area and elastic coefficient of the elastic portion 8 can be varied by adjusting the sizes and lengths of the circular holes 17 and the slits 18. This facilitates the design and adjustment of the elastic coefficients.
Alternatively, as shown in
(Fourth Embodiment)
Next, with reference to
In
In the fixing device 20 thus constructed, since the amplitude distribution of the ultrasonic vibration tool 1 is made uniform with high accuracy, vibrational energy is applied evenly across the entire width of the fixation sheet 23 via the intermediate belt 21. This allows the toner to be fixed properly, whereby high-quality images are formed with stability.
Note that substantially the same effect is obtained by forming a toner image on the intermediate belt 21 and then fixing the toner image to the fixation sheet 23.
Moreover, in a case where the toner is deposited on the fixation sheet 23 with a certain adhesion strength, the intermediate belt 21 does not necessarily have to be provided.
(Fifth Embodiment)
Next, with reference to
In
Also in the fifth embodiment, since vibrational energy is applied evenly across the entire width of the fixation sheet 23 via the fixing roller 25, the toner is fixed properly, whereby high-quality images are formed with stability. In this embodiment, although it is necessary to secure a sufficiently large space for disposing the fixing roller 25, the fixation sheet 23 is not directly subjected to the oscillation of the ultrasonic vibration tool 1 but receives only the heat generated. This prevents occurrence of irregularity in the toner image.
(Sixth Embodiment)
Next, with reference to
In
Substantially the same effect is also achieved by applying the ultrasonic vibration tool 1 of the present invention to a heating device for use in, for example, an apparatus for welding a synthetic resin sheet. That is, a heating device to which the present invention is applied is provided with the above-described ultrasonic vibration tool 1, an ultrasonic oscillator 3 acting as an ultrasonic vibration source, and a supporting member disposed opposite the output end face of the ultrasonic vibration tool 1. A sheet being heated is supplied and discharged between the output end face of the ultrasonic vibration tool 1 and the supporting member. Also in this construction, the amplitude distribution of the ultrasonic vibration tool is made uniform with high accuracy. This makes it possible to apply vibrational energy evenly across the entire width of the sheet being heated, thereby heating the sheet uniformly.
According to the present invention, an ultrasonic vibration tool is made of a block of substantially rectangular parallelepiped form, and has its one end face formed as an output end face, and has its other end face opposite the output end face formed as an input end face. An ultrasonic vibration source is connected to the input end face for transmitting a longitudinal standing wave to the output end face. In this construction, a mass distribution is provided in the vicinity of the input end face, so that a uniform amplitude distribution is achieved in the output end face. This frees the ultrasonic vibration tool from adverse effects such as parasitic oscillation of bending mode.
Moreover, instead of varying the mass distribution, it is also possible to allow the elastic portions to have mutually different elastic coefficients.
Further, according to the present invention, a fixing device is provided with the above-described ultrasonic vibration tool, an ultrasonic vibration source, and a supporting member disposed opposite the output end face of the ultrasonic vibration tool. A fixation sheet is supplied between the output end face of the ultrasonic vibration tool and the supporting member. In this construction, since the amplitude distribution of the ultrasonic vibration tool is made uniform with high accuracy, it is possible to apply vibrational energy evenly across the entire width of the sheet, thereby achieving high-quality images with stability.
Still further, according to the present invention, a heating device is provided with the above-described ultrasonic vibration tool, an ultrasonic vibration source, and a supporting member disposed opposite the output end face of the ultrasonic vibration tool. A sheet being heated is supplied and discharged between the output end face of the ultrasonic vibration tool and the supporting member. In this construction, since the amplitude distribution of the ultrasonic vibration tool is made uniform with high accuracy, it is possible to apply vibrational energy evenly across the entire width of the sheet being heated.
Although the present invention has been fully described in connection with the preferred embodiment thereof, it is to be noted that various changes and modifications apparent to those skilled in the art are to be understood as included within the scope of the present invention as defined by the appended claims unless they depart therefrom.
Number | Date | Country | Kind |
---|---|---|---|
2001-012675 | Jan 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4363992 | Holze, Jr. | Dec 1982 | A |
4651043 | Harris et al. | Mar 1987 | A |
4749437 | Welter | Jun 1988 | A |
5339147 | Snelling et al. | Aug 1994 | A |
5390013 | Snelling | Feb 1995 | A |
5414497 | Tsuchiya et al. | May 1995 | A |
5850117 | Tobe et al. | Dec 1998 | A |
6205315 | Montfort et al. | Mar 2001 | B1 |
6496680 | Fujimoto et al. | Dec 2002 | B2 |
Number | Date | Country |
---|---|---|
10323620 | Dec 1998 | JP |
2002210412 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040013449 A1 | Jan 2004 | US |