The present invention relates to an ultrasonic welding device for welding films and in particular for welding longitudinal and/or transverse seams of bag packages, as well as to a packaging machine having such an ultrasonic welding device.
From the prior art, ultrasonic welding devices are known, particularly for welding plastic films. The ultrasonic welding devices typically include an ultrasonic sonotrode and an anvil, and a working gap is formed between the ultrasonic sonotrode and the anvil and the films to be welded are passed through it. A constant working gap between the ultrasonic sonotrode and the anvil is decisive for the quality of the welded seam. Because of the heat produced for instance in processing, the dimensions of the components can vary, which can have effects on the width of the working gap. An overly narrow working gap, however, typically worsens the material processing and can lead to damage to the films to be welded and the anvil. If the gap is too wide, an unacceptable weld seam quality is the result. From German Patent DE 195 26 354 C1, an ultrasonic welding device is known which has a sensor for determining a working gap width. A sonotrode is fastened in a mount, and the mount can be adjusted relative to the anvil via a separate adjusting device. However, this known device is very complex in its construction and expensive to produce. Moreover, this device requires a large amount of space, so that its use in packaging machines in particular necessitates a large amount of installation space for the machine.
Advantages of the Invention
The ultrasonic welding device of the invention having the characteristics of claim 1 has the advantage over the prior art that with its simpler construction and its ability to be produced at a lower cost, a constant width of a working gap can be assured. As a result, a very good welding quality can be obtained. In particular, by means of the ultrasonic welding device of the invention, not only plastic films but metal-coated films, for instance for packaging foods, can be safely welded. This is attained according to the invention in that the ultrasonic welding device includes an ultrasonic sonotrode, an anvil, an adjusting device for adjusting a relative position between the ultrasonic sonotrode and the anvil; and a regulating device for regulating a width of a working gap. The adjusting device has a first wedge element, connected to the anvil, and a second wedge element connected to an actuator. By a relative motion of the second wedge element to the first wedge element, a motion of the anvil in the direction of the gap width can be attained, so that, monitored by the regulating device, a constant width of the working gap can be assured. The ultrasonic welding device of the invention is especially simply and sturdily constructed. By the use of two wedge elements, very precise regulation of the gap widths can also be accomplished.
The dependent claims show preferred refinements of the invention.
Preferably, the anvil is prestressed by means of an elastic element. The elastic element is preferably a compression spring, such as a spiral spring. As a result, freedom of play can be assured in particular between the first and second wedge elements of the adjusting device.
A bearing of the anvil is also preferably realized by means of a roller bearing, in particular by means of balls or rollers. As a result, simple and easy movability of the anvil is furnished.
Also preferably, the ultrasonic welding device includes a first spacing sensor and a second spacing sensor. The two spacing sensors are each disposed in stationary fashion. The first spacing sensor determines a first spacing between the first spacing sensor and the ultrasonic sonotrode, and the second spacing sensor determines a second spacing between the second spacing sensor and the anvil. The regulating device calculates the actual width of the working gap based on the first and second spacings.
For regulating the width of the working gap, the regulating device preferably actuates the actuator and/or regulates a supply of electrical current to the ultrasonic sonotrode.
Preferably, a first measuring surface is provided on the ultrasonic sonotrode, at which the first spacing sensor measures the first spacing, and a second measuring surface is also provided on the anvil, at which the second spacing sensor measures the second spacing. he two measuring surfaces are disposed at a predetermined angle to one another. Thus measuring the width of the working gap is done indirectly, via a measurement of the positions of the ultrasonic sonotode and of the anvil.
The actuator of the adjusting device is preferably a linear actuator. As a result, the actuator can be constructed very simply and inexpensively, for instance as a piston-cylinder unit.
Also preferably, a sloping plane of the first wedge element and a sloping plane of the second wedge element are disposed at an angle of between 1° and 10°, preferably between 3° and 7°, to a base plane. As a result, it can be assured that by means of an only very short stroke, a relatively major change in the width of the working gap can be established.
The invention further relates to a packaging machine, in particular a bag package-making machine, including an ultrasonic welding device in accordance with the present invention. The ultrasonic welding device here is used in particular for welding longitudinal and/or transverse seams of bag packages.
It should be noted that the ultrasonic welding device of the invention can be used not only for welding identical materials but also for welding different materials, such as a plastic film and a metal-coated film.
A preferred exemplary embodiment of the invention is described below in conjunction with the accompanying drawing. In the drawing:
Below, in conjunction with
As can be seen from
The ultrasonic welding device 1 further includes an adjusting device 4, a regulating device 8, a first spacing sensor 14, and a second spacing sensor 15. As can be seen from
The sloping planes 6a, 7a of the two wedge elements 6 and 7 are disposed at an angle a to the plane E. The angle a is preferably between 1° and 10° and in this exemplary embodiment it is 5°.
The regulating device 8, as is shown in
As also seen from
The function of the ultrasonic welding device I of the invention is as follows: At least two films, particularly of plastic, that are to be joined are guided at a constant speed into the working gap 16 between the anvil 2 and the ultrasonic sonotrode 3. By the energy input from the ultrasonic sonotrode 3, the films are welded to one another. Now if for instance from heat occurring during operation a change in length of components occurs, for instance of the ultrasonic sonotrode 3, then the working gap 16 becomes smaller. However, the heat-caused change in length has an influence on the position of the measuring surface 3a on the ultrasonic sonotrode 3. Thus the first spacing sensor 14 can detect that the original spacing X1 between the first spacing sensor 14 and the measuring surface 3a has changed. This information is forwarded to the regulating device 8. Simultaneously, the spacing X2 between the second spacing sensor 15 and the measuring surface 2a on the anvil 2 is monitored as well, and a corresponding value is output to the regulating device 8. Based on the measured values from the two spacing sensors 14, 15, the regulating device 8 calculates a actual width of the working gap 16. This width of the working gap 16 is compared in the regulating device 8 with a set-point value XS for a working gap width.
If there is a difference between the calculated working gap width X and the predetermined width XS, the regulating device 8 activates the linear actuator 5. The linear actuator 5 moves the second wedge element 7 over the plane E in such a way that the first wedge element 6 is moved in the vertical direction, until the width of the working gap 16 again matches the predetermined set-point value XS. The direction of motion of the linear actuator 5 depends on the sign of the difference between the actual calculated value for the width of the working gap 16 and the set-point XS. Thus a relative displacement of the second wedge element 7 to the first wedge element 6 takes place. Since the anvil 2 is fixedly connected to the first wedge element 6, and the elastic element 13 exerts a pressure force F in essentially the vertical direction, an immediate relative motion of the anvil 2 relative to the ultrasonic sonotrode 3 is effected. As a result, the width of the working gap 16 is adapted to the desired set-point value. It should be noted that the regulating device 8 permits tolerance ranges of ±1 μm, for instance, before readjusting the width of the working gap 16 takes place. The regulating device 8 is preferably a PI controller. It should be noted that alternatively or in addition, for regulating the working gap 16 via the adjusting device 4, it is also possible for the regulating device 8 to output a signal to the generator 9 in order to effect a change in a supply of electric current from the generator 9 for the ultrasonic sonotrode 3. By this means as well, a change in a relative position of the ultrasonic sonotrode 3 relative to the anvil 2 can be attained.
The ultrasonic welding device 1 of the invention is preferably used in packaging machines. In that case, bag packages of plastic or metal-coated plastic are preferably used. Since the ultrasonic welding device 1 of the invention is very compact and small, it can easily be used in various packaging machines. The ultrasonic welding device of the invention is especially sturdy because it is composed of relatively simple components, in particular for attaining a relative motion between the anvil 2 and the ultrasonic sonotrode 3. The ultrasonic welding device 1 moreover has very high system rigidity.
Thus the ultrasonic welding device 1 of the invention has an adjusting device 4 that performs an adjustment of a position of the anvil 2, by means of an adjusting motion, executed perpendicular to the direction of motion of the anvil 2, which is attained by means of a relative motion of sloping planes with respect to one another.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 047 378.7 | Oct 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/59322 | 9/6/2007 | WO | 00 | 4/3/2009 |