Field of the Invention
The present invention relates to ultrasonically clearing precipitation from a window. Embodiments of the invention relate to clearing precipitation from a laminated windscreen of a vehicle.
Description of the Related Technology
Conventionally, a driver of a vehicle uses wipers to remove precipitation from the one or more windows to maintain a clear view through the window. However, the wipers are rubber or plastic and assembled to a metal fixing with a motor and the lifetime of the wipers depend on how long it takes for the parts to perish. Commercially available products such as RainX (RTM) can be applied to the surface of a window for easy cleaning of the window. However, since the wipers contact the surface of the window they also remove products applied to the window surface when they are in use and further application of the product is then necessary.
According to a first aspect of the invention, there is provided a system for clearing precipitation from a window, the system comprising a window, one or more transducers, and a generator for generating an ultrasonic drive signal for the one or more transducers, wherein the one or more transducers are fixed to the surface of the window and driven by the generator to produce surface acoustic waves, wherein the surface acoustic waves propagate substantially only through a surface region of the window.
There is provided a system according to the first aspect of the invention, comprising a control system having a sensor arranged to sense ultrasonic waves emitted by one or more of the said transducers for detecting the presence of precipitation, and a controller responsive to the sensor for controlling the operation of the system or apparatus.
Various features and advantages of the present disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example only, features of the present disclosure, and wherein:
In the description, the term “acoustic wave” is used to refer to a wave produced by a transducer that is being driven; it does not refer to the frequency of a wave being in the audible acoustic range for people.
Precipitation includes rain, sleet, snow, ice, drizzle, mist, fog, hail or other types of precipitation. When precipitation falls onto a window of a vehicle, for example the windscreen, it impedes the view for a driver.
When precipitation falls onto a window it is attracted to the surface of the window by surface tension. The precipitation, for example liquid water, can form many droplets across the window surface. The applicant's research has found that each of the many droplets will be a different size, have a different diameter and have a different shape which may be regular or irregular. An example of a droplet size may be approximately 0.4 milliliters (ml) having a diameter of approximately 1 centimeter (cm) for example but could be much smaller. The front window or windscreen of a vehicle such as a car is inclined, for example, at an angle of 34□. The angle may be greater. Some vehicles have windscreens inclined at a greater angle, for example 35□ or more. A rear window may be inclined at a larger angle than the front windscreen. Large liquid droplets will run down the windscreen faster than small liquid droplets due to their larger mass and greater influence under gravity. Other effects such as surface tension of the droplet and air flow over the surface can affect how a droplet moves across the surface. Surface tension may affect small droplets more than larger droplets. As the droplet size decreases, the internal pressure of the droplet increases. For example, smaller droplets require a larger angle before running off the windscreen compared to larger droplets. In an illustrative embodiment, the merging of droplets using ultrasonic waves during operation of the system may be useful since the larger droplets may be more easily cleared from the windscreen compared to smaller droplets due to their larger mass and influence under gravity and airflow. In addition, the surface tension effects without air flow are constant and may be independent of temperature.
Embodiments of the present invention use ultrasonic waves to remove precipitation from the surface of a window. In general, ultrasonic waves are acoustic waves with a frequency above 100 kiloHertz (kHz) and up to around 50 MegaHertz (MHz) or higher. The ultrasonic waves used in embodiments of the invention have a frequency in the range of about 400 kHz to 1.5 MHz. Transducers are used to produce acoustic waves in a range of frequencies. The transducers do not operate at a single frequency but instead operate across a range of frequencies (i.e. bandwidth) either side of a central frequency. The operating frequency of a transducer is to be understood as relating to the main operating frequency or central frequency of the transducer within the bandwidth of frequencies.
In embodiments of the invention, transducers are bonded to a window surface and driven to emit acoustic waves having ultrasonic frequencies. The range of frequencies of acoustic waves emitted from the transducer are dependent on the design of the transducer.
The transducers are bonded to the windscreen and energised or driven by the driving electronics. Suitable bonding agents are commercially available and are used to fix each transducer to the windscreen. The bonding agent is used to form a uniform bonding layer between each transducer and the surface of the window. In an illustrative embodiment of bonding the transducers to the windscreen, the bonding agent is mixed in a vacuum to prevent air bubbles forming within the bonding layer. If gas bubbles are present in the bonding layer, ultrasonic frequencies will be highly attenuated and it could impede the efficiency of the transducers. An example of a suitable bonding agent is epoxy resin. In an embodiment, the epoxy resin may be prepared or provided in a vacuum bag ready for mixing prior to application to the windscreen and transducers, wherein the vacuum bag comprises two compartments separated by a barrier and wherein the barrier is broken in order to mix the epoxy within the vacuum bag. In an embodiment, the bonding layer is thin to minimise the refraction of sound through the multi-layered system of the glass, bonding layer and transducers. The bonding agent may have other special properties such as acoustically matching the impedance of the bonding agent to the impedance of the window surface to which they are being attached, in order to efficiently couple or transmit acoustic waves into the window by minimising unwanted reflections from the window surface. Each transducer comprises a set of electrodes as the active elements next to a piezoelectric layer, and a ground electrode. In some embodiments the transducers are attached with one electrode (for example, a ground electrode) facing away from the window and one electrode (for example, a cut electrode) adhered to the outer surface of the windscreen. In an embodiment, the transducers are bonded to the surface such that the transducer surface is parallel with the surface of the windscreen or other surface to which they are being attached.
Each transducer is driven by the frequency generator 13 and power amplifier 14 of
The transducers can be driven in continuous or pulsed mode. A pulsed generator can be used to drive the transducers in a pulsed mode. In pulsed mode the acoustic waves will be emitted from the transducer in pulses. The frequency generator may provide frequency modulated signals to produce frequency modulated acoustic waves. In an example, the frequency of the waves is driven through a range of frequencies by frequency sweeping.
Each wave consists of nodes and antinodes—nodes are regions of a wave having minimum amplitude and antinodes are regions of a wave having maximum amplitude. Standing waves occur when there is a stable superposition of waves in a system. For example, a transmitted wave and reflected wave may combine to form a standing wave due to cancellation or amplification of their frequency components. In an example, a wave traveling along the surface of the window may be reflected at the window edge due to an acoustic impedance mismatch between the window material and the surrounding medium. The reflected wave can interfere with the wave traveling in the opposite direction such that the phases of the two waves cancel each other out or combine to cause a standing wave to form. The applicant's research has found that, in an example, droplets sitting on a windscreen surface will feel the influence of acoustic waves traveling through or along the windscreen. The droplets may be observed to vibrate or move along the windscreen at different speeds which may depend upon the positions of nodes or antinodes of the waves traveling through or along the windscreen. When the transducers bonded to the periphery of the windscreen are driven, there may be a distribution of ultrasonic vibration in the windscreen, for example, the presence of maxima and minima corresponding to a spatial interference pattern. Droplets moving at a greater speed compared to other droplets may be caused by regions of the windscreens at which antinodes are located or areas close to where the transducers are located. Vibrating droplets or slow moving droplets may be located at or near a node on the windscreen or further from where the transducers are located. Droplets located close to the transducers may experience a direct sound field wherein surface acoustic waves (SAWs) are emitted and encounter a droplet before they have been reflected somewhere in the windscreen. Droplets located at greater distances from where the transducers are located may be mainly subjected to a reverberant energy field wherein ultrasonic waves may encounter the droplet from all directions or may be reflected at boundaries before encountering a droplet. Using pulsed energy may reduce the level of the reverberant field, such as for the embodiment of
In other examples, droplets may vibrate and cause smaller droplets to combine with other/separate droplets to form larger droplets, which may then run off the surface of the windscreen removing the precipitation.
A calibration of the transducers may be performed to optimise the operating efficiency of the system.
The SAWs will be coupled to the surface of the windscreen and on reaching the edge of the windscreen will be partially reflected (33) back into the windscreen along its surface as shown in
The applicant's research has found that when the SAWs encounter a water droplet, some of the wave energy will be transferred to the droplet via mode conversion (35) and longitudinal waves (37) may travel through the droplet. When ultrasonic waves or SAWs are applied to water droplets, the droplets may be atomised (also known as jetting or vaporisation). There are three progressive stages that can be observed including streaming (36), propulsion and atomisation.
The contact angle (38) of the water droplet to the surface will affect the angle at which the SAWs will encounter the droplet. This angle has been labelled as □R and may relate to the Rayleigh angle of Rayleigh waves traveling along the surface of the windscreen. The SAWs may be Rayleigh waves or Lamb waves. If the SAWs are Lamb waves, these may relate to anti-symmetric Lamb waves or a flexural mode. As the SAWs enter the droplet, mode conversion takes place and longitudinal waves are transmitted into the water droplet. Due to the mode conversion and transfer of energy the SAW amplitude decreases and may also be referred to as a “leaky” wave (43). The longitudinal waves transmitted into the droplet causes streaming to occur within the droplet whereby internal rotational mixing and some cavitation takes place. The next stage is exhibited by “propulsion” of the droplets, where they move rapidly at right angles to the transducers or IDT electrodes.
In the example of
The internal pressure changes within the droplet cause the droplet shape to change. The droplet shape changes by becoming skewed (48) along the direction in which the SAWs travel as shown in
The applicant's research has found that since each droplet will have a different size with varying diameters, each droplet will have a different resonant frequency and may vibrate at a preferred frequency within a range of frequencies. When a SAW with the correct frequency to match that of the resonant frequency of the droplet is encountered, the droplet will resonate in a high energy state. To “hit” the resonant frequency of each droplet the transducers may be driven to sweep through a range of frequencies. The many SAWs traveling through the windscreen, including reflected waves, may combine via superposition to locally increase their amplitude at some frequencies. The driving frequency of the transducers can be varied by sweeping through a range of frequencies. In an embodiment, this enables the SAW frequency to “hit” the resonant frequency of a droplet. In this way, the differently sized droplets may be vaporised. As the droplet size decreases, its internal pressure increases. It may therefore be easier to vaporise smaller droplets than larger droplets.
As mentioned earlier, a droplet size may be around 0.4 ml with a diameter of around 1 cm. For droplet resonance to occur an integer number of half-wavelengths may need to fit within the droplet diameter. For example, for a SAW having a wavelength of 1 cm and a droplet diameter of 1 cm, there will be two half-wavelengths of the SAW that may fit within the droplet to cause resonance of the droplet.
In other examples the precipitation may not be a water droplet but may instead be hail, snow or a layer of ice or other precipitation. For precipitation other than water droplets such as for rain, the application of the ultrasonic waves may vary to achieve a similar effect of clearing the precipitation from a window. For example, ultrasonic waves may be employed to break down a sheet of ice or frost formed over the windscreen during winter.
As discussed, to further improve the process of clearing precipitation, the outer surface of the windscreen can be treated with an optional coating.
Frequency modulation may be employed to more effectively clear precipitation than amplitude modulation which may not be as effective. The transmission efficiency may also be optimised by acoustic impedance matching.
The power efficiency of the system may be optimised, since about two thirds of the energy can be transferred or lost as heat. Acoustic losses may include scattering or absorption within the system, for example at glass impurities or defects. To prevent heating effects, the circuitry and materials such as the transducers on the window may be optimised for impedance matching.
Other impedances may be matched or improved matching obtained by minimising the acoustic impedance difference between the transducer and the surface to which the transducer is bonded. An anti-reflection coating can be used on the surface of the transducer to enhance the coupling of ultrasonic waves from the transducer into the surface to which it is bonded. The transducer design may be optimised to minimise the acoustic impedance mismatches between surfaces such as to maximise the coupling of waves.
Two types of transducer design will now be discussed for square and circular transducer designs. Many piezoelectric transducers are commercially available in the circular form. However, the circular design is not favoured in this application because the circular transducer design radiates acoustic energy equally in all radial directions. The square form is preferred because it radiates acoustic energy in directions that are perpendicular to its electrodes. Therefore the acoustic energy may be more closely controlled during application to a windscreen for removing precipitation. The cutting or shaping of a transducer may change its resonant frequency. In an illustrative embodiment, the electrode finger spacing of the IDT may be adjusted according to the characteristics of the transducer and the windscreen.
For the transducer in
The speed (and hence wavelength) of waves in the automotive glass of the windscreen may vary with frequency, material properties (for example, Young's modulus, density, or Poisson ratio), and thickness of the glass. These parameters may be known within a certain tolerance or experimentally measured. For example, a laser vibrometer may be used to accurately determine the spatial field of vibration within the windscreen during the operation of the system for the purposes of obtaining a more accurate measure of the wave speeds within the glass for refining and improving the efficiency of the transducer designs.
Some square transducer designs have also been used in certain embodiments of this invention. The square transducers used are 2 cm by 2 cm and are fabricated from standard piezoelectric, such as lead zirconate titanate (PZT) material. To form the electrodes of the transducer, grooves are mechanically or laser cut into the piezoelectric material. All of the electrodes will be operated simultaneously using the same electrical signal.
The example transducer designs described may be capable of vaporising droplets of precipitation on a windscreen or other glass surface.
Other examples where a transducer and driving system may be used include a detection system for detecting the presence of rain drops or precipitation and therefore initiate the system for clearing the precipitation. In an example detection system two or more transducers may be employed. A first transmitting transducer may emit ultrasonic waves to a second receiving transducer. The receiving transducer may be able to monitor the energy of the ultrasonic waves received from the transmitting transducer. If a calibration is performed when no precipitation exists on the surface being investigated, there will be a base level of acoustic energy received at the receiving transducer. When precipitation is present on the surface the precipitation will absorb acoustic energy and the receiving transducer will observe a drop in the acoustic energy received below the calibrated base level, therefore indicating the presence of precipitation. At this point, the ultrasonic system for clearing precipitation from the windscreen surface may be switched on and the ultrasonic power can be automatically changed in line with the severity of precipitation. In this way, the transducers used for operating the system can also be used for controlling it.
Some embodiments provide the advantage of improving the power efficiency of the transducers or increasing the ultrasonic wave energy in the windscreen. The system may become more effective and efficient by carefully “tuning” the IDT. For example the IDT impedance may be matched to the windscreen or glass, or the input frequency may be pulsed. In other embodiments, several frequencies may be used to overcome standing waves on the glass, for example by sweeping through a range of frequencies, or using frequency modulation. In other illustrative embodiments bending waves or Lamb waves may be found to be more effective for inducing “streaming” or propulsion of a droplet, whilst minimising the amount of shear waves emitted which may reduce the effectiveness of the system.
Other embodiments provide the advantage of minimising the heating of the transducer, for example by using pulsed waves, which in turn allows for more power to be supplied to the system to allow for a greater area of the windscreen to be cleared of precipitation.
The use of IDTs and SAWs has the advantage of minimising any damping effect that may be caused by the existence of a laminate layer. This may minimise issues of providing enough power for droplet removal from a windshield without causing the internal laminate layer within the windshield to delaminate.
Other advantages of illustrative embodiments may be that the hydrophobic coating is not be removed or wiped off since ultrasonic transducers are used to clear precipitation from a surface that has been treated and there are no visibly moving parts across the surface of the windscreen.
Embodiments of the invention may be applied not only to laminated automotive windscreens and visors but also to laminated windows of buildings and to laminated windows used in any other situation, for example ships and boats.
Embodiments of the invention may also be applied to un-laminated windows.
The preceding description has been presented only to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Number | Date | Country | Kind |
---|---|---|---|
1313061.2 | Jul 2013 | GB | national |
This application is a continuation of U.S. patent application Ser. No. 15/003,516 filed on Jan. 21, 2016, which is a National Phase of PCT Patent Application No. PCT/EP2014/065559 having International filing date of Jul. 18, 2014, which claims the benefit of priority of United Kingdom Patent Application No. 1313061.2 filed on Jul. 22, 2013. The contents of the above applications are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4483571 | Mishiro | Nov 1984 | A |
5920167 | Wiget | Jul 1999 | A |
20020079089 | Kang et al. | Jun 2002 | A1 |
20080100584 | Hague et al. | May 2008 | A1 |
20080107542 | Hernandez | May 2008 | A1 |
20100230991 | Fioravanti | Sep 2010 | A1 |
20130024169 | Veerasamy | Jan 2013 | A1 |
20160137167 | Trevett et al. | May 2016 | A1 |
20160146721 | Ji et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
201745541 | Feb 2011 | CN |
103191886 | Jul 2013 | CN |
4304498 | Aug 1993 | DE |
4435941 | Apr 1995 | DE |
10005341 | Aug 2001 | DE |
0512653 | Nov 1992 | EP |
0869055 | Oct 1998 | EP |
2387107 | Oct 2003 | GB |
08-140898 | Jun 1996 | JP |
09-099812 | Apr 1997 | JP |
10-180203 | Jul 1998 | JP |
10-206400 | Aug 1998 | JP |
2000-043682 | Feb 2000 | JP |
2001-359287 | Jan 2001 | JP |
2012-126578 | Jul 2012 | JP |
WO 0178912 | Oct 2001 | WO |
WO 2012029056 | Mar 2012 | WO |
WO 2012095643 | Jul 2012 | WO |
WO-2012095643 | Jul 2012 | WO |
Entry |
---|
International Search Report and the Written Opinion dated Nov. 4, 2014 From the International Searching Authority Re. Application No. PCT/EP2014/065694. (9 Pages). |
International Search Report and the Written Opinion dated Nov. 14, 2014 From the International Searching Authority Re. Application No. PCT/EP2014/065559. (9 Pages). |
International Search Report and the Written Opinion dated Nov. 25, 2014 From the International Searching Authority Re. Application No. PCT/EP2014/065691. (9 Pages). |
Notice of Reasons for Rejection dated May 8, 2018 From the Japan Patent Office Re. Application No. 2016-528472 and Its Translation Into English. (8 Pages). |
Official Action dated Jan. 5, 2018 From the US Patent and Trademark Office Re. U.S. Appl. No. 15/003,516. (14 Pages). |
Official Action dated May 23, 2017 From the US Patent and Trademark Office Re. U.S. Appl. No. 15/003,516. (24 Pages). |
Patents Act 1977: Combined Search and Examination Report Under Sections 17 and 18(3) dated Jan. 7, 2015 From the Intellectual Property Office of the United Kingdom of Great Britain Re. Application No. GB131306.2. (4 Pages). |
Number | Date | Country | |
---|---|---|---|
20180250722 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15003516 | Jan 2016 | US |
Child | 15969798 | US | |
Parent | PCT/EP2014/065559 | Jul 2014 | US |
Child | 15003516 | US |