Ultrasound ablation catheter with cooling infusion and centering basket

Information

  • Patent Grant
  • 9770606
  • Patent Number
    9,770,606
  • Date Filed
    Monday, October 13, 2014
    9 years ago
  • Date Issued
    Tuesday, September 26, 2017
    6 years ago
Abstract
Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, a first flexible mount, and a cylindrical ablation transducer. The ablation transducer may be affixed to the catheter shaft through the flexible mount to allow an infusion fluid to pass through a lumen of the transducer. Another illustrative system may include an intravascular nerve modulation system including an expandable basket for centering an ablation tra7nsducer within a lumen.
Description
TECHNICAL FIELD

The present disclosure relates generally to systems and methods for nerve modulation techniques such as ablation of nerve tissue or other modulation techniques through the walls of blood vessels.


BACKGROUND

Certain treatments may require the temporary or permanent interruption or modification of selected nerve function. One exemplary treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.


Many nerves (and nervous tissue such as brain tissue), including renal nerves, run along the walls of or in close proximity to blood vessels and thus can be accessed intravascularly through the walls of the blood vessels. In some instances, it may be desirable to ablate perivascular nerves using ultrasonic energy. In other instances, the perivascular nerves may be ablated by other means including application of thermal, radiofrequency, laser, microwave, and other related energy sources to the target region. Ultrasound transducers may dissipate some energy as heat into the blood and surrounding tissue as well as causing the ultrasound transducers to become hot. This may result in blood damage, clotting, and/or protein fouling of the transducer among other undesirable side effects. In some instances, overheating of the ultrasound transducer may result in the failure of the transducers.


SUMMARY

The present disclosure is directed to an intravascular nerve modulation system for performing nerve ablation.


Accordingly, one illustrative embodiment includes an intravascular nerve modulation system having a catheter shaft. The catheter shaft may define a first lumen and having a proximal end and a distal end. Further, the system includes a first flexible mount member affixed to the distal end of the catheter shaft and defining one or more through holes. Furthermore, the system includes a cylindrical ablation transducer coupled to the first flexible mount and defining a lumen extending distally from the first flexible mount. Here, the lumen of the catheter shaft, the through holes of the first flexible mount member, and the lumen of the transducer are in fluid communication with one another.


Another illustrative embodiment includes an intravascular nerve modulation system that may include an elongate shaft having a proximal end, a distal end, and a lumen extending therebetween. Further, the system may include an ablation transducer affixed to the elongate shaft adjacent the distal end thereof. Furthermore, the intravascular modulation system may include an expandable basket having a proximal end affixed to the elongate shaft and a distal end affixed to an end cap positioned distal of a distal end of the ablation transducer. Here, the expandable basket may be configured to actuate between a first collapsed configuration and a second expanded configuration. In addition, the expandable basket can include two or more longitudinally extending struts and one or more temperature sensors may be coupled to the expandable basket. The system can further include a pull wire affixed to the end cap such that actuation of the pull wire moves the expandable basket between the first collapsed position and the second expanded position. Alternatively, the expandable basket may be configured to self-expand. The system can further include an infusion sheath secured adjacent to the distal end of the elongate tubular member such that the infusion sheath is configured to extend over the ablation transducer. In some instances, the distal end of the expandable basket may be affixed to the elongate shaft.


Another example intravascular nerve modulation system may include an elongate shaft having a proximal end region and a distal end region. An ablation transducer may be coupled to the distal end region of the shaft. An expandable basket may be coupled to the distal end region of the shaft. The expandable basket may have a proximal end dispsoed proximal of the ablation transducer and a distal end disposed distal of the ablation transducer. The expandable basket may be capable of shifting between a first configuration and an expanded configuration. A sensor may be coupled to the expandable basket.


Another example intravascular nerve modulation system may include an elongate shaft having a proximal end region and a distal end region. An ultrasound transducer may be coupled to the distal end region of the shaft. An expandable basket may be coupled to the distal end region of the shaft. The expandable basket may have a proximal end disposed proximal of the ultrasound transducer and a distal end disposed distal of the ultrasound transducer. The expandable basket may be capable of shifting between a first configuration and an expanded configuration. A sensor may be coupled to the expandable basket. The sensor may be capable of contacting a vessel wall when the basket is in the expanded configuration. The sensor may also be designed to monitor the progress of ablation by the ultrasound transducer during an ablation procedure.


Although discussed with specific reference to use with the renal nerves of a patient, the intravascular nerve modulation systems in accordance with the disclosure may be adapted and configured for use in other parts of the anatomy, such as the nervous system, the circulatory system, or other parts of the anatomy of a patient.


The above summary of an example embodiment is not intended to describe each disclosed embodiment or every implementation of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 illustrates an exemplary renal nerve modulation system in situ.



FIG. 2 illustrates a schematic side-view of a portion of an illustrative intravascular nerve modulation system disposed within a body lumen.



FIG. 3A illustrates a schematic side-view of a portion of another illustrative intravascular nerve modulation system in a collapsed configuration.



FIG. 3B illustrates a schematic side-view of the intravascular nerve modulation system of FIG. 3A in an expanded configuration.



FIG. 4 illustrates a schematic side-view of a portion of another illustrative intravascular nerve modulation system.



FIG. 5 illustrates a schematic side-view of a portion of another example of an intravascular nerve modulation system disposed within a body lumen.



FIG. 6 illustrates a cross-sectional view of a portion of another illustrative intravascular nerve modulation system.



FIG. 7 illustrates a cross-sectional view of the illustrative nerve modulation system of FIG. 6.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may be indicative as including numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4 , and 5).


Although some suitable dimensions ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of the skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


For purposes of this disclosure, “proximal” refers to the end closer to the device operator during use, and “distal” refers to the end further from the device operator during use.


The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with one embodiment, it should be understood that such feature, structure, or characteristic may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


Certain treatments are aimed at the temporary or permanent interruption or modification of select nerve function. In some instances, the nerves are sympathetic nerves. One example treatment is renal nerve ablation, which is sometimes used to treat conditions related to hypertension, congestive heart failure, diabetes, or other conditions impacted by high blood pressure or salt retention. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.


Some embodiments of the present disclosure relate to a power generating and control apparatus, often for the treatment of targeted tissue in order to achieve a therapeutic effect. In some embodiments, the target tissue is tissue containing or proximate to nerves. In one embodiment, the target tissue includes renal arteries and associated renal nerves. In other embodiments, the target tissue is sympathetic nerves including, for example, sympathetic nerves disposed adjacent to blood vessels. In still other embodiments the target tissue is luminal tissue, which may further comprise diseased tissue such as that found in arterial disease.


While the systems and methods described herein are discussed relative to renal nerve modulation, it is contemplated that the systems and methods may be used in other locations and/or applications where nerve modulation and/or other tissue modulation including heating, activation, blocking, disrupting, or ablation are desired, such as, but not limited to: blood vessels, urinary vessels, or in other tissues via trocar and cannula access. For example, the devices and methods described herein can be applied to hyperplastic tissue ablation, tumor ablation, benign prostatic hyperplasia therapy, nerve excitation or blocking or ablation, modulation of muscle activity, hyperthermia or other warming of tissues, etc. In some instances, it may be desirable to ablate perivascular renal nerves with ultrasound ablation. The term modulation refers to ablation and other techniques that may alter the function of affected nerves.


Ultrasound energy may be used to generate heat at a target location. The high frequency acoustic waves produced by an ultrasonic transducer may be directed at a target region and absorbed at the target region. As the energy emitted is absorbed, a temperature of the target region may rise. In order to perform renal nerve ablation, target nerves should be heated sufficiently to make them nonfunctional, while thermal injury to the artery wall is undesirable. Heating of the artery wall during the procedure may increase pain, which is also undesirable. When a portion of tissue is ablated, tissue properties change, and increased attenuation of the ultrasound energy can make ablation past this ablated tissue difficult. Ultrasound ablation catheters may also generate significant heat in the ultrasound transducer. That heat may consequently form blood clots on or around the transducer, damage the surrounding blood, and/or damaging the transducers, among other undesirable side effects. As the ablation transducer(s) heat, the energy conversion efficiency of those devices is lowered, thus generating even more heat. Thus, normal operations of ablation transducers may be characterized by increasingly lower efficiency during operation. The efficiency of the ablation transducers may be enhanced using a cooling mechanism. One possible cooling mechanism is passing an infusion fluid over the transducers.



FIG. 1 is a schematic view of an illustrative nerve modulation system 100 in situ. The nerve modulation system 100 may include an element 102 for providing power to a transducer disposed adjacent to, about, and/or within a central elongated shaft 104 and, optionally, within a guide catheter 106. A proximal end of the element 102 may be connected to a power and control element 108, which supplies the necessary electrical energy to activate the one or more transducers at or near a distal end of the element 102. The power and control element 108 may include monitoring elements to monitor parameters such as power, temperature, voltage, pulse size and/or frequency and other suitable parameters as well as suitable controls for performing the desired procedure. In some instances, the control unit 108 may control an ultrasound ablation transducer. The ablation transducer may be configured to operate at a frequency of about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz. In addition, it is contemplated that frequencies outside this range may also be used, as desired. While the term “ultrasound” is used herein, this is not meant to limit the range of vibration frequencies contemplated. For example, it is contemplated that the perivascular nerves may be ablated by other means including application of thermal, radiofrequency, laser, microwave, and other related energy sources to the target region.



FIG. 2 illustrates a schematic side view of a distal end portion of an illustrative intravascular nerve modulation system 200 disposed within a body lumen 204 having a vessel wall 202. Local body tissue (not shown) may surround the vessel wall 202. The local body tissue may comprise adventitia and connective tissues, nerves, fat, fluid, etc., in addition to the muscular vessel wall 202. A portion of the surrounding tissue may constitute the desired treatment region. For instance, one or more renal nerves (not shown) may extend along the outer wall of the body lumen 204.


The system 200 may include an elongate catheter shaft 208 having a proximal end (not shown) and a distal end region 211. The elongate shaft 208 may extend proximally from the distal end region 211 to the proximal end configured to remain outside of a patient's body. Although not shown, the proximal end of the elongate shaft 208 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 208 may be modified to form the modulation system 200 for use in various vessel diameters and various locations within the vascular tree.


In some instances, the elongate shaft 208 may have an elongate tubular structure and may include one or more lumens extending therethrough. For instance, in the illustrated embodiment, the elongate shaft 208 includes a lumen 209 having a guidewire wire 220 slidably disposed therein, however, this is not required. In some embodiments, the elongate shaft may include one or more auxiliary lumens. In some instances, the elongate shaft 208 may include a separate lumen(s) (not shown) for infusion of fluids or for other purposes such as the introduction of a medical device, and so forth. The fluid may facilitate cooling of the modulation system 200 during the ablation procedure, in addition to the cooling of body lumen 204. Further, the lumens may be configured in any way known in the art. For example, the lumen may extend along the entire length of the elongate shaft 208 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 208 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 200 may further include temperature sensors/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, and/or other components to facilitate the use and advancement of the system 200 within the vasculature.


Further, the elongate shaft 208 may have a relatively long, thin, flexible tubular configuration. In some instances, the elongate shaft 208 may have a generally circular cross-section, however, other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the elongate shaft 208 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongate shaft 208 may be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


Materials employed to manufacture the elongate shaft 208 may include any suitable biocompatible material. Examples may include metals, polymers, alloys, shape memory materials, etc. Other suitable materials known in the art may also be employed.


The system 200 may further include one or more ablation transducers 210 positioned adjacent the distal end region 211 of the elongate shaft 208. While FIG. 2 illustrates a single ablation transducer 210, it is contemplated that the modulation system 200 may include any number of ablation transducers desired, such as, but not limited to, one, two, three, or more. The ablation transducer 210 is configured to deliver acoustic energy (i.e., ultrasound waves) to the target region around the vessel wall 202. In some instances, the frequency of the ultrasound energy used for the procedure may be set so that the ablated area of tissue starts after it passes through the vessel wall 202 thereby minimizing potential heat damage of the vessel wall 202. While the ablation transducer 210 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, other acoustic, optical, electrical current, direct contact heating, or other heating.


In some embodiments, the ablation transducer 210 may have a cylindrical shape, however, those skilled in the art will appreciate that any suitable shapes such as, but not limited to, square, rectangular, polygonal, circular, oblong, or the like may also be contemplated. In some instances, such as when a cylindrical transducer is provided, the ablation transducer 210 may extend around the entire circumference of the elongate shaft 208. In an alternative embodiment, however, the ablation transducer 210 may extend partially around the circumference of the elongate shaft 208. For instance, the ablation transducer 210 may include an array of one or more transducers (not shown) positioned about the circumference of the elongate shaft 208. In other embodiments, the ablation transducer 210 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducer 210 may comprise a plurality of longitudinally spaced transducers. Those skilled in the art will appreciate that other suitable configurations of the ablation transducer 210 may also be contemplated without departing from the scope and spirit of the present disclosure.


The ablation transducer 210 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. In some instances, the ablation transducer 210 may include a layer of gold, or other conductive layer, disposed on the acoustically functional areas of the transducer 210 surface for connecting electrical leads to the ablation transducer 210. It is contemplated that the sides/edges of the transducer crystal may be free of conductive material so as not to “short circuit” the transducer 210. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducer 210 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


The ablation transducer 210 may have a radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 210. The acoustic energy from the radiating surface of the ablation transducer 210 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 210. For instance, the cylindrical shape of the ablation transducer 210 may provide a circumferential ablation pattern. In such an instance, the ablation transducer 210 may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 210 may be structured to radiate acoustic energy from two radiating surfaces.


In some embodiments, an electrical conductor, such as the element 102 (as shown in FIG. 1), may connect the ablation transducer 210 to a power and control unit (such as control unit 108 in FIG. 1). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongate shaft 208. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongate shaft 208. The electrical conductor(s) may provide electricity to the ablation transducer 210, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducer 210 in a direction generally perpendicular to the radiating surfaces of the transducer 210. As discussed above, acoustic energy radiates from the ablation transducer 210 in a pattern related to the shape of the transducer 210 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The system 200 can further include an expandable frame or basket 212 having a proximal end 213 and a distal end 215. The proximal end 213 of the expandable basket 212 may be affixed to the elongate shaft 208 proximal to the ablation transducer 210 and the distal end 215 may be affixed to elongate shaft 208 distal to the ablation transducer 210. However, it is contemplated that the expandable basket 212 may be positioned along any portion of the elongate shaft 208 desired. The proximal and distal ends 213, 215 of the basket 212 may be affixed to the elongate shaft 208 in any manner desired. For example, in some instances, a band or retaining element 218 may be used to secure the proximal and distal ends 213, 215. In other instances, the proximal and distal ends 213, 215 may be secured to the elongate shaft 208 with an adhesive or other suitable method. It is further contemplated that either or both of the proximal or distal ends 213, 215 may be secured to an element other than the elongate shaft 208 to facilitate expansion and/or contraction of the basket 212.


The expandable basket 212 may include one or more generally longitudinally extending struts 214a 214b , 214c , 214d , 214e , and 214f (collectively referred to hereinafter as struts 214). Although six struts 214 are shown in FIG. 2, it should be noted that any suitable number of struts 214 may be employed for desired purposes. Further, the expandable basket 212 may be configured to actuate between a first collapsed configuration and a second expanded configuration (shown in FIG. 2), which may include transition of the struts 214 from a generally straight configuration to a curved configuration, respectively. More particularly, the struts 214 in the collapsed configuration may extend and/or straighten to be generally parallel with or generally extend along the longitudinal length of the elongate shaft 208. In contrast, in the second expanded configuration, as shown in FIG. 2, the struts 214 may expand and/or curve like the ribs of an umbrella to surround the ablation transducer 210.


According to embodiments of the present disclosure, the expandable basket 212 may be adapted to align and position the ablation transducer 210 within the body lumen 204. In particular, the ultrasound transducer 210 may be positioned at the center of the expandable basket 212 in the expanded configuration. The centering of the ablation transducer 210 may result in better blood flow and accurate ablation geometry. To accomplish this, the expandable basket 212 may expand to meet the vessel wall 202, as discussed above. As shown in FIG. 2, the expandable basket 212 in the second expanded configuration may be arranged and positioned to surround the ablation transducer 210 circumferentially. In such an instance, the expandable basket 212 may facilitate circumferential ablation of the target region while allowing continued blood flow along the lumen 204. Therefore, the expandable basket 212 allows blood flow for cooling and for renal perfusion, unlike occlusive balloon approaches. In some other embodiments, although not shown, the expandable basket 212 may include one or more electrodes or transducers disposed along the struts 214 such as to contact the vessel wall 202, capable of creating one or more lesions during the ablation procedure.


The expandable basket 212 may be self-expandable, or may require external force to expand. A self-expandable basket 212 may be formed of any material or structure that is in a compressed state when force is applied and in an expanded state when force is released. Such material may include, for example, shape memory materials such as Nitinol or any other self-expandable material commonly known in the art. When employing such shape-memory materials, the expandable basket 212 may be heat set in the expanded state and then compressed to fit within a delivery sheath such as a guide sheath 222, for example. Upon reaching the target location within the body lumen 204, the guide sheath 222 can be retracted to deploy the expandable basket 212 in the expanded configuration. In another embodiment, a spring may be provided to effect expansion. Alternatively, external forces such as, but not limited to, pneumatic methods, compressed fluid, or the like may also be employed to expand the expandable basket 212.


In addition, the system 200 may include an actuation mechanism, for example, a pull wire, which may be employed to manipulate or actuate the expandable basket 212 between the collapsed and expanded configurations discussed above. In an embodiment, the pull wire may be attached to the proximal end 213 or distal end 215 of the basket 212 such that a push-pull mechanism of the pull wire may manipulate the expandable basket 212, thus actuating the expandable basket 212 between the collapsed and expanded configurations. To this end, the pull wire may be pulled proximally to pull the expandable basket 212, switching the expandable basket 212 to the expanded configurations. In addition, the pull wire may be pushed distally to switch the expandable basket 212 in the collapsed configuration. Alternatively, the pull wire may be pushed distally, which may allow the expandable basket 212 to move to the expanded state. In such instance, the pull wire may be pulled proximally, which may allow the expandable basket 212 to move to the collapsed state.


The system 200 can further include one or more temperature sensors 216a and 216b (collectively referred hereinafter as sensors 216) coupled to the expandable basket 212. Although two temperature sensors 216 are shown, it should be noted that any suitable number of temperature sensors 216 may employed for desired purposes. In addition, other suitable sensors such as impedance sensors may also be employed. As shown, the temperature sensors 216 may be placed on the struts 214 such as to contact the vessel wall 202 in the expanded configuration. The contact between the sensors 216 and the wall 202 may allow measuring of temperature of the vessel wall 202 during the ablation procedure. According to an example, the temperature sensors 216 may include one or more thermocouples, which may be employed to monitor wall 202 temperatures.


As discussed previously, the system 200 may include one or more guide sheaths 222 having a proximal end (not shown), a distal end 221, and a lumen extending therebetween. It should be noted that guide sheath 222 may include any suitable number of lumens as required or desired. The elongate shaft 208 may be slidably disposed within the lumen of the guide sheath 222. In some instances, the guide sheath 222 may also be used as an infusion sheath. For example, the distal end 221 of the guide sheath 222 may be open to allow an infusion fluid to exit. Saline or other suitable infusion fluid (not shown) may be flushed through the lumen 223. In an alternate embodiment, the infusion fluid may exit through the distal end region 211 of the elongate shaft 208, thereby displacing blood from and around the transducer 210. As the infusion fluid flows past the ablation transducer 210, the infusion fluid may provide convective cooling to the ablation transducer 210. It is further contemplated that by displacing and/or cooling the blood surrounding the transducer 210, blood damage, fouling of the transducer 210, and/or overheating of the transducer 210 may be reduced or eliminated. In some instances, this may allow the modulation system 200 to be operated at a higher power level, thus providing a shorter treatment and/or more effective modulation of the target tissue. In some embodiments, the modulation system may be structured to direct some or all of the infusion fluid along the inside of the vessel wall 202. While blood flowing through the vessel lumen 204 removed some heat from the wall tissue, the addition of a “cooling” flush via infusion fluid directed towards the vessel wall 202 may allow the application of more power for a shorter time period. It is contemplated that the infusion fluid may be introduced into the modulation system 200 before, during, or after ablation. Flow of the infusion fluid may begin before energy is supplied to the ablation transducer 210 and continue for the duration of the modulation procedure. In some instances, a separate infusion sheath (not explicitly shown) may be provided, as will be discussed in more detail below.


The infusion fluid may be saline or any other suitable infusion fluid. It is contemplated that the infusion fluid may be provided at a variety of different temperatures depending on the desired treatment. In some instances, the infusion fluid may be provided at room temperature, below room temperature, above room temperature, or at normal body temperature as desired. In addition, the salinity of the infusion fluid can be chosen to obtain desired electrical conductivity, such as to improve the discrimination capability of impedance monitoring. In some instances, such as when an imaging transducer is provided (not explicitly shown), a small amount of an imaging contrast material may be added to the infusion fluid to facilitate imaging of the vessel. Suitable examples of such imaging contrast material may include, but are not limited to fluorine, iodine, barium, or the like.


The modulation system 200 may be advanced through the vasculature in any manner known in the art. For example, system 200 may include a guidewire lumen to allow the system 200 to be advanced over a previously located guidewire, such as guidewire 220. In some embodiments, the modulation system 200 may be advanced, or partially advanced, within a delivery catheter such as the guide catheter 222. Once the transducer 210 of the modulation system 200 has been placed adjacent to the desired treatment area, positioning mechanisms, such as basket 212, may be deployed, if so provided. The transducer 210 may be connected to a power and control unit (such as control unit 108 in FIG. 1) by an electrical conductor. The transducer 210 may be connected to one or more control units, which may provide and/or monitor the system 200 with one or more parameters such as, but not limited to, frequency for performing the desired ablation procedure as well as imaging. In some embodiments, the electrical conductor may be disposed within a lumen of the elongate shaft 208. In other embodiments, the electrical conductor may be extended along an outside surface of the elongate shaft 208.


Once the modulation system 200 has been advanced to the treatment region, the expandable basket 212 may be moved to the expanded configuration to position and align the transducer 210 within the lumen 204. Further, an infusion fluid may be provided through a lumen of an infusion sheath. It is contemplated that energy may be supplied to the ablation transducer 210 before, during, and/or after the expandable basket 212 is shifted to the expanded configuration. The electrical conductor may provide electricity to the ablation transducer 210, and that energy may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducer 210 in a direction generally perpendicular to the radiating surfaces of the ablation transducer 210, generally in a pattern related to the shape of the ablation transducer 210. Although FIG. 1 illustrates a single electrical conductor 102, it is contemplated that the modulation system 200 may include any number of electrical conductors desired, such as, but not limited to, two, three, or more. For example, if multiple ablation transducers are provided, multiple electrical conductors may be required. The amount of energy delivered to the transducer 210 may be determined by the desired treatment as well as the feedback provided by monitoring devices, such as sensors 216.


In some instances, such as when a transducer does not extend around the entire circumference of the elongate shaft 208, the elongate shaft 208 may be rotated and additional ablation can be performed at multiple locations around the circumference of the lumen 204. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the lumen 204, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a distal micro-motor or by spinning a drive shaft from the proximal end. In other instances, the elongate shaft 208 may be indexed incrementally between desired orientations. In some embodiments, temperature sensors 216 can provide information that can be used to selectively turn on and off the ablation transducer 210 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongate shaft 208 is rotated at a given longitudinal location may be determined by the number, size and/or shape of the transducer 210 on the elongate shaft 208. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongate shaft 208 has been longitudinally repositioned, energy may once again be delivered to the transducer 210 to perform ablation and/or imaging as desired. If necessary, the elongate shaft 208 may be rotated to perform ablation around the circumference of the lumen 204 at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 200 may include multiple transducers 210 located at various positions along the length of the elongate shaft 208 such that a larger region may be treated without longitudinal displacement of the elongate shaft 208.


Referring now to FIGS. 3A and 3B, side views of a distal portion of another illustrative intravascular nerve modulation system 300 is depicted. The system 300 may include an elongate shaft 308 having a proximal end region (not shown), a distal end region 311, and a lumen 309 extending therebetween. The elongate shaft 308 may have similar form and function to the elongate shaft 208 discussed above.


The elongate shaft 308 may extend proximally from the distal end region 311 to the proximal end configured to remain outside of a patient's body. Although not shown, the proximal end of the elongate shaft 308 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 308 may be modified to form the modulation system 300 for use in various vessel diameters and various locations within the vascular tree.


The elongate shaft 308 may include one or more lumens extending therethrough. For instance, in the illustrated embodiment, the elongate shaft 308 may include a lumen 309 having a pull wire 320 slidably disposed therein. In some instances, the elongate shaft 308 may include a separate guidewire lumen and/or separate lumen(s) (not shown) for infusion of fluids or for other purposes such as introduction of a medical device, and so forth. The fluid may facilitate cooling of the modulation system 300 during the ablation procedure. Further, the lumen 309 may be configured in any way known in the art. For example, the lumen 309 may extend along the entire length of the elongate shaft 308 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 308 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations.


Further, the elongate shaft 308 has a relatively long, thin, flexible tubular configuration. In some instances, the elongate shaft 308 may have a generally circular cross-section, however, other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the elongate shaft 308 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongate shaft 308 may be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


Materials employed to manufacture the elongate shaft 308 may include any suitable biocompatible material. Examples may include metals, polymers, alloys, shape memory alloys, etc. Other suitable materials known in the art may also be employed.


The system 300 may further include one or more ablation transducers 310 positioned adjacent the distal end region 311 of the elongate shaft 308. While FIGS. 3A and 3B illustrate a single ablation transducer 310, it is contemplated that the modulation system 300 may include any number of ablation transducers desired, such as, but not limited to, one, two, three, or more. The ablation transducer 310 is configured to deliver acoustic energy (i.e., ultrasound waves) to the target region around a vessel wall. At the targeted tissue, the acoustic energy is converted to heat, resulting in protein denaturation and coagulative necrosis of the tissue and/or nerves at the target region. In some instances, the frequency of the ultrasound energy used for the procedure may be set so that the ablated area of tissue starts after it passes through the vessel wall thereby minimizing potential heat damage of the vessel wall. The ablation transducer 310 may be similar in form and function to ablation transducer 210 discussed above.


While the ablation transducer 310 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, other acoustic, optical, electrical current, direct contact heating, or other heating.


Further, the ablation transducer 310 may have a cylindrical shape, however, those skilled in the art will appreciate that any suitable shapes such as, but not limited to, square, rectangular, polygonal, circular, oblong, or the like may also be contemplated. In some instances, such as when a cylindrical transducer is provided, the ablation transducer 310 may extend around the entire circumference of the elongate tubular member 308. In an alternative embodiment, however, the ablation transducer 310 may extend partially around the circumference of the elongate tubular member 208. For instance, the ablation transducer 310 may include an array of one or more transducers (not shown) positioned about the circumference of the elongate tubular member 308. In other embodiments, the ablation transducer 310 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducer 310 may comprise a plurality of longitudinally spaced transducers. Those skilled in the art will appreciate that other suitable configurations of the ablation transducer 310 may also be contemplated without departing from the scope and spirit of the present disclosure.


The ablation transducer 310 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. In some instances, the ablation transducer 310 may include a layer of gold, or other conductive layer, disposed on the acoustically functional areas of the transducer 310 surface for connecting electrical leads to the ablation transducer 310. It is contemplated that the sides/edges of the transducer crystal may be free of conductive material so as not to “short circuit” the transducer 310. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducer 310 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


Although not shown, the ablation transducer 310 may have a radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 310. The acoustic energy from the radiating surface of the ablation transducer 310 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 310. For instance, the cylindrical shape of the ablation transducer 310 may provide a circumferential ablation pattern. In such an instance, the ablation transducer 310 may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 310 may be structured to radiate acoustic energy from two radiating surfaces.


In some embodiments, an electrical conductor such as the element 102 (as shown in FIG. 1) may connect the ablation transducer 310 to a control unit (such as control unit 108 in FIG. 1). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongated shaft 308. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongated shaft 308. The electrical conductor(s) 102 may provide electricity to the ablation transducer 310, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducer 310 in a direction generally perpendicular to the radiating surfaces of the transducer 310. As discussed above, acoustic energy radiates from the ablation transducer 310 in a pattern related to the shape of the transducer 310 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The system 300 can further include an expandable basket 312 having a proximal end 313 and a distal end 315. The proximal end 313 may be affixed adjacent the distal end region 311 of the elongate shaft 308 and the distal end 315 may be affixed to an end cap 318 positioned distal of a distal end of the ablation transducer 310. The end cap 318 may have a rounded distal portion 302, which may avoid any injury to the body tissue while the system 300 is introduced in a body lumen.


The expandable basket 312 may include two (or more) generally longitudinally extending struts 314a and 314b (collectively referred hereinafter as struts 314). Although two struts 314 are visible in FIGS. 3A and 3B, it should be noted that any suitable number of struts 314 may be employed for desired purposes. Further, the expandable basket 312 is configured to actuate between a first collapsed configuration and a second expanded configuration, which may include transition of the struts 314 from a generally straight or slightly bowed configuration (as shown in FIG. 3A) to a curved configuration (as shown in FIG. 3B), respectively. More particularly, the struts 314 in the collapsed configuration may extend and/or straighten to be generally parallel with or generally extend along the longitudinal length of the elongate shaft 308, as shown in FIG. 3A. In contrast, in the second expanded configuration, as shown in FIG. 3B, the struts 314 may expand and/or curve like the ribs of an umbrella to surround the ablation transducer 310. Further, the expandable basket 312 may have similar form and function to the expandable basket 212 discussed above.


According to embodiments of the present disclosure, the expandable basket 312 can be adapted to align and position the ablation transducer 310 within a body lumen. To accomplish this, the expandable basket 312 may expand to meet the vessel wall. As shown in FIG. 3B, the expandable basket 312 may expand to the second expanded configuration, which may be arranged and positioned to contact the vessel wall and may position the ablation transducer 310 approximately in the center of the lumen. In such an instance, the expandable basket 312 may facilitate circumferential ablation of the target region while allowing continued blood flow along the lumen. In some other embodiments, although not shown, the expandable basket 312 may include one or more electrodes or transducers disposed along the struts 314 capable of creating lesion(s) while being in contact with the vessel wall.


In the present embodiment, the expandable basket 312 may include an actuation mechanism for moving the basket 312 between the collapsed and expanded positions. For example, the pull wire 320 may be employed to manipulate or actuate the expandable basket 312 between the collapsed and expanded configurations. In an embodiment, the pull wire 320 may be distally attached to the end cap 318 such that a push-pull mechanism of the pull wire 320 may manipulate the expandable basket 312, thus actuating the expandable basket 312 between the collapsed and expanded configurations, respectively. To this end, the pull wire 320, while being affixed to the end cap 318, may be pulled proximally to pull the expandable basket 312, switching the expandable basket 312 to the expanded configurations, as shown in FIG. 3B. In other embodiments, the pull wire 320 may be affixed to the distal end 315 of the basket 312. In this instance, distal actuation of the pull wire 320 may expand the basket 312.


While not explicitly shown, the system 300 may include one or more temperature sensors coupled to the expandable basket 312. In addition, other suitable sensors such as impedance sensors may also be employed. Contact between the sensors and the lumen wall may allow measuring of temperature of the lumen wall during the ablation procedure. According to an example, the temperature sensors may include one or more thermocouples, which may be employed to monitor wall temperatures.


While not explicitly shown, the system 300 can also include one or more guide sheaths having a proximal end, a distal end, and a lumen extending therebetween. The guide sheath may have similar form and function to the guide sheath 222 as discussed above. The elongate shaft 308 may be slidably disposed within the lumen of the guide sheath. In some instances, the guide sheath may also be used as an infusion sheath. For example, the distal end of the guide sheath may be open to allow an infusion fluid to exit. Saline or other suitable infusion fluid (not shown) may be flushed through the lumen.


In an alternate embodiment, an infusion fluid may exit through the distal end region 311 of the elongate shaft 308, thereby displacing blood from and around the transducer 310. As the infusion fluid flows past the ablation transducer 310, the infusion fluid may provide convective cooling to the ablation transducer 310. It is further contemplated that by displacing and/or cooling the blood surrounding the transducer 310, blood damage, fouling of the transducer 310, and/or overheating of the transducer 310 may be reduced or eliminated. In some instances, this may allow the modulation system 300 to be operated at a higher power level, thus providing a shorter treatment and/or more effective modulation of the target tissue. In some embodiments, the modulation system 300 may be structured to direct some or all of the infusion fluid along the inside of the vessel wall. While blood flowing through the vessel lumen removed some heat from the wall tissue, the addition of a “cooling” flush via infusion fluid directed towards the vessel wall may allow the application of more power for a shorter time period. It is contemplated that the infusion fluid may be introduced into the modulation system 300 before, during, or after ablation. Flow of the infusion fluid may begin before energy is supplied to the ablation transducer 310 and continue for the duration of the modulation procedure. In some instances, a separate infusion sheath (not explicitly shown) may be provided, as will be discussed in more detail below.


Although not shown, the modulation system 300 may further include radiopaque marker bands, fixed guidewire tip, a guidewire lumen, and/or other components to facilitate the use and advancement of the system 300 within the vasculature. In addition, the system 300 can further include one or more sensors (e.g. temperature, impedance, etc.) for monitoring the ablation procedure. It should be noted that any suitable number of temperature sensors may employed for desired purposes. In addition, other suitable sensors such as impedance sensors may also be employed.


Turning now to FIG. 4, a side view of a distal portion of another illustrative intravascular nerve modulation system 400 is depicted. The system 400 may include an elongate shaft 408 having a proximal end (not shown), a distal end region 411, and a lumen 409 extending therebetween. The elongate shaft 408 may extend proximally from the distal end region 411 to the proximal end configured to remain outside of a patient's body. Although not shown, the proximal end of the elongate shaft 408 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 408 may be modified to form the modulation system 400 for use in various vessel diameters and various locations within the vascular tree. The elongate shaft 408 may be similar in form and function to elongate shafts 208, 308 discussed above.


The elongate shaft 408 may include one or more lumens extending therethrough. For instance, in the illustrated embodiment, the elongate shaft 408 may include a lumen 409 for receiving a guidewire therethrough. In some instances, the elongate shaft 408 may include a separate guidewire lumen and/or separate lumen(s) (not shown) for infusion of fluids or for other purposes such as introduction of a medical device, and so forth. The fluid may facilitate cooling of the modulation system 400 during the ablation procedure. Further, the lumen 409 may be configured in any way known in the art. For example, the lumen 409 may extend along the entire length of the elongate shaft 408 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 408 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. Further, the elongate shaft 408 has a relatively long, thin, flexible tubular configuration. In some instances, the elongate shaft 408 may have a generally circular cross-section, however, other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the elongate shaft 408 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongate shaft 408 may be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


Materials employed to manufacture the elongate shaft 408 may include any suitable biocompatible material. Examples may include metals, polymers, alloys, shape memory alloys, etc. Other suitable materials known in the art may also be employed.


The system 400 can further include one or more ablation transducers 410 positioned adjacent the distal end region 411 of the elongate shaft 408. While FIG. 4 illustrates single ablation transducer 410, it is contemplated that the modulation system 400 may include any number of ablation transducers desired, such as, but not limited to, one, two, three, or more. The ablation transducer 410 is configured to deliver acoustic energy (i.e., ultrasound waves) to the target region around the vessel wall. At the targeted tissue, the acoustic energy is converted to heat resulting in protein denaturation and coagulative necrosis of the tissue and/or nerves at the target region. In some instances, the frequency of the ultrasound energy used for the procedure may be set so that the ablated area of tissue starts after it passes through the vessel wall thereby minimizing potential heat damage of the vessel wall. The ablation transducer 410 may be similar in form and function to ablation transducers 210, 310 discussed above.


While the ablation transducer 410 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, other acoustic, optical, electrical current, direct contact heating, or other heating.


Further, the ablation transducer 410 may have a cylindrical shape, however, those skilled in the art will appreciate that any suitable shapes such as, but not limited to, square, rectangular, polygonal, circular, oblong, or the like may also be contemplated. In some instances, such as when a cylindrical transducer is provided, the ablation transducer 410 may extend around the entire circumference of the elongate tubular member 408. In an alternative embodiment, however, the ablation transducer 410 may extend partially around the circumference of the elongate tubular member 408. For instance, the ablation transducer 410 may include an array of one or more transducers (not shown) positioned about the circumference of the elongate tubular member 408. In other embodiments, the ablation transducer 410 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducer 410 may comprise a plurality of longitudinally spaced transducers. Those skilled in the art will appreciate that other suitable configurations of the ablation transducer 410 may also be contemplated without departing from the scope and spirit of the present disclosure.


The ablation transducer 410 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. In some instances, the ablation transducer 410 may include a layer of gold, or other conductive layer, disposed on the acoustically functional areas of the transducer 410 surface for connecting electrical leads to the ablation transducer 410. It is contemplated that the sides/edges of the transducer crystal may be free of conductive material so as not to “short circuit” the transducer 410. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducer 210 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


Although not shown, the ablation transducer 410 may have a radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 410. The acoustic energy from the radiating surface of the ablation transducer 410 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 410. For instance, the cylindrical shape of the ablation transducer 410 may provide a circumferential ablation pattern. In such an instance, the ablation transducer 410 may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 410 may be structured to radiate acoustic energy from two radiating surfaces.


In some embodiments, an electrical conductor such as the element 102 (as shown in FIG. 1) may connect the ablation transducer 410 to a control unit (such as control unit 108 in FIG. 1). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongated shaft 408. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongated shaft 408. The electrical conductor(s) may provide electricity to the ablation transducer 410, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducer 410 in a direction generally perpendicular to the radiating surfaces of the transducer 410. As discussed above, acoustic energy radiates from the ablation transducer 410 in a pattern related to the shape of the transducer 410 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The system 400 can further include an expandable basket 412 having a proximal end 413 and a distal end 415. The proximal end 413 of the expandable basket 412 may be affixed adjacent the distal end region 411 of the elongate shaft 408 and the distal end 415 may be affixed to an end cap 418 positioned distal of a distal end of the ablation transducer 410. The end cap 418 may have a rounded distal portion 402, which may avoid any injury to the body tissue while the system 400 is introduced in a body lumen.


The expandable basket 412 may include two (or more) generally longitudinally extending struts 414a and 414b (collectively referred hereinafter as struts 414). Although two struts 414 are visible in FIG. 4, it should be noted that any suitable number of struts 414 may be employed for desired purposes. Further, the expandable basket 412 is configured to actuate between a first collapsed configuration and a second expanded configuration, which may include transition of the struts 414 from a generally straight or slightly bowed configuration to a curved configuration (shown in FIG. 4), respectively. More particularly, the struts 414 in the collapsed configuration may extend and/or straighten generally parallel (not explicitly shown) along the longitudinal length of the elongate shaft 408 similar to struts 314 shown in FIG. 3A. In contrast, in the second expanded configuration (shown in FIG. 4), the struts 414 may expand and/or curve like the ribs of an umbrella to surround the ablation transducer 410. Further, the expandable basket 412 may have similar form and function to the expandable baskets 212, 312 discussed above.


According to embodiments of the present disclosure, the expandable basket 412 can be adapted to align and position the ablation transducer 410 within a body lumen. To accomplish this, the expandable basket 412 may expand to meet the vessel wall. As shown in FIG. 4, the expandable basket 412 may expand to the second expanded configuration, which may be arranged and positioned to contact the vessel wall and may position the ablation transducer 410 approximately in the center of the lumen. In such an instance, the expandable basket 412 may facilitate circumferential ablation of the target region while allowing continued blood flow along the lumen. In some other embodiments, although not shown, the expandable basket 412 may include one or more electrodes or transducers disposed along the struts 414 capable of creating lesion(s) while being in contact with the vessel wall, or to monitor temperature or other characteristics.


In present embodiment, the expandable basket 412 may be self-expandable and may not require external force to expand. Self-expandable expandable basket 412 may be formed of any material or structure that is in a compressed state when force is applied and in an expanded state when force is released. Such material may include, for example, shape memory alloys such as Nitinol or any other self-expandable material commonly known in the art. When employing such shape-memory materials, the expandable basket 412 may be heat set in the expanded state and then compressed to fit within a delivery sheath such as a guide sheath 422, for example. Upon reaching the target location within the body lumen, the infusion sheath 422 can be retracted proximally to deploy the expandable basket 412 in the expanded configuration. In some embodiment, a spring may be provided to effect expansion. Alternatively, external forces such as, but not limited to, pneumatic methods, compressed fluid, or the like may also be employed to expand the expandable basket 412.


Although not shown, the system 400 may include one or more temperature or other suitable sensors coupled to the expandable basket 412. Other suitable sensors may include impedance sensors or other sensors for monitoring the ablation procedure. According to an example, the sensors may be placed on the struts 414 such as to contact the vessel wall in the expanded configuration. The contact between the sensors and the wall may allow for measuring of temperature or other expected physiological parameter of the vessel wall during the ablation procedure. For example, the temperature sensor may include one or more thermocouple, which may be employed to monitor wall temperatures.


In some embodiments, ultrasound imaging may be used to monitor the ablation procedure. It is contemplated that ultrasound imaging may be used to monitor changes deeper in the tissue and adjust the therapy parameter as needed during the ablation procedure. In some instances, this may allow for the identification of nearby vessels that could be removing heat from the targeted tissue around it, thereby allowing increased power delivery, and thus increased heating, to be concentrated in the targeted location.


As discussed above, the system 400 may include a guide sheath 422 having a proximal end (not shown), a distal end 421, and a lumen 423 extending therebetween. The guide sheath may have similar form and function to the guide sheath 222 as discussed above. The elongate shaft 408 may be slidably disposed within the lumen 423 of the guide sheath 422. In some instances, the guide sheath 422 may also be used as an infusion sheath. For example, the distal end 421 of the guide sheath 422 may be open to allow an infusion fluid to exit. Saline or other suitable infusion fluid (not shown) may be flushed through the lumen.


In an alternate embodiment, an infusion fluid may exit through the distal end region 411 of the elongate shaft 408, thereby displacing blood from and around the transducer 410. As the infusion fluid flows past the ablation transducer 410, the infusion fluid may provide convective cooling to the ablation transducer 410. It is further contemplated that by displacing and/or cooling the blood surrounding the transducer 410, blood damage, fouling of the transducer 410, and/or overheating of the transducer 410 may be reduced or eliminated. In some instances, this may allow the modulation system 400 to be operated at a higher power level, thus providing a shorter treatment and/or more effective modulation of the target tissue. In some embodiments, the modulation system 400 may be structured to direct some or all of the infusion fluid along the inside of the vessel wall. While blood flowing through the vessel lumen removed some heat from the wall tissue, the addition of a “cooling” flush via infusion fluid directed towards the vessel wall may allow the application of more power for a shorter time period. It is contemplated that the infusion fluid may be introduced into the modulation system 400 before, during, or after ablation. Flow of the infusion fluid may begin before energy is supplied to the ablation transducer 410 and continue for the duration of the modulation procedure. In some instances, a separate infusion sheath (not explicitly shown) may be provided, as will be discussed in more detail below.


While not explicitly shown, the modulation system 400 may further include radiopaque marker bands, guidewire, a guidewire lumen, and/or other components to facilitate the use and advancement of the system 400 within the vasculature.



FIG. 5 illustrates a side view of a distal portion of another example of an intravascular nerve modulation system 500. The system 500 is disposed within a body lumen 504 having a vessel wall 502 surrounded by local body tissue (not shown). The local body tissue may comprise adventitia and connective tissues, nerves, fat, fluid, etc., in addition to the muscular vessel wall 502. A portion of the surrounding tissue may constitute the desired treatment region. For instance, one or more renal nerves (not shown) may extend substantially longitudinally along the outer wall of the body lumen 504.


The system 500 may include an elongate shaft 508 having a distal end region 511. The elongate shaft 508 may extend proximally from the distal end region 511 to a proximal end configured to remain outside of a patient's body. The proximal end of the elongate shaft 508 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 508 may be modified to form a modulation system 500 for use in various vessel diameters and various locations within the vascular tree. The elongate shaft 508 may further include one or more lumens extending therethrough. For example, the elongate shaft 508 may include a guidewire lumen and/or one or more auxiliary lumens. In some instances, the elongate shaft 508 may include an infusion lumen, as will be discussed in more detail below. The lumens may be configured in any way known in the art. For example, the guidewire lumen may extend the entire length of the elongate shaft 508 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 508 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 500 may further include temperature sensors/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath, centering basket, and/or other components to facilitate the use and advancement of the system 500 within the vasculature.


In some embodiments, the elongated catheter shaft 508 may have a relatively long, thin, flexible tubular configuration. In some instances, the elongated shaft 508 may have a generally circular cross-section, however, other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the elongated shaft 508 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongated shaft 508 may be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery. Materials employed to manufacture the elongate shaft 508 may include any suitable biocompatible material. Examples may include metals, polymers, alloys, shape memory alloys, etc. Other suitable materials known in the art may also be employed.


The elongated shaft 508 may include a first tubular member 522 and a second tubular member 524. The first tubular member 522 may have a proximal end (not shown), a distal end 521 and a lumen 528 extending between the proximal end and the distal end. In some embodiments, the lumen 528 may be an infusion lumen and may be in fluid communication with an infusion fluid source configured to remain outside of a patient's body. The second tubular member 524 may have a proximal end (not shown), a distal end 530, and a lumen 509 extending therebetween. In some embodiments, the lumen 509 of the second tubular member may be a guidewire lumen for receiving a guidewire 520 therein. The distal end region 532 of the second tubular member 524 extends distally beyond the distal end 521 of the first tubular member 522. In some embodiments, the second tubular member 524 may be disposed within or partially within the lumen 528 of first tubular member 522. In some instances, the second tubular member 524 may be coaxially disposed within the first tubular member 522. In other instances, the longitudinal axis of the second tubular member 524 may be offset from the first tubular member 522. In some instances, the first tubular member 522 and the second tubular member 524 may be advanced through the vasculature together.


In addition, the system 500 may include one or more ablation transducers 510 positioned adjacent to the distal end region 532 of the second tubular member 524. While the ablation transducer 510 is shown and described as being positioned on the second tubular member 524, it is contemplated that in some instances, ablation transducers may be provided on the first tubular member 522. While FIG. 5 illustrates one ablation transducer 510, it is contemplated that the modulation system 500 may include any number of ablation transducers desired, such as, but not limited to, one, two, three, or more.


The ablation transducer 510 is configured to deliver acoustic energy (i.e., ultrasound waves) to the target region around the vessel wall 502. At the targeted tissue, the acoustic energy is converted to heat resulting in protein denaturation and coagulative necrosis of the tissue and/or nerves at the target region. In some instances, the frequency of the ultrasound energy used for the procedure may be set so that the ablated area of tissue starts after it passes through the vessel wall 502 thereby minimizing potential heat damage of the vessel wall 502.


While the ablation transducer 510 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, other acoustic, optical, electrical current, direct contact heating, or other heating.


Further, the ablation transducer 510 may have a cylindrical shape, however, those skilled in the art will appreciate that any suitable shapes such as, but not limited to, square, rectangular, polygonal, circular, oblong, or the like may also be contemplated. In some instances, such as when a cylindrical transducer is provided, the ablation transducer 510 may extend around the entire circumference of the elongate shaft 508. In an alternative embodiment, however, the ablation transducer 510 may extend partially around the circumference of the elongate shaft 508. For instance, the ablation transducer 510 may include an array of one or more transducers (not shown) positioned about the circumference of the elongate shaft 508. In other embodiments, the ablation transducer 510 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducer 510 may comprise a plurality of longitudinally spaced transducers. Those skilled in the art will appreciate that other suitable configurations of the ablation transducer 510 may also be contemplated without departing from the scope and spirit of the present disclosure.


The ablation transducer 510 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. In some instances, the ablation transducer 510 may include a layer of gold, or other conductive layer, disposed on the acoustically functional areas of the transducer 510 surface for connecting electrical leads to the ablation transducer 510. It is contemplated that the sides/edges of the transducer crystal may be free of conductive material so as not to “short circuit” the transducer 510. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducer 510 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


Although not shown, the ablation transducer 510 may have a radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 510. The acoustic energy from the radiating surface of the ablation transducer 510 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 510. For instance, the cylindrical shape of the ablation transducer 510 may provide a circumferential ablation pattern. In such an instance, the ablation transducer 510 may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 510 may be structured to radiate acoustic energy from two radiating surfaces.


In some embodiments, an electrical conductor such as the element 102 (as shown in FIG. 1) may connect the ablation transducer 510 to a control unit (such as control unit 108 in FIG. 1). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongated shaft 508. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongated shaft 508. The electrical conductor(s) may provide electricity to the ablation transducer 510, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducer 510 in a direction generally perpendicular to the radiating surfaces of the transducer 510. As discussed above, acoustic energy radiates from the ablation transducer 510 in a pattern related to the shape of the transducer 510 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The system 500 can further include an expandable frame or basket 512 having a proximal end 513 and a distal end 515. The proximal end 513 of the basket 512 may be affixed to the elongate shaft 508 proximal to the transducer 510. In some instances, the proximal end 513 of the basket 512 may be secured to the first tubular member 522, although this is not required. The distal end 515 of the basket 512 may be affixed to the elongate shaft 508 distal to the transducer 510. In some instances, the distal end 515 of the basket 512 may be secured to the second tubular member 524, although this is not required. The proximal and distal ends 513, 515 of the basket 512 may be affixed to the elongate shaft 508 in any manner desired. For example, in some instances, a band or retaining element may be used to secure the proximal and distal ends 513, 515. In other instances, the proximal and distal ends 513, 515 may be secured to the elongate shaft 508 with an adhesive or other suitable method. It is further contemplated that either or both of the proximal or distal ends 513, 515 may be secured to an element other than the elongate shaft 508 to facilitate expansion and/or contraction of the basket 512.


The expandable basket 512 may include one or more longitudinally extending struts 514a , 514b , 514c , 514d , 514e , and 514f (collectively referred to hereinafter as struts 514). Although six struts 514 are shown in FIG. 5, it should be noted that any suitable number of struts 514 may be employed for desired purposes. Further, the expandable basket 512 may be configured to actuate between a first collapsed configuration and a second expanded configuration (shown in FIG. 5), which may include transition of the struts 514 from a generally straight configuration to a curved configuration, respectively. More particularly, the struts 514 in the collapsed configuration may extend and/or straighten to be generally parallel with or generally extend along the longitudinal length of the elongate shaft 508. In contrast, in the second expanded configuration, the struts 514 may expand and/or curve like the ribs of an umbrella to surround the ablation transducer 510.


According to embodiments of the present disclosure, the expandable basket 512 is adapted to align and position the ablation transducer 510 within the body lumen 504. To accomplish this, the expandable basket 512 may expand to meet the vessel wall 502, as discussed above. As shown in FIG. 5, the expandable basket 512 in the second expanded configuration may be arranged and positioned to generally surround the ablation transducer 510 circumferentially to approximately center the ablation transducer 510 within the lumen 504. In such an instance, the expandable basket 512 may facilitate circumferential ablation of the target region while allowing continued blood flow along the lumen 504. In some other embodiments, although not shown, the expandable basket 512 may include one or more electrodes, sensors, or transducers disposed along the struts 514 such as to contact the vessel wall 502, thereby monitoring a particular characteristic or creating one or more lesions during the ablation procedure.


The expandable basket 512 may be self-expandable, or may require external force to expand. A self-expandable expandable basket 512 may be formed of any material or structure that is in a compressed state when force is applied and in an expanded state when force is released. Such material may include, for example, shape memory alloys such as Nitinol or any other self-expandable material commonly known in the art. When employing such shape-memory materials, the expandable basket 512 may be heat set in the expanded state and then compressed to fit within a delivery sheath such as a guide sheath (not explicitly shown), for example. Upon reaching the target location within the body lumen 504, the guide sheath can be retracted to deploy the expandable basket 512 in the expanded configuration. The guide sheath may have similar form and function to the guide sheath 222 as shown in FIG. 2.


In addition, the system 500 may include an actuation mechanism, for example, a pull wire, which may be employed to manipulate or actuate the expandable basket 512 between the collapsed and expanded configurations discussed above. Although not shown, an actuation element such as a wire may be attached to the proximal end 513 or distal end 515 of the expandable basket 512 such that a push-pull mechanism of the wire may manipulate the expandable basket 512, thus actuating the expandable basket 512 between the collapsed and expanded configurations, respectively. In some instances, the wire may be pulled proximally to compress the length of expandable basket 512, switching the expandable basket 512 to the expanded configurations. In addition, the wire may be pushed distally to elongate the expandable basket 512 into the collapsed configuration. Alternatively, the wire may be pushed distally, compress the length of the expandable basket 512 thus expanding the struts 514 into the expanded state. In such an instance, the wire may be pulled proximally, which may allow the expandable basket 512 to elongate the basket 512 into the collapsed state.


The system can further include one or more temperature sensors 516a and 516b (collectively referred to hereinafter as sensors 516) coupled to the expandable basket 512. Although two temperature sensors 516 are shown, it should be noted that any suitable number of temperature sensors 516 may employed for desired purposes. In addition, other suitable sensors, such as impedance sensors, may also be employed. As shown, the temperature sensors 516 may be placed on the struts 514 such as to contact the vessel wall 502 in the expanded configuration. The contact between the sensors 516 and the wall 502 may allow measuring of temperature of the vessel wall 502 during the ablation procedure. According to an example, the temperature sensors 516 may include one or more thermocouple, which may be employed to monitor wall 502 temperatures.


Further, the system 500 may include one or more infusion sheaths 518 having a proximal end 534, a distal end 536 and a lumen 538 extending therethrough. In some embodiments, the proximal end 534 of the infusion sheath 518 may be secured to the catheter shaft 508 adjacent to the distal end 521 of the first tubular member 522. It is contemplated that the infusion sheath 518 may be attached either temporarily or permanently to the catheter shaft 508. Suitable attachment means may include adhesives, heat shrinking, or other suitable means known to those skilled in the art. The distal end 536 of the infusion sheath 518 may be open to allow an infusion fluid 506 to exit the sheath 518. The infusion sheath 518 may be configured to extend distally from the distal end 521 of the first tubular member 522 such that a portion of the distal end region 532 of the second tubular member 524 is disposed within or partially within the lumen 538 of the infusion sheath 518. In some instances, the distal end 530 of the second tubular member 524 may extend beyond the distal end 536 of the infusion sheath 518, but this is not required. In some instances, the ablation transducer 510 may be disposed within or partially within the lumen 538 of the infusion sheath 518, although this is not required. In some instances, the lumen 538 of the infusion sheath may be in fluid communication with the lumen 528 of the first tubular member 522 for receiving an infusion fluid. Saline or other suitable infusion fluid 506 may be flushed through the infusion lumen 528 and into the lumen 538 of the infusion sheath 518. The infusion fluid 506 may displace blood from around the transducer 510. As the infusion fluid 506 flows past the ablation transducer 510, the infusion fluid 506 may provide convective cooling to the transducer 510. It is further contemplated that by displacing and/or cooling the blood surrounding the transducer 510, blood damage, fouling of the transducer 510, and/or overheating of the transducer 510 may be reduced or eliminated. In some instances, this may allow the modulation system 500 to be operated at a higher power level, thus providing a shorter treatment and/or more effective modulation of the target tissue. In some embodiments, the infusion sheath 518 may be structured to direct some or all of the infusion fluid 506 along the inside of the vessel wall 502. While blood flowing through the vessel lumen 504 removed some heat from the wall tissue, the addition of a “cooling” flush via infusion fluid 506 directed towards the vessel wall 502 may allow the application of more power for a shorter time period. It is contemplated that the infusion fluid 506 may be introduced into the modulation system 500 before, during, or after ablation. Flow of the infusion fluid 506 may begin before energy is supplied to the ablation transducer 510 and continue for the duration of the modulation procedure.


It is contemplated that the infusion sheath 518 may be formed from a material that is sonically translucent such that the ultrasound energy may pass through the infusion sheath 518. In some instances, the infusion sheath may be formed from a polymeric material having a low loss proper acoustic impedance. It is contemplated that the infusion sheath 518 may have a thickness such that significant attenuation of the ultrasound energy is avoided.


The infusion fluid 506 may be saline or any other suitable infusion fluid. It is contemplated that the infusion fluid 506 may be provided at a variety of different temperatures depending on the desired treatment. In some instances, the infusion fluid 506 may be provided at room temperature, below room temperature, above room temperature, or at normal body temperature as desired. In some instances, such as when an imaging transducer is provided (not explicitly shown), a small amount of an imaging contrast material may be added to the infusion fluid 506 to facilitate imaging of the vessel. Suitable examples of such imaging contrast material may include, but are not limited to fluorine, iodine, barium, or the like.


In some embodiments, the infusion sheath 518 may be configured to transition between an expanded state and a collapsed state. It is contemplated that the infusion sheath 518 may be self-expanding or may be expanded using an actuation mechanism


Turning now to FIG. 6, a cross-section of a distal portion of another illustrative intravascular nerve modulation system 600 is depicted. The system 600 may include a hollow cylindrical ablation transducer 610, which may allow for cooling fluid 614 to pass through the lumen 609 of the transducer 610. The system 600 may further include an elongate catheter shaft 602 a support mandrel 612, and flexible mount members 606 and 616.


The catheter shaft 602 may include a first lumen 605, which may extend between a proximal end (not shown) and a distal end 603. The catheter shaft 602 is configured to be introduced within a body lumen (for example, body lumen 204 of FIG. 2). Although not shown, the proximal end of catheter shaft 602 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the catheter shaft 602 may be modified to form the modulation system 600 for use in various vessel diameters and various locations within the vascular tree.


In the illustrated embodiment, the first lumen 605 may be configured to slidably receive a guidewire 620 therein. In some embodiments, a guide sheath similar to guide sheaths discussed above (not explicitly shown) may be used in addition to or in place of guidewire 620 to facilitate advancement of the system 600. In addition, the first lumen 605 may be employed for infusion of a fluid 614. Alternatively, the catheter shaft 602 may include separate lumen(s) (not shown) for infusion of fluid 614 or for other purposes such as introduction of a medical device, and so forth. The fluid 614 may facilitate cooling of the modulation system 600 and/or vessel wall during the ablation procedure. Further, the first lumen 605 may be configured in any way known in the art. For example, the first lumen 605 may extend along the entire length of the catheter shaft 602 such as in an over-the-wire catheter or may extend only along a distal portion of the catheter shaft 602 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations.


Further, the catheter shaft 602 may have a relatively long, thin, flexible tubular configuration. In some instances, the catheter shaft 602 may have a generally circular cross-section, however, other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the catheter shaft 602 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the catheter shaft 602 may be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


Materials employed to manufacture the catheter shaft 602 may include any suitable biocompatible material. Examples may include metals, polymers, alloys, shape memory alloys, etc. Other suitable materials known in the art may also be employed.


While FIG. 6 illustrates a single ablation transducer 610, it is contemplated that the modulation system 600 may include any number of ablation transducers desired, such as, but not limited to two, three, or more. The ablation transducer 610 is configured to deliver acoustic energy (i.e., ultrasound waves) to a target tissue. At the targeted tissue, the acoustic energy is converted to heat resulting in protein denaturation and coagulative necrosis of the tissue and/or nerves at the target region. In some instances, the frequency of the ultrasound energy used for the procedure may be set so that the ablated area of tissue starts after it passes through the vessel wall thereby minimizing potential heat damage of the vessel wall.


As shown, the ablation transducer 610 may have a hollow cylindrical shape that may define a lumen 609. The lumen 609 may remain in fluid communication with the first lumen 605 and the through holes 607. Those skilled in the art, however, will appreciate that any suitable shape such as, but not limited to, square, rectangular, polygonal, circular, oblong, or the like may also be contemplated.


While the ablation transducer 610 is described as an ultrasonic transducer, it is contemplated that other methods and devices for raising the temperature of the target tissue (e.g., nerve) may be used, such as, but not limited to: radiofrequency, microwave, other acoustic, optical, electrical current, direct contact heating, or other heating.


The ablation transducer 610 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. In some instances, the ablation transducer 610 may include a layer of gold, or other conductive layer, disposed on the acoustically functional areas of the transducer 610 surface for connecting electrical leads to the ablation transducer 610. It is contemplated that the sides/edges of the transducer crystal may be free of conductive material so as not to “short circuit” the transducer 610. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducer 610 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


Although not shown, the ablation transducer 610 may have a radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 610. The acoustic energy from the radiating surface of the ablation transducer 610 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducer 610. For instance, the cylindrical shape of the ablation transducer 610 may provide a circumferential ablation pattern. In such an instance, the ablation transducer 610 may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducer 610 may be structured to radiate acoustic energy from two radiating surfaces.


Further, the ablation transducer 610 can be operably coupled to the distal end 603 of the catheter shaft 602 through a first flexible mount member 606. As shown, the first flexible mount member 606 may have a generally trapezoidal shape, however, it should be noted that the flexible mount may take on any suitable shape such as rectangular, cylindrical, triangular, or the like. The first flexible mount member 606 may be affixed to the distal end 603 of the catheter shaft 602 at a proximal end 624, while being coupled to a proximal end 618 of the ablation transducer 610 at a distal end 626 thereof. In some instances, the first flexible mount 606 may include a proximal end 624 sized and shaped to be received within the lumen 605 of the catheter shaft 602, although this is not required. In some instances, the first flexible mount member 606 may be positioned along and secured to an outside surface of the catheter shaft 602. It is contemplated that the first flexible mount 606 may be secured to the catheter shaft 602 using any method desired, such as, but not limited to, adhesives, thermal bonding, heat shrinking, etc. The distal end 626 of the first flexible mount 606 may be secured to the proximal end 618 of the transducer 610 through a flexible adhesive 608a. In some instances, the flexible adhesive 608a may comprise silicone or other like materials.


Referring to FIGS. 6 and 7, the first flexible mount 606 may include a central lumen having an inner surface 628. The inner surface 628 may be fixedly secured to the proximal end 630 of the support mandrel 612 through any means desired. The first flexible mount 606 may further include one or more through holes 607a , 607b , 607c, 607d (collectively 607) extending from the proximal end 624 to the distal end 626 of the mount 606. For clarity, not all of the through holes 607 have been numbered in FIG. 7. The through holes 607 may be sized and shaped to allow an infusion fluid 614 to pass through the flexible mount 606. It is contemplated that the first flexible mount 606 may include any number of through holes desired, such as, but not limited to, one, two, three, four, or more. It is further contemplated that the through holes 607 may be arranged in any manner desired. For example, in some instances, the through holes 607 may be randomly scattered about the cross-section of the first flexible mount 606. In other instances, the through holes 607 may be arranged in a pattern. While FIG. 7 illustrates the through holes 607 as a single ring of holes, it is contemplated that there may be multiple rings (or other geometric configurations) across the cross-section of the first flexible mount 606. The through holes 607 may be in fluid communication with the first lumen 605 of the catheter shaft 602 and the lumen 609 of the transducer 610.


Further, the ablation transducer 610 can be operably coupled to the distal end 632 of the support mandrel 612 through a second flexible mount member 616. As shown, the second flexible mount member 616 may have a generally tapered proximal end 636 and a rounded atraumatic distal end 638, however, the second flexible mount may take on any suitable shape such as rectangular, cylindrical, triangular, or the like. The second flexible mount member 616 may be affixed to the distal end 622 of the ablation transducer 610 at a proximal end 636 thereof. The proximal end 636 of the second flexible mount 616 may be secured to the distal end 622 of the transducer 610 through a flexible adhesive 608b. In some instances, the flexible adhesive 608b may comprise silicone or other like materials.


The second flexible mount 616 may include a central lumen having an inner surface 634. The inner surface 634 may be fixedly secured to the distal end 632 of the support mandrel 612 through any means desired. The second flexible mount 616 may further include one or more through holes 615a , 615b (collectively 615) extending from the proximal end 636 to the distal end 638 of the mount 616. The through holes 615 may be sized and shaped to allow an infusion fluid 614 to pass through the flexible mount 616. It is contemplated that the second flexible mount 616 may include any number of through holes desired, such as, but not limited to, one, two, three, four, or more. number of through holes desired, such as, but not limited to, one, two, three, four, or more. It is further contemplated that the through holes 615 may be arranged in any manner desired. For example, in some instances, the through holes 615 may be randomly scattered about the cross-section of the second flexible mount 616. In other instances, the through holes 607 may be arranged in a pattern. The through holes 615 may be in fluid communication with the lumen 609 of the transducer 610 and may have a distal opening thus allowing the infusion fluid 614 to exit the system 600.


The support mandrel 612 may be configured to be disposed within the lumen 609 of the hollow cylindrical ablation transducer 610. As illustrated, the support mandrel may extend generally parallel with and along the length of the ablation transducer 610. As discussed above, the support mandrel 612 may be fixedly secured to inner lumens of the first and the second flexible mount members 606, 616. The flexible mounts 606, 616 may attached the transducer 610 to the support mandrel 612 to minimize interference with the transducer vibration. The support mandrel 612 may have a generally hollow cylindrical shape defining a lumen 611 extending from the proximal end 630 to the distal end 632 of the support mandrel 612. However, other suitable shapes of the support mandrel 612 including, for example, rectangular, irregular, or the like may also be contemplated. Further, the material employed to manufacture may include any suitable biocompatible material such as, but not limited to, metals, polymers, alloys, shape memory alloys or the like. The lumen 611 may be configured to receiving a guidewire 620 therethrough. In some embodiments, the lumen 611 may be in fluid communication with the lumen 605 of the catheter shaft 602 and thus some infusion fluid 614 may pass through lumen 611 and exit the system 600.


Saline or other suitable infusion fluid 614 may be flushed through the lumen 605 of the catheter shaft 602, through the through holes 607 of the first flexible mount 606, and into the lumen 609 of the transducer 610. The infusion fluid 614 may cool the transducer 610, reduce transducer damage, reduce surface fouling, reduce damage to the blood and other non-target tissue, and/or reduce overheating of the transducer 610 may be reduced or eliminated. The infusion fluid 614 may exit the system 600 via through holes 615 in the second flexible mount 616. It is contemplated that some infusion fluid 614 may also enter the lumen 611 of the support mandrel 613 from the lumen 605 of the catheter shaft 602 and exit the system via the distal end 632 of the support mandrel. In some instances, this may allow the modulation system 600 to be operated at a higher power level, thus providing a shorter treatment and/or more effective modulation of the target tissue. It is contemplated that the infusion fluid 614 may be introduced into the modulation system 600 before, during, or after ablation. Flow of the infusion fluid 614 may begin before energy is supplied to the ablation transducer 610 and continue for the duration of the modulation procedure.


Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. An intravascular nerve modulation system, comprising: an elongate shaft having a proximal end, a distal end, and an infusion lumen extending therebetween;an ablation transducer comprising an ultrasound transducer affixed to the elongate shaft adjacent the distal end thereof;an expandable basket having a proximal end and a distal end, the proximal end affixed to the elongate shaft proximal of a proximal end of the ablation transducer and the distal end is affixed to the elongate shaft distal of a distal end of the ablation transducer;an infusion sheath secured adjacent to the distal end of the elongate shaft in fluid communication with the infusion lumen, wherein the infusion sheath extends over the ablation transducer and is located within the expandable basket;wherein the system is configured to transport infusion fluid through the infusion lumen and past the ablation transducer thereby providing convective cooling to the ablation transducer; andwherein the expandable basket is configured to actuate between a first collapsed configuration and a second expanded configuration.
  • 2. The nerve modulation system of claim 1, further comprising one or more temperature sensors coupled to the expandable basket.
  • 3. The nerve modulation system of claim 1, wherein the expandable basket comprises two or more generally longitudinally extending struts.
  • 4. The nerve modulation system of claim 1, further comprising a pull wire affixed to one of the distal end or the proximal end of the expandable basket.
  • 5. The nerve modulation system of claim 4, wherein actuation of the pull wire moves the expandable basket between the first collapsed position and the second expanded position.
  • 6. The nerve modulation system of claim 1, wherein the expandable basket is configured to self-expand.
  • 7. The intravascular nerve modulation system at claim 1, wherein the elongate shaft comprises a first tubular member and a second tubular member and wherein said infusion lumen is located between the first tubular member and the second tubular member.
  • 8. The intravascular nerve modulation system of claim 1, wherein the ablation transducer is a hollow ablation transducer that comprises a transducer lumen in fluid communication with the infusion lumen.
  • 9. The intravascular nerve modulation system of claim 8, further comprising a flexible mount, wherein the ablation transducer is affixed to the elongate shaft through the flexible mount, and wherein the flexible mount comprises one or more lumens establishing fluid communication between the infusion lumen and the transducer lumen to allow the infusion fluid to be transported through the transducer lumen.
  • 10. An intravascular nerve modulation system, comprising: an elongate shaft having a proximal end region, a distal end region and an infusion lumen extending therebetween;an ablation transducer comprising an ultrasound transducer coupled to the distal end region of the shaft;an expandable basket coupled to the distal end region of the shaft, the expandable basket having a proximal end disposed proximal of the ablation transducer and a distal end disposed distal of the ablation transducer;an infusion sheath secured adjacent to the distal end of the elongate shaft in fluid communication with the infusion lumen, wherein the infusion sheath extends over the ablation transducer and is located within the expandable basket;wherein the system is configured to transport infusion fluid through the infusion lumen and past the ablation transducer thereby providing convective cooling to the ablation transducer;wherein the expandable basket is capable of shifting between a first configuration and an expanded configuration;and a sensor coupled to the expandable basket.
  • 11. The intravascular nerve modulation system claim 10, wherein the sensor includes a temperature sensor.
  • 12. The intravascular nerve modulation system of claim 11, wherein the sensor is designed to monitor the temperature of a vessel wall during an ablation procedure.
  • 13. The intravascular nerve modulation system claim 10, wherein the sensor includes an impedance sensor.
  • 14. The intravascular nerve modulation system of claim 10, wherein the sensor is designed to contact a vessel wall during an ablation procedure.
  • 15. The intravascular nerve modulation system of claim 10, wherein the sensor is designed to monitor the progress of an ablation procedure.
  • 16. The intravascular nerve modulation system of claim 10, wherein the expandable basket includes a plurality of struts and wherein the sensor is coupled to one of the struts.
  • 17. The intravascular nerve modulation system of claim 10, wherein a plurality of sensors are coupled to the expandable basket.
  • 18. An intravascular nerve modulation system, comprising: an elongate shaft having a proximal end region, a distal end region and an infusion lumen extending therebetween;an ultrasound transducer coupled to the distal end region of the shaft;an expandable basket coupled to the distal end region of the shaft, the expandable basket having a proximal end disposed proximal of the ultrasound transducer and a distal end disposed distal of the ultrasound transducer;an infusion sheath secured adjacent to the distal end of the elongate shaft in fluid communication with the infusion lumen, wherein the infusion sheath extends over the ablation transducer and is located within the expandable basket;wherein the system is configured to transport infusion fluid through the infusion lumen and past the ablation transducer thereby providing convective cooling to the ablation transducer;wherein the expandable basket is capable of shifting between a first configuration and an expanded configuration;a sensor coupled to the expandable basket;wherein the sensor is capable of contacting a vessel wall when the basket is in the expanded configuration; and wherein the sensor is designed to monitor the progress of ablation by the ultrasound transducer during an ablation procedure.
  • 19. The intravascular nerve modulation system claim 18, wherein the sensor includes a temperature sensor, an impedance sensor, or both.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 61/891,241, filed Oct. 15, 2013, the entirety of which is incorporated herein by reference.

US Referenced Citations (1502)
Number Name Date Kind
164184 Kidder Jun 1875 A
852787 Hoerner May 1907 A
921973 Gillett et al. May 1909 A
976733 Gilliland Nov 1910 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4531943 Van Tassel et al. Jul 1985 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4890623 Cook et al. Jan 1990 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5290306 Trotta et al. Mar 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Plueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5512051 Wang et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5613979 Trotta et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg Nov 1997 E
5687737 Branham et al. Nov 1997 A
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy et al. Jul 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman et al. Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger et al. Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605056 Eidenschink et al. Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6923808 Taimisto Aug 2005 B2
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314480 Eidenschink et al. Jan 2008 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7686841 Eidenschink et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8043673 Lee et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8168275 Lee et al. May 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107536 Hussein Aug 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030050635 Truckai et al. Mar 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040019349 Fuimaono Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050273149 Tran et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060182873 Klisch et al. Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070067883 Sretavan Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100256623 Nicolas Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramanaim et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
20140074083 Horn et al. Mar 2014 A1
20140163372 Deladi Jun 2014 A1
Foreign Referenced Citations (44)
Number Date Country
10038737 Feb 2002 DE
1053720 Nov 2000 EP
1180004 Feb 2002 EP
1335677 Aug 2003 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1961394 Aug 2008 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2092957 Jan 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2456301 Jul 2009 GB
9858588 Dec 1998 WO
9900060 Jan 1999 WO
9935986 Jul 1999 WO
0047118 Aug 2000 WO
0066021 Nov 2000 WO
0195820 Dec 2001 WO
03026525 Apr 2003 WO
2004100813 Nov 2004 WO
2004110258 Dec 2004 WO
2005041810 May 2005 WO
2006105121 Oct 2006 WO
2008014465 Jan 2008 WO
2009121017 Oct 2009 WO
2010067360 Jun 2010 WO
2010102310 Sep 2010 WO
2010132703 Nov 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (68)
Entry
US 8,398,630, 03/2013, Demarais et al. (withdrawn)
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50(2): 218-223, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, 7 pages, Oct. 2008.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93: 14-18, 2004.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Neurological Research, Forefront Publishing Group, 17: 307-311, Aug. 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages, printed Dec. 2009.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 4 pages, 2005.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 99: 71-4, 1974.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12):1561-1572, Dec. 2004.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medical Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 5 pages, printed Oct. 19, 2009.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, 5035: 166-173, 2003.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only), Mar. 2002.
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, 21(9): 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, 7562: 1-10, 2010.
Zhou et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, 14(43): 6743-6747, Nov. 21, 2008.
Van Den Berg, “Light echoes image the human body,” OLE, p. 35-37, Oct. 2001.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., p. 1-9, 2003.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, p. 1-4, Jan. 9, 1991.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology Company Press Release, Jun. 25, 2002, <http://www.lightlabimaging.com/press/cardtrails.html> 2 pages.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, The Gray Sheet, Medical Devices, Diagnostics, & Instrumentation, 27(35), Aug. 27, 2001, <http://www.lightlabimaging.com/press/graysheet.html> 1 page.
“Products—Functional Measurement,” Volcano Functional Measurement Products US, p. 1-2, Mar. 24, 2003.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 38: 1-12, 1993.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging Special Edition Forum, 5 pages total, retrieved on Sep. 3, 2003.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, p. 1-8, 2013.
Cimino, “Preventing plaque attack,” Mass High Tech, 3 pages total, retrieved on Sep. 3, 2003 <http://Masshightech.com/displayarticledetail.ap?art—id=52283&cat—id=10>, 2001.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 90:68-70, 2002.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” 7 pages, Fourth Edition, Oct. 1986.
Pieper et al. “Design and implementation of a new computerized system for intraoperative cardiac mapping”, J. Appl. Physiol. 71(4): 1529-1539, 1991.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, Institute of Physics Publishing, 26:337-349, 2005.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” Pace, 18:1518-1530, Aug. 1995.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, American College of Cardiology, 21(6):1512-1521, 1993.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” p. 1-21, 1999.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-49, Nov. 6, 1997.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, 26 (12):2289-2296, Dec. 1990.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 6:33-52, 1993.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times [online], 5 pages total, <http://nytimes.com/2004/03/21/health/21HEAR.html?ei=5070&en=641bc03214e&ex=11067>, Mar. 21, 2004.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, 16(4):439-444, Aug. 1997.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, 14:541-548, Sep./Oct. 1998.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, American College of Cardiology, 13(5):1167-1175, 1989.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, p. 2929, 2002.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, p. 2928, 2002.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, 346(23):1773-1780, Jun. 6, 2002.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 16:303-307, 1993.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, 51(4):420-431, Apr. 2004.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th edition, p. 1364-1405, 2005.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 29:161-167, 1993.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 97:878-885, 1998.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 102:2774-2780, 2000.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, p. 2227, 2002.
Scheller et al., “Potential solutions to the current problem: coated balloon,” Eurolntervention, 4(Supplement C): C63-C66, 2008.
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 21:585-598, 2002.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 51:N163-N171, 2006.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, p. 21-25, 1985.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, 50(7): 916-921, Jul. 2003.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 100:28-34, 2005.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 100:446-452, 2005.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 358:689-699, 2008.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
Related Publications (1)
Number Date Country
20150105715 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
61891241 Oct 2013 US