Ultrasound-based neuromodulation system

Information

  • Patent Grant
  • 10350440
  • Patent Number
    10,350,440
  • Date Filed
    Thursday, March 13, 2014
    10 years ago
  • Date Issued
    Tuesday, July 16, 2019
    5 years ago
Abstract
A neuromodulation system including a catheter having a balloon along its distal end is disclosed in several embodiments. An ultrasound transducer positioned within an interior of the balloon can be selectively activated to emit acoustic energy radially outwardly in order to target nerve tissue and other portions of the subject anatomy. In some embodiments, the system is configured to be delivered over a guidewire.
Description
BACKGROUND

Field


This application relates generally to minimally-invasive devices, systems and methods of energy delivery to a targeted anatomical location of a subject, and more specifically, to catheter-based, intraluminal devices and systems configured to emit ultrasonic energy for the neuromodulation (e.g., ablation, necrosing, etc.) of nerve tissue.


Description of the Related Art


Catheter-based energy delivery systems can be used to access and treat portions of a subject's anatomy minimally-invasively. Such systems can be advanced through a subject's vasculature to reach a target anatomical site. The various embodiments disclosed herein provide improved devices, systems and methods related to energy delivery within a subject.


SUMMARY

According to some embodiments, an intravascular, ultrasound-based ablation system includes a catheter comprising a guidewire lumen, at least one cable lumen and at least one fluid lumen, and a balloon or other expandable structure or member positioned at a distal end of the catheter, wherein an interior of the balloon is in fluid communication with the at least one fluid lumen of the catheter. In some embodiments, the balloon is configured to inflate when fluid (e.g., cooling fluid) is delivered into the interior through the at least one fluid lumen of the catheter. The system further comprises a tip extending distally from a distal end of the balloon, wherein the tip comprises an internal guidewire passage, and one or more ultrasound transducers positioned within the balloon. In some embodiments, the ultrasound transducer includes a cylindrical tube with inner and outer surfaces, each of the inner and outer surfaces comprising an electrode, wherein the ultrasound transducer defines an internal space adjacent the inner electrode surface, the internal space being in fluid communication with the interior cavity of the balloon so that, when in use, fluid entering the balloon passes along both the inner and outer surfaces to transfer heat away from the ultrasound transducer.


In some embodiments, at least one electrical cable (e.g., coaxial cable) is routed or otherwise positioned within the at least one cable lumen of the catheter, wherein the at least one electrical cable is electrically coupled to the electrodes along the inner and outer surfaces of the ultrasound transducer. The system further includes a backing member or post extending from the catheter to the tip and connecting the catheter with the tip. In some embodiments, the backing member is positioned within the internal space of the ultrasound transducer, wherein the backing member comprises a central opening that is generally aligned with the guidewire lumen of the catheter and the internal guidewire passage of the tip to permit the system to be delivered to a desired vascular position over a guidewire. In some embodiments, the backing member serves as a fluid barrier between fluid circulated within the balloon interior and the central opening.


According to some embodiments, the backing member comprises an electrically insulating material (e.g., polyimide, another polymeric material, etc.) along an interior surface of the central opening of the backing member so as to prevent electrical conduction between a guidewire and the backing member. In some embodiments, the guidewire lumen extends from a proximal end of the catheter to the balloon. In other embodiments, the guidewire lumen extends from a location between the proximal and distal ends of the catheter to the distal end of the catheter, such that the catheter comprises a rapid exchange design.


According to some embodiments, an intravascular, ultrasound-based ablation system comprises a catheter having at least one cable lumen and at least one fluid lumen, a balloon or other expandable structure positioned at a distal end of the catheter, an interior of the balloon being in fluid communication with the at least one fluid lumen of the catheter and an ultrasound transducer positioned within the balloon, wherein the ultrasound transducer comprises a cylindrical tube having a proximal end and a distal end and inner and outer surfaces. In some embodiments, each of the inner and outer surfaces comprises an electrode, wherein the proximal end of the cylindrical tube comprising a stepped portion, and wherein a portion of the outer diameter formed by the outer surface of the cylindrical tube is smaller than a portion of the outer diameter of the cylindrical tube located distal to the stepped portion. The system further comprises at least one electrical cable positioned within the at least one cable lumen of the catheter, the at least one electrical cable being configured to supply electrical power to the ultrasound transducer, wherein the at least one electrical cable comprises a first conductor and a second conductor.


In some embodiments, the system further comprises one or more a stand-off assemblies located within an interior and along or near the proximal end of the cylindrical tube of the ultrasound transducer. In one embodiment, the stand-off assembly is electrically conductive and in contact with, at least intermittently, the electrode along the inner surface of the cylindrical tube of the ultrasound transducer, wherein the first conductor is connected to an exterior of the cylindrical tube along the stepped portion, and wherein the second conductor is connected to the stand-off assembly so that the second conductor is electrically coupled to the electrode along the inner surface of the cylindrical tube. The system further comprise a ring surrounding the stepped portion of the cylindrical tube, the ring being sized and shaped to surround the portion of the outer diameter of the cylindrical tube located distal to the stepped portion, wherein the ring is electrically conductive so that the first connector is electrically coupled to the electrode along the outer surface of the cylindrical tube, and wherein the ring allows for more uniform electrical loading of the ultrasound transducer when the electrical transducer is energized.


According to some embodiments, the ring comprises conductive solder. In some embodiments, the ring comprises a conductive machined ring or other member or feature that couples around the stepped portion of the cylindrical tube. In some embodiments, the stepped portion extends approximately 5% to 25% of a length of the cylindrical tube. In one embodiment, the stepped portion comprises a portion of the cylindrical tube that is removed using grinding or other removal techniques. In some embodiments, an impedance of the at least one electrical cable substantially matches an impedance of the ultrasound transducer. In some embodiments, the impedance of the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms (e.g., 50 ohms).


According to some embodiments, an intravascular, ultrasound-based ablation system comprises a catheter having a cable lumen extending from a proximal end to a distal end of the catheter, an ultrasound transducer positioned at or near a distal end of the catheter, wherein the ultrasound transducer comprises a cylindrical tube with inner and outer surfaces, wherein each of the inner and outer surface comprising an electrode. The system further comprises a backing member or post extending from the distal end of the catheter and positioned within an interior of the ultrasound transducer, wherein the backing member is configured to support the ultrasound transducer, and wherein the backing member is electrically coupled to the electrode along the inner surface of the cylindrical tube of the ultrasound transducer. In some embodiments, the system comprises an electrical cable positioned within the cable lumen of the catheter and extending from the proximal end to the distal end of the catheter, wherein a proximal end of the electrical cable is coupled to a generator configured to selectively provide electrical power to the ultrasound transducer through the electrical cable. In one embodiment, the electrical cable comprises a first electrical connector and a second electrical connector, wherein the first connector is electrically coupled to the electrode along the outer surface of the ultrasound transducer, and wherein the second connector is electrically coupled to the backing member and the electrode along the inner surface of the ultrasound transducer. In some embodiments, an impedance of the electrical cable is substantially equal to an impedance of the ultrasound transducer, thereby providing a more efficient power transfer from the generator to the ultrasound transducer when the ablation system is in use.


According to some embodiments, the electrical cable comprises a coaxial cable. In one embodiment, the backing member or post comprises at least one stand-off assembly that electrically couples the backing member to the electrode along the inner surface of the cylindrical tube of the ultrasound transducer. In some embodiments, the backing member or post is coupled to both the proximal and the distal ends of the transducer. In some embodiments, the impedance of the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms (e.g., approximately 50 ohms). In some embodiments, the first connector of the electrical cable is electrically coupled to the electrode while not physically attached to the outer surface of the ultrasound transducer.


According to some embodiments, an intravascular, ultrasound-based ablation system includes a catheter comprising at least one fluid lumen, a balloon or other expandable member positioned at a distal end of the catheter, wherein an interior of the balloon is in fluid communication with the at least one fluid lumen of the catheter, and wherein the balloon is configured to inflate when fluid is delivered into the interior through the at least one lumen of the catheter. The system further comprises an ultrasound transducer positioned within the balloon, wherein the ultrasound transducer includes a cylindrical tube with inner and outer surfaces, wherein each of the inner and outer surface comprising an electrode. In some embodiments, the ultrasound transducer defines an internal space adjacent the inner electrode surface, wherein the internal space is in fluid communication with the interior cavity of the balloon so that, when in use, fluid entering the balloon passes along both the inner and outer surfaces to cool the ultrasound transducer. In some embodiments, the system additionally comprises a fluid transfer device configured to selectively deliver a cooling fluid within the balloon when the ultrasound transducer is activated in order to transfer heat away from the ultrasound transducer during use, wherein the fluid transfer device comprises a reservoir for storing a volume of cooling fluid and a movable member configured to move within an interior of the reservoir in order to transfer cooling fluid through the at least one fluid lumen of the catheter to the balloon, and wherein the reservoir is sized to store sufficient cooling fluid for an entire ablation procedure.


According to some embodiments, the movable member is coupled to a motor for selectively advancing the movable member relative to the reservoir. In one embodiment, the motor comprises a stepper motor or another type of motor. In some embodiments, the fluid transfer device comprises a syringe pump. In some embodiments, the catheter comprises a fluid delivery lumen and a fluid return lumen, wherein cooling fluid is delivered to the balloon from the fluid transfer device via the fluid delivery lumen, and wherein cooling fluid is withdrawn from the balloon via the fluid return lumen. In some embodiments, the fluid transfer lumen is in fluid communication with a first fluid transfer device, and wherein the fluid return lumen is in fluid communication with a second fluid transfer device, wherein both the first and the second fluid transfer devices are operated simultaneously to circulate cooling fluid through the balloon during an ablation procedure. In some embodiments, the fluid transfer device is configured to deliver cooling fluid through the at least one fluid lumen of the catheter and into the balloon at a flowrate of 30-50 ml/min (e.g., about 40 ml/min).


A method of intraluminally ablating or otherwise neuromodulating nerve tissue using an ultrasound-based ablation system includes advancing a catheter of the ablation system intraluminally to a target anatomical location of a subject, wherein the system comprises a balloon positioned at a distal end of the catheter, an interior of the balloon being in fluid communication with at least one fluid delivery lumen and at least one fluid return lumen of the catheter, wherein an ultrasound transducer is positioned within the interior of the balloon. The method further includes circulating cooling fluid through the interior of the balloon by transferring cooling fluid from a fluid transfer device through the at least one fluid lumen of the catheter and transferring cooling fluid away from the interior of the balloon through the at least one fluid return lumen and activating the ultrasound transducer positioned within the balloon to ablate nerve tissue adjacent to the target anatomical location of the subject. In some embodiments, cooling fluid is circulated adjacent the ultrasound transducer within the balloon when the ultrasound transducer is activated. In some embodiments, the fluid transfer device comprises a reservoir for storing a volume of cooling fluid and a movable member configured to move within an interior of the reservoir in order to transfer cooling fluid through the at least one fluid lumen of the catheter to the balloon, wherein the reservoir is sized to store sufficient cooling fluid for an entire ablation procedure.


According to some embodiments, the movable member (e.g., plunger) is coupled to a motor for selectively advancing the movable member relative to the reservoir. In one embodiment, the motor comprises a stepper motor or another type of motor or actuator. In some embodiments, the fluid transfer device comprises a syringe pump or another type of pump. In some embodiments, cooling fluid is circulated through the balloon at a flowrate of 30-50 ml/min (e.g., about 40 ml/min).


According to some embodiments, a coupling configured for use in an outlet of a fluid container (e.g., IV bag) includes a hub configured to abut against the outlet of the coupling, wherein the hub is configured to prevent over-insertion of the coupling into the fluid container. In some embodiments, a proximal end of the hub comprises a fitting configured for attachment to a fluid conduit. The coupling further comprises a spike portion extending distally from the hub, wherein a length of the spike is 0.5 inches to 3 inches. In some embodiments, the coupling comprises at least two fluid lumens (e.g., 2, 3, 4, 5, more than 5, etc.) that extend throughout an entire length of the coupling from the proximal end of the hub to a distal end of the spike, wherein the lumens place an interior of the fluid container in fluid communication with at least one fluid conduit secured to the hub. In some embodiments, the coupling permits at two different fluid sources to be placed in fluid communication with an interior of a fluid container comprising only a single outlet. In some embodiments, such a coupling or spike can be used on an IV bag or other fluid container that is placed in fluid communication with a syringe pump of a treatment system. Thus, the IV bag can be configured to store additional fluid that will be delivered through a delivery lumen into a balloon and/or can be configured to store excess fluid being returned from the balloon via a return lumen in the catheter. Thus, the coupling can be placed in fluid communication with the catheter and/or the syringe pump of the treatment system.


In some embodiments, the spike includes a taper along at least a portion of its length, so that a cross-sectional dimension of the spike is smaller along the distal end of the spike than a cross-sectional dimension of the spike along a proximal end of the spike. In some embodiments, the spike comprises a cone-shaped, with either a linear or non-linear (e.g., curved) profile. In some embodiments, the spike is configured for placement into an IV bag comprising only a single outlet or port. In some embodiments, the coupling comprises two fluid lumens.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an ultrasound-based treatment system according to one embodiment.



FIG. 2 illustrates a detailed side view of a distal end of the system depicted in FIG. 1.



FIG. 3 illustrates a side cross-sectional view of the distal end of an ultrasound-based system according to one embodiment.



FIG. 4 illustrates a section view across a portion of the system of FIG. 3.



FIG. 5 illustrates a partial cross-sectional view of the expandable member and ultrasound transducer according to one embodiment.



FIG. 6 illustrates a partial cross-sectional view of the ultrasound transducer of FIG. 5.



FIG. 7 illustrates the fluid lumens of an ultrasound-based system according to one embodiment.



FIG. 8 illustrates an IV bag and spike or coupling inserted therein according to one embodiment.





DETAILED DESCRIPTION

In the various embodiments described herein, catheter-based systems and methods for treating targeted tissue of a subject are disclosed. The systems and methods are particularly useful in neuromodulation procedures (e.g., denervation). For example, as discussed in greater detail herein, the systems can be used to target select nerve tissue of the subject. Targeted nerve tissue can be heated by the application of ultrasonic energy thereto in order to neuromodulate (e.g., ablate, necrose, stimulate, etc.) the tissue. In other embodiments, the application of ultrasonic energy can be used to target other adjacent tissue of a subject, either in lieu of or in addition to nerve tissue. Accordingly, the systems and methods disclosed herein can be used to treat hypertension, other nerve-mediated diseases and/or any other ailment. The systems and methods disclosed herein can also be used in ablative procedures of non-nerve tissue (including, but not limited to, tumors, cardiac tissue, and other tissue types). Arrhythmias are treated according to one embodiment.


The catheter-based systems disclosed herein can be delivered intraluminally (e.g., intravascularly) to a target anatomical region of the subject, such as, for example, the renal artery, another targeted vessel or lumen, etc. Once properly positioned within the target vessel, the ultrasound transducer can be activated to selectively deliver acoustic energy radially outwardly from a distal end of the system and toward the targeted tissue. The transducer can be activated for a particular time period and at a particular energy level (e.g., power, frequency, etc.) in order to accomplish the desired effect on the targeted tissue. In embodiments where the targeted tissue is nerve tissue, the systems are configured to deliver ultrasonic energy through the adjacent wall of the vessel in which the system is positioned. For example, with respect to the renal artery, targeted nerve tissue is typically located about 0.5 mm to 8 mm (e.g., 1 mm to 6 mm) from the vessel wall. Accordingly, ultrasonic energy can be used to heat the nerve tissue in order to at least partially neuromodulate the nerve tissue. As used herein, neuromodulation shall be given its ordinary meaning and shall include, without limitation, complete or partial ablation, necrosis, stimulation and/or the like. In some embodiments, the acoustic energy is delivered radially outwardly from the ultrasound transducer, permitting the delivery of ultrasonic energy to target nerve tissue regardless of the radial orientation of such nerve tissue relative to a vessel (e.g., renal artery). Further, as discussed in greater detail herein, the various systems disclosed herein can be configured to deliver a cooling fluid to the anatomical region being treated in order to protect certain tissue of the subject (e.g., to prevent or reduce the likelihood of stenosis or other damage to the wall of the vessel through which energy is delivered during a procedure).


General System Components and Features



FIGS. 1 and 2 illustrate an ultrasound-based ablation system 100 according to one embodiment. As shown, the system 10 can comprise a catheter 12 having a proximal end 20 and a distal end 22, an expandable member 14 (e.g., balloon) along the distal end of the catheter and one or more ultrasound transducers 16 positioned within the expandable member 14. A proximal portion of the system can comprise a handle 8 and one or more connectors or couplings (e.g., an electrical coupling 32 for connecting the system to a power generator, one or more ports 34 for placing the system in fluid communication with a cooling fluid, etc.).


In some embodiments, the catheter 12 includes one or more lumens that can be used as fluid conduits, electrical cable passageways, guidewire lumen and/or the like. For example, as illustrated in FIG. 5, the catheter 12 can include at least one cable lumen 24 that is shaped, sized and otherwise configured to receive an electrical cable 28 (e.g., coaxial cable, wire, other electrical conductor, etc.). The electrical cable 28 advantageously permits the electrode of the system's ultrasound transducer to be selectively activated in order to emit acoustic energy to a subject.


The catheter 12 can also include at least one fluid lumen 26 for transferring cooling fluid (e.g., water, saline, other liquids or gases, etc.) to and from the balloon or other expandable member 14 located at the distal end of the system. As discussed in greater detail herein, in some embodiments, the catheter comprises at least two fluid lumens 26, one for delivering cooling fluid to the balloon and the other for returning the cooling fluid from the balloon. However, the catheter 12 can include only a single fluid lumen or more than two fluid lumen (e.g., 3, 4, more than 4, etc.), as desired or required.


As illustrated in FIGS. 2 and 3, the ultrasound transducer 16 can be positioned completely within an interior of the expandable member 14 (e.g., balloon). In some embodiments, as shown in FIG. 2, when expanded, the outer wall of the balloon 14 is generally parallel with the walls of the cylindrical ultrasound transducer 16. The balloon 14 can be a compliant, semi-compliant or non-compliant medical balloon, as desired or required. In some embodiments, the ultrasound transducer 16 is liquid cooled along both its outer and inner electrodes, meaning that cooling liquid entering the balloon 14 is permitted to pass across both the exterior and interior surfaces of the cylindrical transducer to transfer heat away from the transducer. The transducer 16 can include a reflective interface (e.g., along its interior) so as to permit ultrasonic energy generated at the inner electrode (e.g. along the interior surface of the cylindrical transducer) to be reflected radially outwardly.


Additional details regarding possible ultrasonic transducer designs and embodiments (e.g., both structurally and operationally) and/or catheter-based ultrasound delivery systems are provided in U.S. patent application Ser. No. 11/267,123, filed on Jul. 13, 2001 and published as U.S. Publ. No. 2002/0068885 on Jun. 6, 2002; U.S. patent application Ser. No. 09/905,227, filed Jul. 13, 2001 and issued as U.S. Pat. No. 6,635,054 on Oct. 21, 2003; U.S. patent application Ser. No. 09/904,620, filed on Jul. 13, 2001 and issued as U.S. Pat. No. 6,763,722 on Jul. 20, 2004; U.S. patent application Ser. No. 10/783,310, filed Feb. 20, 2004 and issued as U.S. Pat. No. 7,837,676 on Nov. 23, 2010; U.S. patent application Ser. No. 12/227,508, filed on Feb. 3, 2010 and published as U.S. Publ. No. 2010/0130892 on May 27, 2010; U.S. patent application Ser. No. 10/611,838, filed on Jun. 30, 2003 and published as U.S. Publ. No. 2004/0082859 on Apr. 29, 2004; and PCT Appl. No. PCT/US2011/025543, filed on Feb. 18, 2011 and published as PCT Publ. No. WO 2012/112165 on Aug. 23, 2012. The entireties of all the foregoing applications is hereby incorporated by reference herein and made a part of the present application.


With continued reference to FIG. 1, one or more electrical cables that supply electrical power to the transducer 16 can be coupled via the electrical coupling 32 located at the proximal end of the system. In some embodiments, the electrical coupling comprises a standard or non-standard connection to a power supply and controller (not illustrated). For example, in some embodiments, the electrical coupling 32 can be easily and quickly attached and detached to a power supply and controller. As is described in greater detail below, the fluid lumen(s) 26 of the catheter can be used selectively transfer fluid (e.g., cooling fluid) between a fluid transfer device (e.g., fluid pump) and the interior of the balloon or other expandable member 14. The cooling fluid can be used to inflate the expandable member 14 and to provide cooling when the ultrasound transducer 16 is activated in order to transfer heat away from the ultrasound transducer 16 and/or the surrounding tissue of the subject during use.


The system 100 can be delivered to the target anatomical location (e.g., a renal artery) via femoral, radial or other intravascular access. The system can be delivered through the vasculature or other lumen of the subject either with or without the assistance of a guidewire. Accordingly, as discussed in greater detail below, the catheter and other components of the system can include a guidewire lumen or other passages to permit delivery over a guidewire.


In some embodiments, the ultrasonic transducers are operated in a range of from 1 to 20 MHz (e.g., 1-5 MHz, 5-10 MHz, 10-15 MHz, 15-20 MHz, 8-10 MHz, other values or ranges within the foregoing, etc.). In one embodiment, for example, the ultrasound transducer of the system is configured to operate at a frequency of about 9 MHz. In other embodiments, however, the frequency at which a transducer is operated can be below 1 MHz or above 20 MHz. The power supplied to the ultrasound transducer can vary, as desired or required, and in some embodiments, is 5 to 80 Watts (e.g., 5 to 50, 5 to 10, 10 to 20, 20 to 30, to 40, 40 to 50, 50 to 60, 60 to 70, 70 to 80 Watts, etc.) at the transducer. As noted above, the period of time during which the ultrasound is activated for a particular treatment procedure can vary, and can also depend on one or more other factors, such as, for example, the power level at the transducer, the frequency of ultrasonic energy emitted, the size of the vessel or other tissue being treated, the age, weight and gender of the patient being treated and/or the like. However, in some embodiments, the ultrasonic transducer is activated for about 10 seconds to 5 minutes (e.g., 30 seconds to 5 minutes, 1 to 3 minutes, about 2 minutes, 10 seconds to 1 minute, 1 to 2 minutes, 2 to 3 minutes, 3 to 4 minutes, 4 to 5 minutes, etc.).


Referring now to FIG. 2, in several embodiments, the system can be delivered intravascularly through a subject so that the transducer is positioned within a target vessel (e.g., a renal artery) 36 and adjacent nerve tissue N to be neuromodulated. As shown, the expandable member (e.g., balloon) 14 can inflated (e.g., using cooling fluid). Expansion of the balloon 14 can cause the wall of the balloon to at least partially engage the adjacent interior wall of the vessel 36. In addition, in some embodiments, expansion of the balloon or other expandable member 14 causes the transducer 16 to be generally centered within the vessel. The ultrasound transducer 16 can be activated to generate ultrasonic energy that passes radially outwardly through the balloon and to the adjacent tissue of the subject. For example, the ultrasonic or acoustic energy can pass through the wall of the vessel 36 and heat the adjacent nerve tissue N. In some embodiments, sufficient energy is delivered to the nerve tissue N to cause a desired heating and/or other response. Thus, the energy delivered to the nerve tissue can neuromodulate (e.g., necrose, ablate, stimulate, etc.) the nerves, as desired or required.


Guidewire-Enabled Catheter System


As noted above, the ultrasound treatment systems described herein can be configured to be delivered to a target anatomical location of a subject with or without the use of a guidewire. FIG. 3 illustrates a cross-sectional view of the distal end of an ultrasound-based ablation system 100 that is configured to be delivered over a guidewire. As shown, the ultrasound transducer 16 can comprise a cylindrical tube 44 comprising a piezoelectric material (e.g., PZT, lead zirconate titanate, etc.) with inner and outer electrodes 46, 48 along the inner and outer surfaces of the cylindrical tube 44, respectively. When activated, the piezoelectric material vibrates transverse to the longitudinal direction of the cylindrical tube 44 (e.g., radially).


With continued reference to FIG. 3, the transducer 16 is generally supported within the interior of the balloon 14 using a backing member or post 56. As shown, such a backing member 56 can extend from the catheter 12 to a distal tip 18. For example, in some embodiments, the backing member 56 is positioned within adjacent openings of the catheter and tip. Further, the balloon or other expandable member 14 can be secured along an exterior or other portion of the catheter and tip.


In order to permit liquid cooling along both the inner and outer electrodes 46, 48, the transducer can include one or more stand-off assemblies 50. As shown schematically in FIGS. 3 and 4, for example, the stand-off assemblies 50 can be positioned along each end of the transducer and couple the cylindrical portion of the transducer 16 to the backing member 56. The stand-off assemblies can define annular openings 55 through which cooling fluid may enter the interior space 52 of the cylindrical tube. The stand-off assembly 50 can be electrically conductive so as to electrically couple the inner electrode 46 of the transducer 16 to the backing member or post 56. As discussed in greater detail herein, for example, in some embodiments, one or more conductors of the electrical cable 28 can be electrically coupled to the backing member 56. Thus, as the power generator is activated, current can be delivered from the cable 28 to the inner electrode 46 of the transducer via the post 56 and the stand-off assembly 50. According to one embodiment, this advantageously eliminates the need to electrically couple the cable directly to the inner electrode of the transducer.


With reference to FIG. 4, the stand-off assembly 50 can have a plurality of ribs or attachment points 54 that engage the inner electrode 46. The number, dimensions and placement of the ribs 54 can vary, as desired or required. For example, in some embodiments, as illustrated in FIG. 4, a total of three ribs 54 are generally equally-spaced apart from one another at an angle of 120°.


With further reference to FIG. 3, the internal space 52 defined by the ultrasound transducer 16 can allow the piezoelectric material to vibrate both outwardly and inwardly in the transverse direction. As discussed herein, the internal space 52 of the transducer can be in fluid communication with the interior cavity 38 of the expandable member 14 so that, when in use, fluid entering the expandable member 14 can pass along and cool both the inner and outer surfaces of the ultrasound transducer 44. The cooling fluid can be used to maintain a desired temperature threshold along the interior wall of the vessel (e.g., renal artery) while allowing a higher temperature profile a particular distance radially away from the vessel wall. This permits targeted nerve tissue to be neuromodulated (e.g., necrosed, ablated, etc.) while protecting the vessel wall from unwanted harm or injury (e.g., stenosis, ablation or reconstruction, scarring, etc.). Likewise, for embodiments that treat tissue other than nerves, target tissue can be treated, while protecting non-target tissue.


According to some embodiments, as illustrated in FIGS. 3 and 4, the ultrasound-based ablation system 100 can be configured for delivery over a guidewire (e.g., regular guidewire, rapid-exchange system, etc.). Thus, the catheter can include a central guidewire lumen 60. In addition, other portions of the system can also include a lumen or other passage for receiving a guidewire. For example, the backing member or post 56 and the tip 18 can each comprise a central opening, lumen or passage 62, 64 that are generally aligned with the guidewire lumen 60 of the catheter. In one embodiment, the guide wire lumen 60 of the catheter 12 extends from the proximal end 20 of the catheter to the distal tip 18. Alternatively, a monorail guidewire configuration could be used, where the catheter rides on the wire just on the tip section distal to the transducer. In another embodiment, the guidewire lumen 58 extends from a location between the proximal 20 and distal 22 ends of the catheter to the distal end 22 of the catheter, such that the catheter comprises a rapid exchange design (e.g., where the guidewire lumen of the catheter does not extend to the proximal end of the catheter). In any of the embodiments disclosed herein, regardless of whether or not the system is configured for delivery over a guidewire, the catheter could comprise one or more pull wires or other features that permit the system to be selectively manipulated (e.g., for selective deflection of the catheter) to aid in the delivery and placement within the subject.


The backing member 56 can advantageously serve as a fluid barrier between the cooling fluid circulated within the expandable member 14 and the central opening, lumen or passage 62 through which the guidewire is routed. In some embodiments, the backing member or post 56 can include one or more layers of an electrically insulating material or member 57 (e.g., polyimide) along an interior surface of the central opening 62 of the backing member 56 so as to prevent electrical conduction between the guidewire 58 and the backing member 56. Such an electrically insulating member 57 can also provide one or more other benefits to the system, such as, for example, reduced friction between the guidewire and the post. As illustrated in FIG. 3, the various lumens or other openings of the catheter 12, backing member or post 56 and the distal tip 18 can be generally aligned and approximately sized and shaped so at to allow a guidewire to freely and easily pass therethrough.


Electrical Loading of Transducer



FIG. 5 illustrates a partial cross-sectional view of the expandable member (e.g., balloon) 14 and ultrasound transducer 16 of an ultrasound-based ablation system 100 according to one embodiment. As shown in FIG. 5, in some embodiments, the ultrasound transducer 16 comprises a uniform and cylindrical outer and inner diameters to provide for a more uniform distribution of acoustic energy radially emanating therefrom (e.g., toward adjacent nerve tissue surrounding a vessel). Such a configuration can help ensure that a generally equal acoustic energy profile is delivered by the transducer during use. Accordingly, localized hotspots of ultrasonic energy, where a greater amount of heating is observed along one circumferential area and/or longitudinal area of the treatment region, are eliminated or reduced. Further, as noted herein, adjacent portions of the balloon or other expandable member 14 can also include a uniform and/or flat profile upon expansion, such that outer and inner surfaces of the cylindrical transducer are generally parallel with the wall of the expanded balloon. Such a feature can help ensure that acoustic energy delivered by the transducer moves radially outwardly with little or no deflection at the balloon and/or the balloon-tissue interface.


Accordingly, the acoustic energy profile of the transducer can be negatively affected by attaching anything to the outside and/or inside surfaces of the transducer tube (e.g., along the outer and/or inner electrodes of the transducer). For example, connecting an electrical conductor of the electrical cable that supplies current to the transducer can results in a diminished or undesirable acoustic energy profile. One embodiment for eliminating the need to attach any electrical conductors or other leads to the outer and inner electrodes of a transducer is illustrated in FIGS. 5 and 6.


In FIGS. 5 and 6, the cylindrical tube 44 can include a distal, non-stepped portion 66 and a proximal, stepped portion 68. As shown, the non-stepped portion comprises an outer electrode 48 along the exterior surface of the tube 44 and an inner electrode 46 along an interior surface of the tube. As discussed in greater detail below, the non-stepped portion of the transducer 16 can comprise a vast majority of the transducer length, such as, for example, 60-90% (e.g., 60-70%, 70-80%, 80-90%, 90-99%, etc.) of the overall length of the transducer 16.


With continued reference to FIGS. 5 and 6, the proximal, stepped portion 68 includes an outer diameter 68a that is less than the outer diameter 66a of the non-stepped portion 66. In other words, the cylindrical tube 44 can comprise a step change in outer diameter along its proximal end. In the depicted embodiments, the stepped portion includes a generally flat or non-sloped step. However, in other embodiments, the step can include, without limitation, a sloped, undulating, roughened or otherwise uneven surface profile. Regardless of its exact shape and configuration, as shown in FIGS. 5 and 6, the stepped portion 68 of the tube can provide a surface on which a conductor of the electrical cable 28 can attach. By placing an additional at least partially electrically conductive material or member along the outside of the conductor at the stepped portion of the tube, the cable can be advantageously electrically coupled to the outer electrode 48 of the transducer without attaching any conductors along an outer diameter or portion of the transducer. Accordingly, the cylindrical outer surface of the transducer can be maintained to provide for a more even acoustic energy profile when the transducer is activated.


In one embodiment, the stepped portion 68 can be fabricated by machining and/or grinding away a proximal portion of the tube's outer diameter 66a. As noted above, such a step can include a uniform or constant outer diameter; however, in other embodiments, the stepped portion comprises a non-flat (e.g., rounded, curved, sloped, etc.) or irregular profile, as desired or required. In other embodiments, the stepped portion 68 can be fabricated by manufacturing the cylindrical tube 44 as a single piece of material with the step integrated into the tube during formation (e.g., by casting or molding the step into the original design). In yet another embodiment, the cylindrical tube 44 with the step can be created as two separate components (e.g., one with a larger diameter and one with the step diameter) which are bonded together (e.g., by welds, adhesives, rivets, screws, threaded couplings or features on the tube itself, press-fit connections, other mechanical or non-mechanical features, etc.).


In one embodiment, the electrical cable 28 that supplies current to the transducer comprises a coaxial cable having an inner conductor 28a and outer tubular conducting shield 28b. As shown in FIG. 6, the inner conductor 28a can be electrically coupled with the outer electrode 48 (e.g., via attachment to the stepped portion), while the outer tubular conducting shield 28b can be electrically coupled with the inner electrode 46 of the cylindrical tube 44. In other embodiments, the conductors of the coaxial cable are reversed and/or different types of electrical cables or connectors can be used.


With continued reference to FIG. 5, one or more rings and/or other components 72 can be placed around the stepped portion 68 of the tube to form a generally constant outer diameter along an entire length of the transducer 16 (e.g., both along the stepped and non-stepped regions). For example, an electrically conductive ring 72 can surround the stepped portion 68 of the cylindrical tube 44 to electrically couple the outer electrode 48 to the inner conductor 28a. The ring 72 can be sized and shaped to have substantially the same outer diameter as the outer diameter 66a of the non-stepped portion 66 and provide a substantially continuous, flat and/or uniform outer surface for the entire transducer. In such an embodiment, the ring 72 can act as an active portion of the transducer 16 and allow for more uniform electrical loading of the ultrasound transducer when the electrical transducer is energized. The ring can be a machined ring having very precise dimensions. The ring, which comprises one or more metals or alloys (e.g., brass, stainless steel, etc.), can include a solid or partially-solid (e.g., having one or more hollow portions or area) design.


In other embodiments, one or more other components can be placed over the stepped portion 68 of the tube. For example, one or more layers of solder or other masses of at least partially electrically conductive can be deposited and secured to the outside of the stepped portion. Such layers or masses can include an outer diameter that matches the outer diameter 66a of the non-stepped portion 66 of the transducer. In some embodiments, an outer surface of the conductive electrical solder or other material or component placed along the outside of the stepped portion is reshaped or otherwise treated to achieve a substantially uniform overall outer diameter for the transducer (e.g., by mechanical grinding, etching, or polishing).


In some embodiments, the stepped portion 68 extends approximately 5% to 25% (e.g., 5% to 10%, 10% to 15%, 15% to 20%, 20% to 25%, etc.) of a length of the cylindrical tube 44. For example, the stepped portion 68 (and the corresponding ring, solder or other material or component placed around the stepped portion) can be approximately 1 mm in length, while the non-stepped portion 66 can be approximately 5 mm in length.


Alternatively, the cylindrical tube 44 can include a stepped portion 68 without an electrically conductive ring or other component 72. In such embodiments, the stepped portion 68 can form an inactive portion of the transducer 16 and the distal, non-stepped portion 66 can form the active portion of the transducer 16. One or more electrical connections (e.g., wires, other conductors, traces, etc.) can be placed along the inactive stepped portion and be routed to the outer electrode of the non-stepped portion 66 of the transducer.


Electrical Impedance Matching


As discussed herein, the ultrasonic transducer 16 can convert input electrical energy into ultrasonic energy that is delivered radially outwardly (e.g., toward target nerve tissue adjacent a vessel wall). In some embodiments, for ultrasonic transducers, the power factor, or conversion rate from electrical energy into generated acoustical energy, can be relatively low. Thus, a large portion of the electrical power delivered by the power supply may be lost as wasted heat. Accordingly, in one embodiment, to increase the efficiency of the ultrasound system, the electrical impedance of the electrical conductors (e.g., the one or more electrical cables 28 that electrically couple the transducer to the power supply) can be matched or substantially matched (e.g., within about 0-10%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.5-1%, 1-2%, 2-3%, 3-4%, 4-5%, 5-6%, 6-7%, 7-8%, 8-9%, 9-10%, etc.) to the electrical impedance of the ultrasound transducer 44. Thus, in some embodiments, by matching or substantially matching the impedance values of the cable and the transducer, the electrical load of the system can help reduce or minimize the electrical inefficiency of the system, while increasing or maximizing the amount of power transferred to the transducer.


Accordingly, in some embodiments, the ultrasound system 100 comprises only a single cable (e.g., coaxial cable) routed through a corresponding lumen of the catheter and electrically coupled to the transducer. The electrical cable can be selected to match or substantially match an impedance of the ultrasound transducer. For example, in some embodiments, the impedance of both the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms (e.g., 50, 40-42, 42-44, 44-46, 46-48, 48-50, 50-52, 52-54, 54-56, 56-58, 58-60 ohms, etc.). In other embodiments, the impedance of the electrical cable and the ultrasound transducer can be less than 40 ohms or greater than 60 ohms, as desired or required.


Cooling Fluid Considerations



FIG. 7 schematically illustrates one embodiment of a catheter-based ultrasound system 100 having at least two fluid lumens 26a, 26b positioned within the catheter 12. As shown, each lumen 26a, 26b of the catheter is placed in fluid communication with a separate fluid transfer device (e.g., pump). Further, with reference back to FIG. 1, each lumen 26a, 26b can be in fluid communication with corresponding pumps or other fluid transfer devices (not shown) via ports 34a, 34b (e.g., a luer fittings, other standard or non-standard couplings, etc.). Accordingly, cooling fluid can be injected, infused or otherwise delivered into the vessel to transfer heat away from the transducer and/or other areas at or near the treatment site. As discussed herein, such heat transfer can protect adjacent tissue of the subject (e.g., the wall of the vessel in which the system is placed), can help maintain the transducer within a desired temperature range during use (e.g., for safety and/or performance reasons) and/or the like.


According to some embodiments, the cooling fluid that is circulated through the balloon at the distal end of the system can include, for example, saline, water or any other liquid or fluid. The cooling fluid can be room temperature or actively cooled (e.g., relative to room temperature, body temperature, etc.), as desired or required. In some embodiments, cooling fluid is circulated through the system in such a manner so that a the temperature along the interior wall of the vessel surrounding the transducer is maintained at a temperature of about 50-55° C. (e.g., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., etc.). In addition, in some embodiments, the temperature of the vessel wall is maintained within such a target range (e.g., 50-55° C.), while the temperature of tissue approximately 0.5 mm to 8 mm (e.g., 1 mm to 6 mm, where, in some embodiments, target tissue is located) is heated to about 60-80° C. (e.g., 60-70° C., 70-80° C., 65-75° C., etc.) when the transducer is activated. The higher temperature at a particular distance away from the vessel wall can be due, at least in part, on the less effective cooling by the cooling fluid at those distances away from the balloon. In some embodiments, raising the temperature of nerve and/or other nerve tissue to about 60-80° C. can help perform the desired neuromodulation (e.g., ablation, necrosing, etc.) to such tissue. A treatment protocol that accomplishes the desired heating of the targeted tissue (e.g. nerves) while maintaining adjacent vessel tissue to safe levels (e.g., to reduce the likelihood of stenosis or other damage to such tissue) can be based, either completely or in part, on empirical or experimental data.


Certain vessels (e.g., renal arteries) in which the system can be placed can have a relatively small catheter diameter. As a result, the diameter of the fluid lumens 26a, 26b located within the catheter may also need to be reduced. As the diameter of the fluid lumens 26 are decreased, the pressure required to move the cooling fluid increases (e.g., due to an increase in back pressure and head losses through the fluid lumens). As a result, increased cooling fluid pressure can be required by one or more of the pumps or other fluid transfer devices in fluid communication with the system. However, if the system fluid pressure is increased to a high enough value, the increased pressure of the balloon can create one or more safety concerns. For example, the balloon itself may be susceptible to rupture or other damage. Further, the pressure created within the balloon can cause the balloon to expand to a degree that poses a risk of harm to the adjacent tissue of the subject (e.g., the artery or other vessel of the subject may rupture or otherwise be damaged). Accordingly, in some embodiments, it is desirable to regulate and limit the pressure within the balloon. For example, in some embodiments, the internal pressure of the balloon 14 is maintained at about 1.5-2 ATM (e.g., for a 6 FR catheter).


As illustrated in FIG. 7, in one embodiment, the fluid lumens 26a, 26b can include a delivery lumen 26a and a return lumen 26b for supplying and returning cooling fluid to and from, respectively, the balloon or other expandable member 14. The use of separate fluid lumens 26a, 26b can help reduce the overall internal pressure of the balloon during use, while still being able to circulate cooling fluid at a target flowrate through the balloon interior. Thus, a desired flowrate of cooling fluid can be sustained through the system without over-pressurizing the balloon 14. This is due, in part, because the vacuum created through the return lumen 26b (e.g., by one of other pumps P) helps reduce the pressure within the balloon interior accordingly. By way of example, the delivery lumen 26a can have a pressure of approximately 70 psig and the return lumen 26b can have a vacuum of 10 psig. Thus, under those circumstances, the internal pressure of the balloon is about 30 psig (e.g., (70 psig-10 psig)/2)=30 psig).


In one embodiment, the pumps P or other fluid transfer devices that are placed in fluid communication with the fluid lumens 26a, 26b comprise positive displacement pump, such as a peristaltic pump. However, in some circumstances, when the back-pressures associated with delivering the cooling fluid to the balloon is above a particular threshold, peristaltic pumps or similar positive displacement pumps are unable to deliver the necessary flowrate of cooling fluid to the balloon.


Accordingly, in some embodiments, one or more pumps P of the systems can comprise a syringe pump. A syringe pump can include a reservoir for storing a volume of cooling fluid and a movable member configured to move (e.g., slide) within an interior of the reservoir. The movement of the movable member within the corresponding reservoir exerts the necessary backpressure on the fluid (e.g., cooling fluid) stored within the reservoir and transfers the fluid through the fluid delivery lumen 26a of the catheter and into the balloon. In some embodiments, the use of such syringe pumps can provide sufficient force to achieve the required backpressure at a desired flowrate of cooling fluid. The movable members of syringe or other such pumps can be selectively moved by one or more stepper motors or other mechanical devices. In such embodiments, the stepper motor can prevent and/or minimize deflection of the movable member caused by the corresponding torques, moments and forces.


According to some embodiments, the reservoir of the syringe or other pump P in fluid communication with the fluid lumen 26a and the balloon 14 is sized and otherwise configured to store a sufficient volume of cooling fluid for an entire treatment procedure. In some embodiments, the volume of the reservoir is approximately 50 ml to 1,000 ml (e.g., 50-100, 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, 900-1,000 ml, capacities between the foregoing, etc.).


In one embodiment, the fluid lumens 26 can be operated simultaneously to circulate cooling fluid through the expandable members 14 during an ablation procedure. In one embodiment, the flowrate of cooling fluid through the lumens 26 can be between 30-50 ml/min (e.g., 30-40 ml/min, 40-50 ml/min, 35-45 ml/min, 40 ml/min).


IV Bag Connector


IV bags used for the storage of cooling fluid in connection with the various systems disclosed herein can have two outlet ports (e.g., for mating to the two fluid lumens 26 of the catheter). In other embodiments, however, the IV bag 200 is constructed with only a single inlet/outlet port 210, as depicted in FIG. 8. In such embodiments, a dual lumen spike or coupling 74 can be inserted within the port 210 of the IV bag 200 to enable fluid to be transferred both to and from the bag. This can effectively turn a single-port IV bag into a dual port IV bag without redesigning the bag itself.


In some embodiments, the dual lumen spike or coupling 74 can comprise two or more lumens or passages 76, 78 that are separated from one another. Such separate passage 76, 78 can be connected to different fluid conduit or sources, as desired or required. As shown, the spike 74 can include a proximal hub 82 that is shaped, sized and otherwise configured to abut against an end of bag's port 210 (or other inlet or outlet). A proximal conduit 84 can be inserted within or otherwise placed in fluid communication with one or more fluid sources (e.g., lumen of a catheter as disclosed herein, a pump, etc.). In some embodiments, the spike can include a minimum penetration depth 80 into the IV bag to ensure adequate flow (e.g., supply and return) into and out of the bag. Such a minimum penetration depth can help prevent or reduce the likelihood of short-circuiting of fluids entering and exiting the bag 200. In some embodiments, the inner diameters of the internal lumens or passages 76, 78 of the spike or coupling 74 are approximately 0.05 to 0.125 inches (e.g., 0.05-0.06, 0.06-0.07, 0.07-0.08, 0.08-0.09, 0.09-0.1, 0.1-0.11, 0.11-0.125, diameter between the foregoing, etc.) and the minimum penetration distance 80 is about 1.5 inches (e.g., 0.75, 1.0, 1.25, 1.5 inches, distances between the foregoing, less than 0.75 inches, more than 1.5 inches, 1.5-2.0 inches, 2.0-3.0 inches, more than about 3 inches, etc.).


In some embodiments, such a coupling or spike 74 can be used on an IV bag or other fluid container that is placed in fluid communication with a syringe pump of a treatment system. Thus, the IV bag can be configured to store additional fluid that will be delivered through a delivery lumen into a balloon and/or can be configured to store excess fluid being returned from the balloon via a return lumen in the catheter. Thus, the coupling 74 can be placed in fluid communication with the catheter and/or the syringe pump of the treatment system.


Vessel Diameter Detection


In some embodiments, prior to inflation of a balloon or other expandable member 14, the ultrasonic transducer 16 can be activated to measure the vessel's diameter. This can be accomplished by sending out a single (or a distinct number of) ultrasonic waves and recording the time period required for the signals to return (e.g., bounce back) to the transducer surface. Thus, in some embodiments, a control system of the system can be configured to both emit acoustic energy and detect it (e.g., at or along the outside of the transducer). By detecting the diameter of the vessel (e.g., renal artery) at a desired treatment location, the clinician can make any necessary adjustments to the procedure (e.g., what size balloon to use, how much energy should be delivered to the subject and for what time period, etc.).


Miscellaneous Concepts


In any of the embodiments disclosed herein, the system can comprise an ultrasound transducer having a variety of shapes. The transducer can be cylindrical or non-cylindrical, as desired or required. For example, in some embodiments, the transducer comprises, at least in part, an hourglass shape, a barbell shape, a convex shape or surface, a concave shape or surface and cone shape, an irregular shape and/or the like.


In some embodiments, a system can comprise an array of transducers (e.g., an array comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-15, more than 15 transducers, etc.). In embodiments comprising 2 or more transducers (e.g., an array of transducers), one or more of the transducers can be configured to emit more or less ultrasonic energy than one or more other transducers. In some embodiments, the amount of acoustic energy that is emitted by the plurality of transducers varies (e.g., linearly, non-linearly, randomly, etc.) along a longitudinal axis of the system. In some embodiments, one or some ultrasound transducer of a system emit (or are configured to emit) greater acoustic energy in one or more directions in relation to one or more other directions.


In any of the embodiments disclosed herein, an ultrasound transducer can include differing wall thickness (e.g., along its longitudinal axis). In embodiments comprising two or more transducers, the wall thickness of one transducer is greater or less than the wall thickness of another transducer. In some embodiments, one or more transducers of a system can be independently controllable (e.g., such that power and/or frequency to one transducer can be different than power and/or frequency to another transducer, etc.). In some embodiments, two or more transducers of a system are controlled together or in unison. In one embodiment, a transducer can include an eccentric or non-uniform backing lumen or opening.


In any of the embodiments disclosed herein, the transducer comprises a varying wall thickness along at least a portion of its circumferential extent. Accordingly, rotating the transducer can alter the acoustic energy pattern emitted by the transducer and/or alter one or more other aspects of energy emission (e.g., frequency, efficiency, etc.) during use. In some embodiments, one or more regions, surfaces and/or other portions of a transducer can be at least partially masked, covered, obstructed, etc. in order to alter the acoustic energy profile of the transducer during use. For example, at least a portion of the transducer can be masked or otherwise covered by selective plating and/or etching of the electrodes along the transducer, covering a portion of the transducer, using one or more features of the balloon, etc.).


In some embodiments, ultrasonic energy is directed directly within the tissue of the targeted nerve tissue (e.g., sympathetic nerves). In any of the embodiments disclosed herein, a balloon and/or other expandable structure or member can be used to at least partially expand the area or volume of tissue being treated (e.g., the renal artery, other body lumen or vessel, etc. can be radially expanded). In some embodiments, an ablation system includes a balloon (e.g., positioned at least partially around one or more traducers), but no fluid is configured to be circulated through the balloon during use. For example, in one embodiment, the balloon can be inflated with one or more gases, liquids and/or fluids (e.g., in order to expand the balloon, so that balloon contacts the adjacent wall of the targeted vessel, so that the one or more transducers of the system are radially centered or generally radially centered within the vessel, etc.), but no fluids are circulated through the balloon. Thus, the balloon can be configured to maintain an inflated or expanded state without the continuous or intermittent delivery of fluid therethrough.


In some embodiments, a catheter of the system comprises a chip (e.g., a smart catheter) and/or one or more related components or features (e.g., an identification device or reader, a transducer, etc.). Accordingly, the generator can detect which catheter is being used. Further, the system can monitor one or more aspects of a therapy or procedure using one or more metrics that are detected, such as, for example, pressure, temperature, flowrate, vessel diameter, thermal profile, presence and/or degree of spasm of a vessel, degree of narrowing of a vessel and/or the like. Such information can be used in a control scheme to regulate one or more aspect of the generator and/or other components or devices of the system (e.g., to modulate power, frequency, duration of procedure, automatic shutoff, billing, patient records or other recordkeeping, memorization of a procedure for other reasons, etc.).


The features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the concepts presented herein have been disclosed in the context of certain embodiments and examples, the present application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the concepts disclosed herein and obvious modifications and equivalents thereof. The disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10 mm” includes “10 mm.” For all of the embodiments described herein the steps of the methods need not be performed sequentially. Thus, it is intended that the scope of the concepts disclosed herein should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. An intravascular, ultrasound-based ablation system comprising: a catheter comprising a guidewire lumen, at least one cable lumen and at least one fluid lumen;a balloon positioned at a distal end of the catheter, an interior of the balloon being in fluid communication with the at least one fluid lumen of the catheter, wherein the balloon is configured to inflate when fluid is delivered into the interior through the at least one fluid lumen of the catheter;a tip extending distally from a distal end of the balloon, the tip comprising an internal guidewire passage;an ultrasound transducer positioned within the balloon, the ultrasound transducer comprising a cylindrical tube having proximal and distal ends, an outer surface and a lumen defining an inner surface, an inner electrode disposed on the inner surface and an outer electrode disposed on the outer surface;at least one electrical cable positioned within the at least one cable lumen of the catheter, the at least one electrical cable comprising a first connector and a second connector, the first connector being electrically coupled to the outer electrode and physically attached to a portion of the outer surface of the ultrasound transducer not having the outer electrode, and the second connector being electrically coupled to the inner electrode; anda transducer support structure consisting of: a backing member disposed within the lumen and inner electrode, the backing member extending from the proximal end to the distal end of the cylindrical tube and defining an interior lumen;an electrically insulating material disposed along the interior lumen of the backing member; anda plurality of attachment points extending from the backing member, the plurality of attachment points configured to engage the inner electrode, spacings between the plurality of attachment points defining a plurality of openings;wherein the plurality of attachment points define an internal space between the backing member and the inner electrode, the internal space being in fluid communication with the interior of the balloon via the plurality of openings so that, when in use, fluid entering the balloon passes along the outer electrode and into the internal space between the backing member and the inner electrode through the plurality of openings to transfer heat away from the ultrasound transducer, the backing member is generally aligned with the guidewire lumen of the catheter and the internal guidewire passage of the tip to permit the system to be delivered to a desired vascular position over a guidewire, and the backing member serves as a fluid barrier between fluid circulated within the balloon interior and the interior lumen.
  • 2. The system of claim 1, wherein the electrically insulating material comprises polyimide; andwherein the guidewire lumen extends from a proximal end of the catheter to the balloon.
  • 3. The system of claim 1, wherein the electrically insulating material prevents electrical conduction between a guidewire and the backing member.
  • 4. The system of claim 3, wherein the electrically insulating material comprises polyimide.
  • 5. The system of claim 1, wherein the guidewire lumen extends from a proximal end of the catheter to the balloon.
  • 6. The system of claim 1, wherein the guidewire lumen extends from a location between the proximal and distal ends of the catheter to the distal end of the catheter, such that the catheter comprises a rapid exchange design.
  • 7. The system of claim 1, wherein the backing member and plurality of attachment points are integrally formed.
  • 8. An intravascular, ultrasound-based ablation system comprising: a catheter comprising at least one cable lumen and at least one fluid lumen;a balloon positioned at a distal end of the catheter, an interior of the balloon being in fluid communication with the at least one fluid lumen of the catheter;a tip extending distally from a distal end of the balloon, the tip comprising an internal guidewire passage;an ultrasound transducer positioned within the balloon, the ultrasound transducer comprising a cylindrical tube having a proximal end and a distal end, an inner surface, an outer surface, an inner electrode disposed on the inner surface and an outer electrode disposed on the outer surface; the proximal end of the cylindrical tube comprising a stepped portion, wherein a portion of an outer diameter of the cylindrical tube is smaller than a portion of the outer diameter of the cylindrical tube located distal to the stepped portion such that the outer electrode is not disposed on the stepped portion;at least one electrical cable positioned within the at least one cable lumen of the catheter, the at least one electrical cable comprising a first connector and a second connector, the first connector being electrically coupled to the outer electrode and physically attached to a portion of the outer surface of the ultrasound transducer not having the outer electrode, and the second connector being electrically coupled to the inner electrode;a transducer support structure disposed within the lumen of the cylindrical tube, the transducer support structure having a plurality of attachment points configured to engage the inner electrode, the plurality of attachment points defining a plurality of openings; anda backing member coupled to the transducer support structure and disposed within the lumen and the inner electrode, the transducer support structure defining an internal space between the backing member and the inner electrode, the internal space being in fluid communication with the interior of the balloon via the plurality of openings so that, when in use, fluid entering the balloon passes along the outer electrode and into the internal space between the backing member and the inner electrode through the plurality of openings to transfer heat away from the ultrasound transducer, the backing member further comprising an interior lumen that is generally aligned with the guidewire lumen of the catheter and the internal guidewire passage of the tip to permit the system to be delivered to a desired vascular position over a guidewire, wherein the backing member is electrically coupled to the second connector.
  • 9. The system of claim 8, further comprising a ring surrounding the stepped portion, the ring being sized and shaped to surround the portion of the outer diameter of the cylindrical tube located distal to the stepped portion, the ring being electrically conductive so that the first connector is electrically coupled to the electrode along the outer surface of the cylindrical tube; wherein the ring comprises a conductive machined ring that couples around the stepped portion of the cylindrical tube; andwherein the stepped portion extends approximately 5% to 25% of a length of the cylindrical tube.
  • 10. The system of claim 9, wherein the ring comprises conductive solder.
  • 11. The system of claim 9, wherein the ring comprises a conductive machined ring that couples around the stepped portion of the cylindrical tube.
  • 12. The system of claim 8, wherein the stepped portion extends approximately 5% to 25% of a length of the cylindrical tube.
  • 13. The system of claim 8, wherein the stepped portion comprises a portion of the cylindrical tube that is removed using grinding or other removal techniques.
  • 14. The system of claim 8, wherein an impedance of the at least one electrical cable substantially matches an impedance of the ultrasound transducer.
  • 15. The system of claim 14, wherein the impedance of the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms.
  • 16. The system of claim 8, wherein the backing member and transducer support structure are integrally formed.
  • 17. An intravascular, ultrasound-based ablation system comprising: a catheter comprising a cable lumen extending from a proximal end to a distal end of the catheter;a balloon positioned at a distal end of the catheter;a tip extending distally from a distal end of the balloon;an ultrasound transducer positioned at or near a distal end of the catheter, the ultrasound transducer comprising a cylindrical tube having an inner surface and an outer surface, and an inner electrode disposed on the inner surface and an outer electrode disposed on the outer surface, a proximal portion of the cylindrical tube having a stepped portion such that the outer electrode is not disposed on the stepped portion;a transducer support structure having a plurality of attachment points configured to engage the inner electrode, spacings between the plurality of attachment points defining a plurality of openings, the transducer support structure being electrically coupled to the inner electrode;a backing member extending through the cylindrical tube, the transducer support structure defining an internal space between the backing member and the inner electrode, the internal space being in fluid communication with an interior of the balloon via the plurality of openings so that, when in use, fluid entering the balloon passes along the outer electrode and into the internal space between the backing member and the inner electrode through the plurality of openings; andan electrical cable positioned within the cable lumen of the catheter and extending from the proximal end to the distal end of the catheter, wherein a proximal end of the electrical cable is configured to be coupled to a generator configured to selectively provide electrical power to the ultrasound transducer through the electrical cable, the electrical cable comprising a first connector and a second connector, the first connector being electrically coupled to the outer electrode and physically attached to a portion of the outer surface of the ultrasound transducer not having the outer electrode, and the second connector being electrically coupled to the backing member;wherein an impedance of the electrical cable is substantially equal to an impedance of the ultrasound transducer, thereby providing a more efficient power transfer from the generator to the ultrasound transducer when the ablation system is in use.
  • 18. The system of claim 17, wherein the electrical cable comprises a coaxial cable; andwherein the impedance of the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms.
  • 19. The system of claim 17, wherein the electrical cable comprises a coaxial cable.
  • 20. The system of claim 17, wherein the impedance of the electrical cable and the ultrasound transducer is approximately 40 to 60 ohms.
  • 21. The system of claim 17, wherein the backing member and transducer support structure are integrally formed.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/784,790, filed Mar. 14, 2013, the entirety of which is hereby incorporated by reference herein.

US Referenced Citations (282)
Number Name Date Kind
3938502 Bom Feb 1976 A
4802490 Johnston Feb 1989 A
4841977 Griffith Jun 1989 A
5295992 Cameron Mar 1994 A
5295995 Kleiman Mar 1994 A
5308356 Blackshear et al. May 1994 A
5324255 Passafaro et al. Jun 1994 A
5327885 Griffith Jul 1994 A
5354200 Klein et al. Oct 1994 A
5354220 Ganguly Oct 1994 A
5400267 Denen et al. Mar 1995 A
5423220 Finsterwald et al. Jun 1995 A
5456259 Barlow et al. Oct 1995 A
5524491 Cavalloni Jun 1996 A
5620479 Diederich Apr 1997 A
5630837 Crowley May 1997 A
5713849 Bosma et al. Feb 1998 A
5722397 Eppstein Mar 1998 A
5769812 Stevens et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5803083 Buck et al. Sep 1998 A
5938645 Gordon Aug 1999 A
6097985 Kasevich et al. Aug 2000 A
6102863 Pflugrath et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6128522 Acker et al. Oct 2000 A
6149596 Bancroft Nov 2000 A
6190377 Kuzdrall Feb 2001 B1
6216704 Ingle et al. Apr 2001 B1
6277077 Brisken et al. Aug 2001 B1
6299583 Eggers et al. Oct 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6475146 Frelburger et al. Nov 2002 B1
6492762 Pant et al. Dec 2002 B1
6517534 McGovern et al. Feb 2003 B1
6599256 Acker et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6607502 Maguire Aug 2003 B1
6635054 Fjield et al. Oct 2003 B2
6645202 Pless et al. Nov 2003 B1
6669638 Miller et al. Dec 2003 B1
6712767 Hossack et al. Mar 2004 B2
6740040 Mandrusov et al. May 2004 B1
6763722 Fjield et al. Jul 2004 B2
6793635 Ryan et al. Sep 2004 B2
6913581 Corl et al. Jul 2005 B2
6953469 Ryan Oct 2005 B2
6978174 Gelfand et al. Dec 2005 B2
7162303 Levin et al. Jan 2007 B2
7285116 De La Rama et al. Oct 2007 B2
7291413 Allen et al. Nov 2007 B2
7297413 Mitsumori Nov 2007 B2
7347852 Hobbs et al. Mar 2008 B2
7473224 Makin Jan 2009 B2
7540846 Harhen et al. Jun 2009 B2
7573182 Savage Aug 2009 B2
7591996 Hwang et al. Sep 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7625371 Morris et al. Dec 2009 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7678104 Keidar Mar 2010 B2
7717948 Demarais et al. May 2010 B2
7756583 Demarais et al. Jul 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7846317 Meltzer et al. Dec 2010 B2
7873417 Demarais et al. Jan 2011 B2
7937143 Demarais et al. May 2011 B2
8131371 Demarals et al. Mar 2012 B2
8233221 Suijver et al. Jul 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8287472 Ostrovsky et al. Oct 2012 B2
8475442 Hall et al. Jul 2013 B2
8485993 Orszulak et al. Jul 2013 B2
8504147 Deem et al. Aug 2013 B2
D697036 Kay et al. Jan 2014 S
8715209 Gertner May 2014 B2
8734438 Behnke May 2014 B2
D708810 Lewis, Jr. Jul 2014 S
8808345 Clark et al. Aug 2014 B2
D712352 George et al. Sep 2014 S
D712353 George et al. Sep 2014 S
D712833 George et al. Sep 2014 S
8974445 Warnking et al. Mar 2015 B2
9675413 Deem et al. Jun 2017 B2
9700372 Schaer Jul 2017 B2
9707034 Schaer Jul 2017 B2
9943666 Warnking Apr 2018 B2
9981108 Warnking May 2018 B2
10039901 Warnking Aug 2018 B2
20010007940 Tu et al. Jul 2001 A1
20020002334 Okuno et al. Jan 2002 A1
20020002371 Acker et al. Jan 2002 A1
20020062123 McClurken et al. May 2002 A1
20020065512 Fjield et al. May 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020150693 Kobayashi et al. Oct 2002 A1
20020151889 Swanson et al. Oct 2002 A1
20020156469 Yon et al. Oct 2002 A1
20020165535 Lesh et al. Nov 2002 A1
20020193781 Loeb Dec 2002 A1
20030060813 Loeb et al. Mar 2003 A1
20030125726 Maguire Jul 2003 A1
20030138571 Kunishi et al. Jul 2003 A1
20030181963 Pellegrino et al. Sep 2003 A1
20030204138 Choi Oct 2003 A1
20030216721 Diederich et al. Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030216794 Becker et al. Nov 2003 A1
20030225331 Diederich et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040044286 Hossack et al. Mar 2004 A1
20040082859 Schaer Apr 2004 A1
20040167415 Gelfand et al. Aug 2004 A1
20040230116 Cowan et al. Nov 2004 A1
20040253450 Seita et al. Dec 2004 A1
20050009218 Kunihiro Jan 2005 A1
20050035901 Lyon Feb 2005 A1
20050215990 Govari Sep 2005 A1
20050234523 Levin et al. Oct 2005 A1
20050256518 Rama et al. Nov 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060041277 Deem et al. Feb 2006 A1
20060058711 Harhen Mar 2006 A1
20060064081 Rosinko Mar 2006 A1
20060088705 Mitsumori Apr 2006 A1
20060100514 Lopath May 2006 A1
20060121200 Halpert et al. Jun 2006 A1
20060154072 Schlossman et al. Jul 2006 A1
20060155269 Warnking Jul 2006 A1
20060184072 Manna Aug 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060229594 Francischelli et al. Oct 2006 A1
20060241523 Sinelnikov et al. Oct 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060270976 Savage et al. Nov 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20070124458 Kumar May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070175359 Hwang Aug 2007 A1
20070203547 Costello et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070249046 Shields, Jr. Oct 2007 A1
20070255267 Diederich et al. Nov 2007 A1
20070255342 Laufer Nov 2007 A1
20070265609 Thapliyal et al. Nov 2007 A1
20070265610 Thapliyal et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070282407 Demarais et al. Dec 2007 A1
20070293762 Sawada et al. Dec 2007 A1
20080052186 Walker et al. Feb 2008 A1
20080151001 Sudo et al. Jun 2008 A1
20080252172 Yetter et al. Oct 2008 A1
20080255449 Warnking et al. Oct 2008 A1
20080255478 Burdette Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20090024195 Rezai et al. Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090118125 Kobayashi et al. May 2009 A1
20090118725 Auth et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090149753 Govari et al. Jun 2009 A1
20090171202 Kirkpatrick et al. Jul 2009 A1
20090189485 Iyoki Jul 2009 A1
20090204006 Wakabayashi et al. Aug 2009 A1
20090221939 Demarais et al. Sep 2009 A1
20090228003 Sinelnikov Sep 2009 A1
20090248011 Hlavka et al. Oct 2009 A1
20090299360 Ormsby Dec 2009 A1
20090312673 Thapliyal et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090312755 Thapliyal et al. Dec 2009 A1
20100016762 Thapliyal et al. Jan 2010 A1
20100033940 Yamaguchi et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100113928 Thapliyal et al. May 2010 A1
20100113985 Thapliyal et al. May 2010 A1
20100114094 Thapliyal et al. May 2010 A1
20100125198 Thapliyal et al. May 2010 A1
20100130892 Warnking May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100152582 Thapliyal et al. Jun 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168737 Grunewald Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100179424 Warnking et al. Jul 2010 A1
20100189974 Ochi et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100198065 Thapliyal et al. Aug 2010 A1
20100249859 Dilorenzo Sep 2010 A1
20100291722 Kim Nov 2010 A1
20110004184 Proksch et al. Jan 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110087096 Behar Apr 2011 A1
20110087097 Behar Apr 2011 A1
20110104060 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118598 Gertner May 2011 A1
20110137298 Nguyen et al. Jun 2011 A1
20110172527 Gertner Jul 2011 A1
20110178516 Orszulak et al. Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257562 Schaer Oct 2011 A1
20110257563 Thapliyal et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110301662 Bar-Yoseph et al. Dec 2011 A1
20110319765 Gertner et al. Dec 2011 A1
20120004656 Jackson et al. Jan 2012 A1
20120065493 Gertner Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120078278 Bales et al. Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120123243 Hastings May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120143097 Pike, Jr. Jun 2012 A1
20120165667 Altmann et al. Jun 2012 A1
20120172723 Gertner Jul 2012 A1
20120215106 Sverdlik et al. Aug 2012 A1
20120232436 Warnking Sep 2012 A1
20120238918 Gertner Sep 2012 A1
20120238919 Gertner Sep 2012 A1
20120265198 Crow et al. Oct 2012 A1
20120316439 Behar Dec 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130072928 Schaer Mar 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130103064 Arenson et al. Apr 2013 A1
20130110012 Gertner May 2013 A1
20130131668 Schaer May 2013 A1
20130138018 Gertner May 2013 A1
20130158441 Demarais et al. Jun 2013 A1
20130158442 Demarais et al. Jun 2013 A1
20130165822 Demarais et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130197555 Schaer Aug 2013 A1
20130204167 Sverdlik et al. Aug 2013 A1
20130211396 Sverdlik et al. Aug 2013 A1
20130211437 Sverdlik et al. Aug 2013 A1
20130218054 Sverdlik et al. Aug 2013 A1
20130274658 Steinke et al. Oct 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20130304047 Grunewald et al. Nov 2013 A1
20130331739 Gertner Dec 2013 A1
20140012133 Sverdlik et al. Jan 2014 A1
20140018794 Anderson et al. Jan 2014 A1
20140025069 Willard et al. Jan 2014 A1
20140031727 Warnking Jan 2014 A1
20140039477 Sverdlik et al. Feb 2014 A1
20140046313 Pederson et al. Feb 2014 A1
20140067029 Schauer et al. Mar 2014 A1
20140074083 Horn et al. Mar 2014 A1
20140107639 Zhang et al. Apr 2014 A1
20140163540 Iyer et al. Jun 2014 A1
20140180196 Stone et al. Jun 2014 A1
20140180197 Sverdlik et al. Jun 2014 A1
20140194785 Gertner Jul 2014 A1
20140200489 Behar et al. Jul 2014 A1
20140214018 Behar et al. Jul 2014 A1
20140249524 Kocur Sep 2014 A1
20140272110 Taylor et al. Sep 2014 A1
20140275924 Min et al. Sep 2014 A1
20140276742 Nabutovsky et al. Sep 2014 A1
20140276752 Wang et al. Sep 2014 A1
20140276755 Cao et al. Sep 2014 A1
20140276789 Dandler et al. Sep 2014 A1
20140277033 Taylor et al. Sep 2014 A1
20150223877 Behar et al. Aug 2015 A1
20150290427 Warnking Oct 2015 A1
20150335919 Behar et al. Nov 2015 A1
20160016016 Taylor et al. Jan 2016 A1
Foreign Referenced Citations (116)
Number Date Country
1441651 Sep 2003 CN
1763245.5 Apr 2006 CN
20 2005 022 060 Nov 2012 DE
0 623 360 Nov 1994 EP
0 659 387 Jun 1995 EP
0 767 630 Apr 1997 EP
0 774 276 May 1997 EP
0 838 980 Apr 1998 EP
1 042 990 Oct 2000 EP
1 100 375 May 2001 EP
1 384 445 Jan 2004 EP
1 598 024 Nov 2005 EP
1 647 305 Apr 2006 EP
2 218 479 Aug 2010 EP
2 359 764 Aug 2011 EP
2 457 614 May 2012 EP
2 460 486 Jun 2012 EP
2 495 012 Sep 2012 EP
2 521 593 Nov 2012 EP
2 561 903 Feb 2013 EP
2 561 905 Feb 2013 EP
2 626 022 Aug 2013 EP
2 632 373 Sep 2013 EP
2 662 041 Nov 2013 EP
2 662 043 Nov 2013 EP
2 037 166 Jul 1980 GB
05-068684 Mar 1993 JP
07-178173 Jul 1995 JP
40-826437 Oct 1996 JP
10-127678 May 1998 JP
H-10-507229 Jul 1998 JP
11-218100 Aug 1999 JP
2000-054153 Feb 2000 JP
2001-111126 Apr 2001 JP
2002-078809 Mar 2002 JP
2003-533265 Nov 2003 JP
2004-503324 Feb 2004 JP
2004-130096 Apr 2004 JP
2005-526579 Sep 2005 JP
2005-270662 Oct 2005 JP
2006-161116 Jun 2006 JP
2008-513056 May 2008 JP
2008-515544 May 2008 JP
2008-214669 Sep 2008 JP
2010-503466 Feb 2010 JP
2010-221038 Oct 2010 JP
2011-219828 Nov 2011 JP
WO-9000420 Jan 1990 WO
WO-9207622 May 1992 WO
WO-9220291 Nov 1992 WO
WO-9405365 Mar 1994 WO
WO-9411057 May 1994 WO
WO-9519143 Jul 1995 WO
WO-9525472 Sep 1995 WO
WO-9600039 Jan 1996 WO
WO-9713463 Apr 1997 WO
WO-9736548 Oct 1997 WO
WO-9841178 Sep 1998 WO
WO-9842403 Oct 1998 WO
WO-9849957 Nov 1998 WO
WO-9852465 Nov 1998 WO
WO-9902096 Jan 1999 WO
WO-9935987 Jul 1999 WO
WO-9944519 Sep 1999 WO
WO-9944523 Sep 1999 WO
WO-9952423 Oct 1999 WO
WO-9956812 Nov 1999 WO
WO-0016850 Mar 2000 WO
WO-0027292 May 2000 WO
WO-0041881 Jul 2000 WO
WO-0042934 Jul 2000 WO
WO-0051511 Sep 2000 WO
WO-0051683 Sep 2000 WO
WO-0056237 Sep 2000 WO
WO-0057495 Sep 2000 WO
WO-0067648 Nov 2000 WO
WO-0067656 Nov 2000 WO
WO-0067659 Nov 2000 WO
WO-0067830 Nov 2000 WO
WO-0067832 Nov 2000 WO
WO-0113357 Feb 2001 WO
WO-0122897 Apr 2001 WO
WO-0137925 May 2001 WO
WO-0170114 Sep 2001 WO
WO-0180723 Nov 2001 WO
WO-0182814 Nov 2001 WO
WO-0205868 Jan 2002 WO
WO-02083196 Oct 2002 WO
WO-02085192 Oct 2002 WO
WO-03003930 Jan 2003 WO
WO-03059437 Jul 2003 WO
WO-03099382 Dec 2003 WO
WO-2004023978 Mar 2004 WO
WO-2004091255 Oct 2004 WO
WO-2005009218 Feb 2005 WO
WO-2006041847 Apr 2006 WO
WO-2006041881 Apr 2006 WO
WO-2006060053 Jun 2006 WO
WO-2007124458 Nov 2007 WO
WO-2007135875 Nov 2007 WO
WO-2007146834 Dec 2007 WO
WO-2008003058 Jan 2008 WO
WO-2008036479 Mar 2008 WO
WO-2008052186 May 2008 WO
WO-2008061152 May 2008 WO
WO-2008151001 Dec 2008 WO
WO-2009149315 Dec 2009 WO
WO-2010033940 Mar 2010 WO
WO-2010067360 Jun 2010 WO
WO-2011046880 Apr 2011 WO
WO-2011053757 May 2011 WO
WO-2011082279 Jul 2011 WO
WO-2011088399 Jul 2011 WO
WO-2011094367 Aug 2011 WO
WO-2011139589 Nov 2011 WO
WO-2012112165 Aug 2012 WO
Non-Patent Literature Citations (139)
Entry
Bhatt, et al., A Controlled Trial of Renal Denervation for Resistant Hypertension, N. Engl. J. Med., 370:1393-1401 (2014).
Bunch, Jared, et al., Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at the Pulmonary Vein Orifice, Journal of Cardiovascular Electrophysiology, 16(12):1318-1325 (2005).
Campese, et al., Renal afferent denervation prevents hypertension in rats with chronic renal failure, Hypertension, 25:878-882 (1995).
Dibona, Renal nerves in compensatory renal response to contralateral renal denervation, Renal Physiology, 238 (1):F26-F30 (1980).
International Search Report & Written Opinion dated Jul. 9, 2014 in Int'l PCT Patent Application Serial No. PCT/US2014/22804.
International Search Report & Written Opinion dated Nov. 29, 2011 in International PCT Patent Appl No. PCT/US2011/025543.
International Search Report dated Feb. 9, 2014 in Int'l PCT Patent Application Serial No. PCT/US2014/022796.
Medtronic Press Release, Medtronic Announces U.S. Renal Denervation Pivotal Trial Fails to Meet Primary Efficacy Endpoint While Meeting Primary Safety Endpoint, Jan. 9, 2014.
Oliveira, et a., Renal Denervation Normalizes Pressure and Baroreceptor Reflex in High Renin Hypertension in Conscious Rats, Hypertension 19:17-21 (1992).
OnlineMathLearning.com, Volume Formula, “Volume of a Hollow Cylinder”, Oct. 24, 2008.
Smithwick, R.H., Surgery in hypertension, Lancet, 2:65 (1948).
Smithwick, R.H., Surgical treatment of hypertension, Am J Med 4:744-759 (1948).
Wang, S., et al., Effects of Low Intensity Ultrasound on the Conduction Property of Neural Tissues, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control, Joint 50th Anniversary Conference, 2004.
International Search Report & Written Opinion dated Jul. 9, 2014 in related Int'l PCT Patent Application Serial No. PCT/US2014/22804.
Extended EP Search Report dated Dec. 5, 2016 in EP Patent Application Serial No. 16183988.1.
www.dictionary.com/browse/degrease, retrieved Jun. 7, 2016.
Arruda, M.S., et al. “Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson-White syndrome.” J Cardiovasc Electrophysiol, 9:2-12 (1998).
Avitall, B., et al. “The creation of linear continuous lesions in the atria with an expandable loop catheter.” J Am Coll Cardiol, 33,4:972-974 (1999).
Bartlett, T.G., et al. “Current management of the Wolff-Parkinson-White syndrome.” J Card Surg. 8:503-515 (1993).
Benito, F., et al. “Radio frequency catheter ablation of accessory pathways in infants,” Heart, 78:160-162 (1997).
Blumenfeld, J.D., et al. “β-Adrenergic receptor blockade as a therapeutic approach for suppressing the renin-angiotensin-aldosterone system in norrnotensive and hypertensive subjects.” AJH, 12:451-459 (1999).
Callans, D. J. “Narrowing of the superior vena cava—right atrium junction during radiofrequency catheter ablation for inappropriate sinus tachycardia: Analysis with intracardiac echocardiography.” JACC, 33:1667-1670 (1999).
Cao, H., et al. “Flow effect on lesion formation in RF cardiac catheter ablation.” IEEE T Bio-Med Eng, 48:425-433 (2001).
Chen, S.-A., et al. “Complications of diagnostic electrophysiologic studies and radiofrequency catheter ablation in patients with tachyarrhythmias: An eight-year survey of 3,966 consecutive procedures in a tertiary referral center.” Am J Cardiol, 77:41-46 (1996).
Chen, Shih-Ann, M.D., “Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Pulmonary Veins,” Circulation 100(18):1879-86, 1999.
Chinitz, et al., “Mapping Reentry Around Atriotomy Scars Using Double Potentials,” Pacing and Clinical Electrophysiology, Cardiostim 96 Proceedings, Part II, vol. 19:1978-1983 (1996).
Cioni, R., et al. “Renal artery stenting in patients with a solitary functioning kidney.” Cardiovasc Intervent Radiol, 24:372-377 (2001).
Cosby, R.L., et al. “The role of the sympathetic nervous system and vasopressin in the pathogenesis of the abnormal sodium and water.” Nefrologia, V, 4:271-277 (1985).
Cosio, Francisco G., “Atrial Flutter Mapping and Ablation II,” Pacing & Clin. Electrophysiol. 19(6):965-75, 1996.
Cox, J.L. “The status of surgery for cardiac arrhythmias.” Circulation, 71 :413-417 (1985).
Cox, J.L. et al. “Five-year experience with the Maze procedure for atrial fibrillation.” Ann Thorac Surg, 56:814-824 (1993).
Cruickshank, J.M. “Beta-blockers continue to surprise us.” Eur Heart J, 21:354-364 (2000).
Curtis, J.J., et al. “Surgical therapy for persistent hypertension after renal transplantation,” Transplantation, 31:125-128 (1981).
Demazumder, D., et al. “Comparison of irrigated electrode designs for radiofrequency ablation of myocardium.” J Intery Card Electr, 5:391-400 (2001).
DiBona, G.F. “Neural control of the kidney: Functionally specific renal sympathetic nerve fibers.” Am J Physiol Regulatory Integrative Comp Physiol, 279:R1517-R1524 (2000).
DiBona, G.F. “Sympathetic nervous system and kidney in hypertension,” Nephrol and Hypertension, 11:197-200 (2002).
DiBona, G.F., et al. “Neural control of renal function,” Physiol Rev, 77:75-197 (1997).
DiBona, G.F., et al. “Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.” Am J Physiol Regul Integr Comp Physiol, 276:R539-R539 (1999).
Diederich C.J. et al. “Transurethral Ultrasound Array for Prostate Thermal Therapy: Initial Studies”, IEEE Transactions on Ultrasonic, Ferroelectronics and Frequency Control IEEEE USA, vol. 43, No. 6 Nov. 1996, pp. 1011-1022.
Doggrell, S.A., et al. “Rat models of hypertension, cardiac hypertrophy and failure.” Cardiovasc Res, 39:89-105 (1998).
Dong Q., et al. “Diagnosis of renal vascular disease with MR angiography.” RadioGraphies, 19:1535-1554 (1999).
Dubuc, M., et al. “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter,” J Intery Cardiac Electrophysiol, 2:285-292 (1998).
Feld, Gregory K., “Radiofrequency Catheter Ablation for the Treatment of Human Type I Atrial Flutter,” Circulation, 86(3):1233-1240 (1992).
Gallagher, John J., “Wolff-Parkinson-White Syndrome: Surgery to Radiofrequency Catheter Ablation,” 1997.
Gilard, M., et al. “Angiographic anatomy of the coronary sinus and its tributaries.” PACE, 21:2280-2284 (1998).
Gorisch, W., et al. “Heat-induced contraction of blood vessels.” Lasers Surg Med, 2:1-13 (1982).
Haines, D.E. et al. “Tissue heating during radiofrequency catheter ablation; A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall.” PACE, 12:962-976 (1989).
Haissaguerre, et al., “Radiofrequency Catheter Ablation in Unusual Mechanisms of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology, 5(9):743-1751 (1994).
Haissaguerre, et al., “Right and Left Atrial Radiofrequency Catheter Therapy of Paroxysmal Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology, 7(12):1133-1144 (1996).
Haissaguerre, Michel, “Electrophysiological End Point for Catheter Ablation of Atrial Fibrillation Initiated From Multiple Venous Foci,” Circulation, 101:1409-1417 (2000).
Haissaguerre, Michel, M.D., “Predominant Origin of Atrial Panarrhythmic Triggers in the Pulmonary Veins: A Distinct Electrophysiologic Entity,” 1997.
Haissaguerre, Michel, M.D., et al., “Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins,” The New England Journal of Medicine, 339(10):659-666 (1998).
Han, Y-M., et al. “Renal artery embolization with diluted hot contrast medium: An experimental study,” J Vasc Interv Radiol, 12:862-868 (2001).
Hansen, J.M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin Sci, 87, 1:13-20 (1994).
Hatala, Robert, “Radiofrequency Catheter Ablation of Left Atrial Tachycardia Originating Within the Pulmonary Vein in a Patient with Dextrocardia,” Pacing and Clinical Electrophysiology, 19(6):999-1002 (1996).
Hindricks, G. “The Multicentre European Radiofrequency Survey (MERFS): Complications of radiofrequency catheter ablation of arrhythmias.” Eur Heart J, 14:1644-1653 (1993).
Ho, S.Y., et al. “Architecture of the pulmonary veins: Relevance to the radiofrequency ablation.” Heart 86:265-270 (2001).
Hocini, et al., “Concealed Left Pulmonary Vein Potentials Unmasked by Left Atrial Stimulation,” Pacing and Clinical Electrophysiology, 23(11):1828-1831, part 2 (2000).
Hocini, et al., “Multiple Sources initiating Atrial Fibrillation from a Single Pulmonary Vein Identified by a Circumferential Catheter,” Pacing and Clinical Electrophysiology, 23(11):1828-1831, Part 2 (2000).
Hsieh, et al., “Double Multielectrode Mapping Catheters Facilitate Radiofrequency Catheter Ablation of Focal Atrial Fibrillation Originating from Pulmonary Veins,” Journal of Cardiovascular Electrophysiology, 10(2):136-144 (1999).
Huang et al., “Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats,” Hypertension 32, pp. 249-54 (1998).
Huang, S.K.S., et al. “Radiofrequency catheter ablation of cardiac arrhythmias: Basic concepts and clinical applications.” 2nd ed. Armonk, NY: Futura Publishing Co. (2000).
Igawa, et al., “The Anatomical Features of the Junction between the Left Atrium and the Pulmonary Veins: The Relevance with Atrial Arrhythmia”, Circulation, Journal of the American Heart Association, Abstracts from the 72nd Scientific Sessions, 100(18):I-285 (1999).
Jackman, W.M., et al. “Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction.” N England J Med, 327, 5:313-318 (Jul. 30, 1992).
Jain, M.K., et al. “A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation.” Ann Biomed Eng, 28:1075-1084 (2000).
Jais, Pierre, M.D., “A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation,” Circulation, 95(3):572-576 (1996).
Janssen, B.J.A., et al. “Renal nerves in hypertension.” Miner Electrolyte Metab, 15:74-82 (1989).
Kapural, L., et al. “Radiofrequency ablation for chronic pain control.” Curr Pain Headache Rep, 5:517-525 (2001).
Kay, et al., “Radiofrequency Ablation for Treatment of Primary Atrial Tachycardia,” Journal of the American College of Cardiology, 21(4):901-909 (1993).
Koepke, J.P., et al. “The physiology teacher: Functions of the renal nerves.” The Physiologist, 28, 1:47-52 (1985).
Kompanowska-Jezierska, et al. “Early effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow,” J Physiol, 531.2:527-534 (2001).
Krimholtz et al., “New Equivalent Circuits for Elementary Piezoelectric Transducers,” Electronics Lettres, vol. 6, No. 13, pp. 398-399, Jun. 25, 1970.
Kumagai, et al., “Treatment of Mixed Atrial Fibrillation and Typical Atrial Flutter by Hybrid Catheter Ablation,” Pacing and Clinical Electrophysiology, 23(11):1839-1842, Part 2 (2000).
Labonte, S. “Numerical model for radio-frequency ablation of the endocardium and its experimental validation.” IEEE T Bio-med Eng, 41,2:108-115 (1994).
Lee, S.-J., et al. “Ultrasonic energy in endoscopic surgery,” Yonsei Med J, 40:545-549 (1999).
Leertouwer, T.c., et al. “In-vitro validation, with histology, of intravascular ultrasound in renal arteries.” J Hypertens, 17:271-277 (1999).
Lesh, M.D., “An Anatomic Approach to Prevention of Atrial Fibrillation: Pulmonary Vein Isolation with Through-the-Balloon Ultrasound Ablation (TTB-US),” Thorac. Cardiovasc. Surg. 47 (1999) (Suppl.) 347-51.
Lesh, Michael D., M.D., “Radiofrequency Catheter Ablation of Atrial Arrhythmias,” Circulation, 89(3):1074-1089 (1994).
Liem, L. Bing, “In Vitro and In Vivo Results of Transcatheter Microwave Ablation Using Forward-Firing Tip Antenna Design,” Pacing and Clinical Electrophysiology, Cardiostim '96 Proceedings, 19(11), Part 2 pp. 2004-2008 (1996).
Lin, Wei-Shiang, M.D., “Pulmonary Vein Morphology in Patients with Paroxysmal Atrial Fibrillation Initiated by Ectopic Beats Originating From the Pulmonary Veins,” Circulation 101(11):1274-81, 2000.
Lowe, J.E. “Surgical treatment of the Wolff-Parkinson-White syndrome and other supraventricular tachyarrhythmias.” J Card Surg, 1 :117-134 (1986).
Lundin, S. et al. “Renal sympathetic activity in spontaneously hypertensive rats and normotensive controls, as studied by three different methods.” Acta Physiol Scan, 120,2:265-272 (1984).
Lustgarten, D.L., et al. “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias,” Progr Cardiovasc Dis, 41:481-498 (1999).
Mallavarapu,Christopher, “Radiofrequency Catheter Ablation of Atrial Tachycardia with Unusual Left Atrial Sites of Origin,” Pacing and Clinical Electrophysiology, vol. 19(6), pp. 988-992 (1996).
McRury, I.D., et al. “Nonuniform heating during radiofrequency catheter ablation with long electrodes.” Circulation, 96:4057-4064 (1997).
Mehdirad, A., et al. “Temperature controlled RF ablation in canine ventricle and coronary sinus using 7 Fr or 5 Fr ablation electrodes.” PACE, 21:310-321 (1998).
Miller, B.F., and Keane, C.B. “Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health.” Philadelphia: Saunders (1997) (“ablation”).
Misaki, T., et al. “Surgical treatment of patients with Wolff-ParkinsonWhite syndrome and associated Ebstein's anomaly.” J Thorae Cardiovase Surg, 110: 1702-1707 (1995).
Moak, J.P., et al. “Case report: Pulmonary vein stenosis following RF ablation of paroxysmal atrial fibrillation: Successful treatment with balloon dilation.” J Intery Card Electrophys, 4:621-631 (2000).
Montenero, Sandro, Annibale, “Electrograms for Identification of the Atrial Ablation Site During Catheter Ablation of Accessory Pathways,” Pacing and Clinical Electrophysiology, vol. 19(6), pp. 905-912 (1996).
Morrissey, D.M., “Sympathectomy in the treatment of hypertension.” Lancet, CCLXIV:403-408 (1953).
Moubarak, Jean B., “Pulmonary Veins-Left Atrial Junction: Anatomic and Histological Study,” Pacing & Clin. Electrophys. 23(11 pt. 2):1836-8, 2000.
Nakagawa, A., et al. “Selective ablation of porcine and rabbit liver tissue using radiofrequency: Preclinical study.” Eur Surg Res, 31:371-379 (1999).
Nakagawa, H., et al. “Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a eanine thigh muscle preparation.” Circulation, 91 :2264-2273 (1995).
Nakagawa, H., et al. “Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling.” Circulation, 98:458-465 (1998).
Neutel, J. M. “Hypertension and its management: A problem in need of new treatment strategies.” JRAAS, I:S 1 O-S 13 (2000).
Nozawa, T., et al. “Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats.” Heart Vessels, 16:51-56 (2002).
O'Connor, B.K., et al. “Radiofrequency ablation of a posteroseptal accessory pathway via the middle cardiac vein in a six-year-old child.” PACE, 20:2504-2507 (1997).
Oliveira et al., “Renal Denervation Normalized Pressure and Baroreceptor Reflex in High Renin Hypertension in Conscious Rats,” Hypertension Suppl. II vol. 19 No. 2 pp. 17-21 (1992).
Oral, H., et al. “Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation.” Circulation, 105: 1077-1081 (2002).
Page, I., et al. “The effect of renal denervation in the level of arterial blood pressure and renal function in essential hypertension.” J Clin Invest, XIV:27-30 (1935).
Panescu, D., et al. “Radiofrequency multielectrode catheter ablation in the atrium.” Phys Med Biol, 44:899-915 (1999).
Pavin, D., et al. “Permanent left atrial tachycardia: Radiofrequency catheter ablation through the coronary sinus.” J Cardiovasc Electrophysiol, 12:395-398 (2002).
Peet, M., “Hypertension and its surgical treatment by bilateral supradiaphragmatic splanchnicectomy,” Am. J. Surgery, pp. 48-68 (1948).g.
Petersen, H. H., et al. “Lesion dimensions during temperature controlled radiofrequency catheter ablation of left ventricular porcine myocardium: Impact of ablation site, electrode size, and convective cooling.” Circulation, 99:319-325 (1999).
Pohl, M.A. “Renovascular hypertension and ischemic nephropathy” A chapter in a book edited by Sehrier, R.W. “Atlas of diseases of the kidney: Hypertension and the kidney.” Blackwell Science (1999).
Prager, Nelson, A., “Long Term Effectiveness of Surgical Treatment of Ectopic Atrial Tachycardia,” Journal of the American College of Cardiology, vol. 22(1):85-92 (1993).
Pugsley, M.K., et al. “The vascular system an overview of structure and function.” J Pharmacol Toxical Methods, 44:333-340 (2000).
Rappaport et al. “Wide-Aperture Microwave Catheter-Based Cardiac Ablation”, Proceedings of the First Joint BMES/EMBS Conference, Oct. 13-16, 1999, p. 314.
Reuter, David, M.D., et al., “Future Directions of Electrotherapy for Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology, 9(8):S202-S210 (1998).
Robbins, Ivan, M.D., “Pulmonary Vein Stenosis After Catheter Ablation of Atrial Fibrillation,” Circulation, 98:1769-1775 (1998).
Sanderson, J.E., et al. “Effect of B-blockage on baroreceptor and autonomic function in heart failure.” Clin Sei, 69:137-146 (1999).
Schauerte, P., et al. “Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation,” Circulation, 102:2774-2780 (2000).
Scheinman, M. M., et al. “The 1998 NASPE prospective catheter ablation registry.” PACE, 23:1020-1028 (2000).
Scheinman, Melvin M., “NASPE Survey on Catheter Ablation,” 1995.
Smithwick et al., “Splanchnicetomy for Essential Hypertension,” J. Am. Med. Assn. 152:16, pp. 1501-04 (1953).
Solis-Herruzo et al., “Effects Lumbar Sympathetic Block on Kidney Function in Cirrhotic Patients with Hepatorneal Syndrome,” J. Hepatol. 5, pp. 167-173 (1987).
Stella, A., et al. “Effects of reversible renal denervation on hemodynamic and excretory functions of the ipsilateral and contralateral kidney in the cat,” J Hypertension, 4:181-188 (1986).
Stellbrink, C., et al. “Transcoronary venous radiofrequency catheter ablation of ventricular tachycardia.” J Cardiovasc Electropysiol 8:916-921 (1997).
Swain, et al., An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract, Gastrointestinal Endoscopy. 1994, 40:AB35.
Swartz, John F., “A Catheter-based Curative Approach to Atrial Fibrillation in Humans,” Circulation, Abstracts from the 67th Scientific Sessions, Clinical Cardiology: Radio Frequency Ablation of Atrial Arrhythmias, 90(4), part 2, I-335 (1994).
Swartz, John F., M.D., “Radiofrequency Endocardial Catheter Ablation of Accessory Atrioventricular Pathway Atrial Insertion Sites,” Circulation, 87:487-499 (1993).
Takahashi, H., et al. “Retardation of the development of hypertension in DOCA-salt rats by renal denervation.” Jpn Circ J, 48:567-574 (1984).
Tanaka et al., “A new radiofrequency thermal balloon catheter for pulmonary vein isolation,” Journal of the American College of Cardiology 38(7): 2079-86, Dec. 2001.
Tracy, Cynthia M., “Radiofrequency Catheter Ablation of Ectopic Atrial Tachycardia Using Paced Activation Sequence Mapping,” J. of the Amer. College of Cardiol. 21(4):910-7, 1993.
Tungjitkusolmun, S. “Ablation.” A chapter in a book edited by Webster, J. G., “Minimally invasive medical technology.” Bristol UK: IOP Publishing, 219 (2001).
Uchida, F., et al. “Effect of radio frequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites,” PACE, 21:2517-2521 (1998).
Uflacker, R., “Atlas of vascular anatomy: An angiographic approach.” Baltimore: Williams & Wilkins, 424 (1997).
Valente, J. F. “Laparoscopic renal denervation for intractable ADPKD-related pain,” Nephrol Dial Transplant, 16:160 (2001).
Van Hare, G. F., et al. “Percutaneous radiofrequency catheter ablation for supraventricular arrhythmias in children.” JACC, 17:1613-1620 (1991).
Van Hare, George F., “Radiofrequency Catheter Ablation of Supraventricular Arrhythmias in Patients With Congenital Heart Disease: Results and Technical Considerations,” J. of the Amer. College of Cardiol. 22(3):883-90, 1993.
Volkmer, Marius, M.D., “Focal Atrial Tachycardia from Deep Inside the Pulmonary Veins,” PACE vol. 20:533, p. 1183 (1997).
Vujaskovie, Z., et al. “Effects of intraoperative hyperthermia on canine seiatie nerve: Histopathology and morphometric studies.” Int JHyperthermia, 10,6:845-855 (1994).
Walsh, Edward P., M.D., “Transcatheter Ablation of Ectopic Atrial Tachycardia in Young Patients Using Radiofrequency Current,” Circulation, 86(4):1138-1146 (1992).
Weinstock, M., et al. “Renal denervation prevents sodium retention and hypertension in salt-sensitive rabbits with genetic baroreflex impairment,” Clinical Science, 90:287-293 (1996).
Weir, M. R., et al. “The renin-angiotensin-aldosterone system: A specific target for hypertension management.” Am J Hypertens,12:205S-213S (1999).
Yamamoto, T., et al. “Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis.” Arterisocl Throm Vas, 16: 172-177 (1996).
Zhang et al., “The development of a RF electrical pole catheter for heart ablation,” China Academic Journal Electronic Publishing House 23(5): 279-80, Sep. 1999 (With English Abstract).
Zipes, Douglas P., M.D., “Catheter Ablation of Arrhythmias,” 1994.
Related Publications (1)
Number Date Country
20140277033 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61784790 Mar 2013 US