Ultrasound catheter apparatus

Information

  • Patent Grant
  • 8961423
  • Patent Number
    8,961,423
  • Date Filed
    Thursday, October 1, 2009
    15 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
Ultrasound catheter devices and methods of the present invention generally provide for ablation and/or disruption of vascular occlusions. An ultrasound transmission member, such as a wire, transmits vibrational energy from an ultrasound transducer to a distal head of the catheter to disrupt vascular occlusions. An absorber member is disposed on or around the ultrasound transmission wire at a location adjacent the sonic connector of the catheter. The absorber member absorbs heat, vibrations, and/or the like from the ultrasound transmission wire at or near the area where the transmission wire is coupled with the sonic connector. The absorptive function typically slows the process of wear and tear on the transmission wire, thus extending the useful life of the ultrasound catheter.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to medical devices and methods. More specifically, the present invention relates to ultrasound catheter devices and methods for treating occlusive intravascular lesions.


Catheters employing various types of ultrasound transmitting members have been successfully used to ablate or otherwise disrupt obstructions in blood vessels. Specifically, ablation of atherosclerotic plaque or thromboembolic obstructions from peripheral blood vessels such as the femoral arteries has been particularly successful. Various ultrasonic catheter devices have been developed for use in ablating or otherwise removing obstructive material from blood vessels. For example, U.S. Pat. Nos. 5,267,954 and 5,380,274, issued to an inventor of the present invention and hereby incorporated by reference, describe ultrasound catheter devices for removing occlusions. Other examples of ultrasonic ablation devices for removing obstructions from blood vessels include those described in U.S. Pat. Nos. 3,433,226 (Boyd), 3,823,717 (Pohlman, et al.), 4,808,153 (Parisi), 4,936,281 (Stasz), 3,565,062 (Kuris), 4,924,863 (Sterzer), 4,870,953 (Don Michael, et al), and 4,920,954 (Alliger, et al.), as well as other patent publications WO87-05739 (Cooper), WO89-06515 (Bernstein, et al.), WO90-0130 (Sonic Needle Corp.), EP, EP316789 (Don Michael, et al.), DE3,821,836 (Schubert) and DE2438648 (Pohlman). While many ultrasound catheters have been developed, however, improvements are still being pursued.


Typically, an ultrasonic catheter system for ablating occlusive material includes three basic components: an ultrasound generator, an ultrasound transducer, and an ultrasound catheter. The generator converts line power into a high frequency current that is delivered to the transducer. The transducer contains piezoelectric crystals which, when excited by the high frequency current, expand and contract at high frequency. These small, high-frequency expansions and contractions have both longitudinal and transverse components (relative to an axis of the transducer and the catheter), which are amplified by the transducer horn into vibrational energy. The vibrations are then transmitted from the transducer through the ultrasound catheter via an ultrasound transmission member (or wire) running longitudinally through the catheter. The transmission member transmits the vibrational energy to the distal end of the catheter where the energy is used to ablate or otherwise disrupt a vascular obstruction.


To effectively reach various sites for treatment of intravascular occlusions, ultrasound catheters of the type described above typically have lengths of about 150 cm or longer. To permit the advancement of such ultrasound catheters through small and/or tortuous blood vessels such as the aortic arch, coronary vessels, and peripheral vasculature of the lower extremities, the catheters (and their respective ultrasound transmission wires) must typically be sufficiently small and flexible. Due to attenuation of ultrasound energy along the long, thin, ultrasound transmission wire, a sufficient amount of vibrational energy must be applied at the proximal end of the wire to provide a desired amount of energy at the distal end.


An ultrasound transmission wire is usually coupled at its proximal end with the transducer by means of a sonic connector. The sonic connector typically has a significantly larger diameter than that of the ultrasound transmission member, the difference in diameters helping to amplify the vibrational energy being transmitted from the transducer to the transmission wire. This amplification of vibrations, however, creates stress and heat in the transmission wire in an area adjacent its connection with the sonic connector. Stress and heat generated by these amplified vibrations (especially transverse vibrations) significantly reduce the usable life of the ultrasound transmission wire and may cause its premature breakage at or near the point of contact with the sonic connector.


Efforts have been made to reduce transverse vibrations somewhere along the length of an ultrasound transmission member. For example, U.S. Pat. Nos. 5,382,228 and 6,494,891, both of which issued to an inventor of the present invention and are hereby incorporated by reference, describe mechanisms for absorbing transverse motion of an ultrasound transmission wire. Currently available devices and devices described in the above patents, however, to not reduce stress and/or heat in an ultrasound transmission wire at or near its point of contact with a sonic connector as much as may be desired. As just discussed, this proximal area of the transmission wire may be one of the most vulnerable areas due to its exposure to amplified vibrational energy from the sonic connector.


Therefore, a need exists for an improved ultrasound catheter device and method that provides ablation or disruption of vascular occlusions. Ideally, the ultrasound catheter would include means for reducing heat in the ultrasound transmission wire component of the catheter at or near its coupling with the sonic connector component. Alternatively or additionally, it would also be ideal if transverse vibrations and stress were reduced in a proximal portion of the transmission wire. Such catheter devices would ideally be sufficiently thin and flexible to be advanced through narrow, tortuous vasculature, such as the coronary vasculature, while also being configured to enhance the usable life of the ultrasound transmission wire. At least some of these objectives will be met by the present invention.


BRIEF SUMMARY OF THE INVENTION

Ultrasound catheter devices and methods of the present invention generally provide for ablation and/or disruption of vascular occlusions. An ultrasound transmission member, such as a wire, transmits vibrational energy from an ultrasound transducer to a distal head of the catheter to disrupt vascular occlusions. At least one absorber member is disposed on or around the ultrasound transmission wire at a location adjacent the sonic connector of the catheter. The absorber member absorbs heat, vibrations, and/or the like from the ultrasound transmission wire at or near the area where the transmission wire is coupled with the sonic connector. The absorptive function typically slows the process of wear and tear on the transmission wire, thus extending the useful life of the ultrasound catheter.


In one aspect of the invention, an ultrasound catheter for disrupting occlusions in blood vessels comprises: an elongate flexible catheter body having a proximal end, a distal end and at least one lumen; an ultrasound transmission member extending longitudinally through the lumen of the catheter body; a sonic connector coupled with a proximal end of the ultrasound transmission member for coupling the ultrasound transmission member with a separate ultrasound generating device; and at least one heat absorbing member coupled with the ultrasound transmission member adjacent the sonic connector. In some embodiments, the heat absorbing member surrounds a portion of the ultrasound transmission member adjacent a distal end of the sonic connector. Optionally, the heat absorbing member includes a bore for receiving the ultrasound transmission member. In some embodiments, such a heat absorbing member is tubular.


In some embodiments, the heat absorbing member contacts a distal end of the sonic connector, while in other embodiments the heat absorbing member may be separated from a distal end of the sonic connector by a distance of a few millimeters. The heat absorbing member may comprise one piece or, in other embodiments, the heat absorbing member may comprise at least two component parts such as at least one absorptive part in contact with the transmission member for absorbing heat and at least one constraining part coupled with the absorptive part for holding the absorptive part in place on the transmission member. In some such embodiments, the constraining part contacts the transmission member and comprises at least one absorptive material for absorbing heat. In various embodiments, the constraining part may either contact a portion of the sonic connector or overlap a portion of the sonic connector. Optionally, at least one of the absorptive part and the constraining part may be capable of absorbing vibrations. In some embodiments, the constraining part comprises a bore for receiving the ultrasound transmission wire, wherein the bore includes a widened portion for receiving the absorptive part. In some embodiments, the constraining part is tubular. Also in some embodiments, the constraining part is coupled with at least one of the absorptive part and the ultrasound transmission wire by at least one of crimping, bonding, fusing or welding.


In other embodiments, the heat absorbing member comprises at least two component parts comprising at least one vibration absorptive part in contact with the transmission member for absorbing vibrations and at least one constraining part coupled with the absorptive part for holding the absorptive part in place on the transmission member and for absorbing heat. In some embodiments, the constraining part contacts a portion of the sonic connector, while in other embodiments it overlaps a portion of the sonic connector. In some embodiments, the constraining part comprises a bore for receiving the ultrasound transmission wire, wherein the bore includes a widened portion for receiving the absorptive part. In such embodiments, the constraining part may sometimes be tubular.


In some embodiments, the heat absorbing member is capable of absorbing vibrations. In other embodiments, the ultrasound catheter further includes a vibrational absorbing member coupled with the ultrasound transmission member for absorbing vibrations. In either case, the heat absorbing member may comprise at least one metal having heat conductivity properties. The metal(s) may include, but are not limited to, aluminum and its alloys, titanium and its alloys, and/or magnesium and its alloys. Finally, in some embodiments the heat absorbing member is coupled with the ultrasound transmission wire by at least one of crimping, bonding, fusing or welding.


In another aspect, an ultrasound catheter for disrupting occlusions in blood vessels includes: an elongate flexible catheter body having a proximal end, a distal end and at least one lumen; an ultrasound transmission member extending longitudinally through the lumen of the catheter body; a sonic connector coupled with a proximal end of the ultrasound transmission member for coupling the ultrasound transmission member with a separate ultrasound generating device; and at least one vibration absorbing member coupled with the ultrasound transmission member adjacent the sonic connector. Any of the features and combinations described for the embodiments above may be equally applied to this aspect of the invention.


In some embodiments, the vibration absorbing member surrounds a portion of the ultrasound transmission member adjacent a distal end of the sonic connector. For example, the vibration absorbing member may include a bore for receiving the ultrasound transmission member. In some embodiments, the vibration absorbing member is tubular. In some embodiments, the vibration absorbing member contacts a distal end of the sonic connector, while in others it is separated from a distal end of the sonic connector by a distance of a few millimeters. For example, in some embodiments, the absorbing member may be separated from the sonic connector by approximately ¼ of a wavelength produced by the ultrasound device.


In some embodiments, the vibration absorbing member comprises at least two component parts, the component parts comprising: at least one absorptive part in contact with the transmission member for absorbing vibrations; and at least one constraining part coupled with the absorptive part for holding the absorptive part in place on the transmission member. In some embodiments, the at least one constraining part contacts the transmission member and comprises at least one absorptive material for absorbing heat. Also in some embodiments, the at least one constraining part contacts or overlaps a portion of the sonic connector. In some embodiments, at least one of the absorptive part and the constraining part is capable of absorbing heat. In some embodiments, the at least one constraining part comprises a bore for receiving the ultrasound transmission wire, wherein the bore includes a widened portion for receiving the absorptive part. In such embodiments, the constraining part may be tubular. The constraining part may be coupled with at least one of the absorptive part and the ultrasound transmission wire by at least one of crimping, bonding, fusing or welding.


In other embodiments, the vibration absorbing member comprises at least two component parts, the component parts comprising: at least one vibration absorptive part in contact with the transmission member for absorbing vibrations; and at least one constraining part coupled with the absorptive part for holding the absorptive part in place on the transmission member and for absorbing heat. The at least one constraining part may contact or overlap a portion of the sonic connector in various embodiments. Optionally, the constraining part may include a bore for receiving the ultrasound transmission wire, wherein the bore includes a widened portion for receiving the absorptive part. In such embodiments, the constraining part may be tubular, for example.


In some embodiments, the vibration absorbing member is capable of absorbing heat. In other embodiments, the ultrasound catheter further includes a heat absorbing member coupled with the ultrasound transmission member for absorbing heat. In some embodiments the vibration absorbing member comprises at least one vibration absorbing material selected from the group consisting of rubbers and polymers. In some embodiments, the vibration absorbing member further comprises at least one metal having heat conductivity properties. For example, such a metal may be selected from the group consisting of aluminum, titanium, and magnesium. In some embodiments, the vibration absorbing member is coupled with the ultrasound transmission wire by at least one of crimping, bonding, fusing or welding.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an ultrasound catheter system constructed according to the principles of the present invention.



FIG. 2 is a cross-sectional view of an ultrasound catheter having an absorber member according to an embodiment of the present invention.



FIG. 3A is a magnified view of a proximal end of an ultrasound catheter as shown in FIG. 2.



FIG. 3B is a further magnified view of a proximal end of an ultrasound catheter as shown in FIGS. 2 and 3A.



FIGS. 4A-4C are cross-sectional views of proximal ends of ultrasound catheters having absorber members according to various embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Ultrasound catheter devices and methods of the present invention generally provide for ablation and/or disruption of vascular occlusions. An ultrasound transmission member, such as a wire, transmits vibrational energy from an ultrasound transducer to a distal head of the catheter to disrupt vascular occlusions. At least one absorber member is disposed on or around the ultrasound transmission wire at a location adjacent the sonic connector of the catheter. The absorber member absorbs heat, vibrations, and/or the like from the ultrasound transmission wire at or near the area where the transmission wire is coupled with the sonic connector. The absorptive function typically slows the process of wear and tear on the transmission wire, thus extending the useful life of the ultrasound catheter. Although catheters of the invention are described in detail below, for further details reference may be made to U.S. patent application Ser. No. 10/229,371, filed Aug. 26, 2002, which was previously incorporated by reference.


Referring now to FIG. 1, one embodiment of an over-the-wire ultrasound catheter system 20 suitably includes an ultrasound catheter 10, a proximal end connector assembly 12 coupled with catheter 10, an ultrasound transducer 14 coupled with the proximal end of proximal connector assembly 12, and an ultrasound generator 16 with a foot-actuated on/off switch 18, which is operatively coupled with ultrasound transducer 14 to provide ultrasonic energy to transducer 14 and, thus, to ultrasound catheter 10. Generally, catheter 10 will include an ultrasound transmission member, or wire (not shown), for transmitting energy from the transducer 14 to a distal head 26 of the catheter. Proximal connector assembly 12, described more fully below, may have a Y-connector 15 with one or more side-arms 13, for example for providing irrigation fluid via an irrigation tube 11. The catheter 10 may be passed along a guide wire 17 which accesses catheter 10 via a side aperture. The side aperture may be located close to the distal end of catheter 10 or in another embodiment (not shown) close to the proximal end of catheter 10.


Ultrasound catheters 10 of the present invention may be used with any suitable combination of devices, such as any suitable ultrasound transducer 14, ultrasound generator 16, and/or the like. Therefore, exemplary FIG. 1 and any following descriptions of ultrasound catheter apparatus or systems should in no way be interpreted to limit the scope of the present invention as defined in the appended claims. Again, exemplary ultrasound catheters which may incorporate one or more improvements of the present invention are described in previously incorporated U.S. patent application Ser. No. 10/229,371. Other exemplary catheters are described in U.S. patent application Ser. No. 10/345,078, filed on Jan. 14, 2003, entitled “Ultrasound Catheter and Methods for Making and Using Same,” by an inventor of the present invention, the full disclosure of which is hereby incorporated by reference. On the other hand, any suitable ultrasound catheter now known or hereafter discovered may be configured to include one or more improvements of the present invention and, thereby, fall within the scope of the invention.


Referring now to FIGS. 2 and 3, cross-sectional side views of ultrasound catheter 10 and a proximal portion of ultrasound catheter 10 are shown, respectively. Generally, ultrasound catheter 10 suitably includes an elongate catheter body 22 with an ultrasound transmission member 24 disposed longitudinally through its lumen and ending in distal head 26. Catheter body 22 is generally a flexible, tubular, elongate member, having any suitable diameter and length for reaching a vascular occlusion for treatment. In one embodiment, for example, catheter body 22 preferably has an outer diameter of between about 0.5 mm and about 5.0 mm. In other embodiments, as in catheters intended for use in relatively small vessels, catheter body 22 may have an outer diameter of between about 0.25 mm and about 2.5 mm. Catheter body 22 may also have any suitable length. As discussed briefly above, for example, some ultrasound catheters have a length in the range of about 150 cm. However, any other suitable length may be used without departing from the scope of the present invention. Examples of catheter bodies similar to those which may be used in the present invention are described in U.S. Pat. Nos. 5,267,954 and 5,989,208, which were previously incorporated herein by reference.


In most embodiments, ultrasound transmission member 24, wire, or wave guide extends longitudinally through catheter body lumen 21 to transmit ultrasonic energy from ultrasound transducer 14, connected to the proximal end of catheter 10, to the distal end of catheter 10. Ultrasound transmission member 24 may be formed of any material capable of effectively transmitting ultrasonic energy from ultrasound transducer 14 to the distal end of catheter body 22, including but not limited to metals such as pure titanium or aluminum, or titanium or aluminum alloys.


In accordance with one aspect of the invention, all or a portion of ultrasound transmission member 24 may be formed of one or more materials which exhibit superelastic properties. Such material(s) should preferably exhibit superelasticity consistently within the range of temperatures normally encountered by ultrasound transmission member 24 during operation of ultrasound catheter apparatus 10. Specifically, all or part of the ultrasound transmission member 24 may be formed of one or more metal alloys known as “shape memory alloys.”


Use of superelastic metal alloys in ultrasound transmission members is described in U.S. Pat. No. 5,267,954, previously incorporated by reference. Examples of superelastic metal alloys which may be used are described in detail in U.S. Pat. Nos. 4,665,906 (Jervis); 4,565,589 (Harrison); 4,505,767 (Quin); and 4,337,090 (Harrison). The disclosures of U.S. Pat. Nos. 4,665,906; 4,565,589; 4,505,767; and 4,337,090 are expressly incorporated herein by reference insofar as they describe the compositions, properties, chemistries and behavior of specific metal alloys which are superelastic within the temperature range at which the ultrasound transmission member of the present invention operates, any and all of which superelastic metal alloys may be used to form ultrasound transmission member 24 of the present invention.


In many embodiments, ultrasound transmission member 24 includes one or more tapered regions along a portion of its length, towards its distal end. Such a tapered region decreases the distal rigidity of ultrasound transmission member 24, thus amplifying ultrasound energy transmitted along ultrasound transmission member 24 to distal head 26. The tapered region typically divides the transmission member 24 between a proximal portion and a distal portion, which both typically have a larger cross-sectional diameter than the tapered region. A thicker distal portion, for example, may enhance stability of the connection between ultrasound transmission member 24 and distal head 26. Other embodiments are contemplated, however. For example, the tapered region may be positioned at the extreme distal end of transmission member 24. In still other embodiments, ultrasound transmission member 24 may include multiple tapered portions, widened portions and/or the like. Thus, ultrasound transmission member 24 may be configured with any suitable length, combinations of diameters and tapers, or any other suitable shapes, sizes or configurations to advantageously transmit ultrasound energy from transducer 14 to distal tip 26.


In some embodiments ultrasound transmission member 24 may include a low-friction coating or jacket on all or a portion of its outer surface. The coating may be disposed on the outer surface of ultrasound transmission member 24 so as to completely cover ultrasound transmission member 24 along its entire length, or along a discrete region or regions thereof. Such a coating or jacket may comprise a layer of low friction polymer material such as polytetrafluoroethylene (PTFE), TEFLON™ (available from DUPONT, INC., Wilmington, Del.) or other plastic materials such as polyethylene. The coating may be applied as a liquid and subsequently allowed to cure or harden on the surface of ultrasound transmission member 24. Alternatively, the coating may be in the form of an elongate tube, disposable over the outer surface of ultrasound transmission member 24. Generally, the coating serves to prevent or diminish friction between the outer surface of ultrasound transmission member 24 and the adjacent structures of catheter 10 or proximal end connector assembly 12 through which ultrasound transmission member 24 extends.


With continued reference to FIGS. 2 and 3A, one embodiment of proximal end connector assembly 12 suitably includes a housing 42 with a hollow inner bore 44. Bore 44 may have a uniform inner diameter along its length or, alternatively, may have multiple segments, such as a proximal segment 47, a middle segment 45 and a distal segment 49, each of which may surround one or more various components of proximal end connector apparatus 12. Generally, proximal segment 47 of bore 44 is configured to allow coupling with ultrasound transducer 14 (not shown) via any suitable coupling means, such as a pressure fit, complementary threads or the like. Proximal segment 47 includes a sonic connector 52 for transmitting vibrational energy from transducer 14 to ultrasound transmission member 24. In some embodiments, sonic connector 52 may be held within housing 42, by means of dowel pin 53. In other embodiments, dowel pin 53 may not be included and sonic connector 52 may be positioned within housing 42 by other means.


Middle segment 45 of bore 44, in some embodiments, may surround a portion of sonic connector 52, while in other embodiments, sonic connector 52 may be housed only within proximal segment 47. Sonic connector 48 is coupled with the distal end of ultrasound transmission member 24 by any suitable means for transmitting ultrasound energy to transmission member 24 from transducer 14. An absorber member 50 is disposed around at least a portion of ultrasound transmission member 24 immediately distal and immediately adjacent to sonic connector 52. Absorber member 50 is described in further detail below, but generally is configured to abut sonic connector 52 to absorb heat and/or transverse vibrations from, and therefore reduce wear and tear on, ultrasound transmission member 24. Optionally, some embodiments further include one or more O-rings 46 distal to absorber member 50 and disposed about ultrasound transmission member 24 for providing further absorption of transverse vibration. Absorber member 50 and O-rings 46 may be used in any number or combination and have and suitable size and configuration, depending on the desired level of vibration absorption or dampening. Alternatively or additionally, other dampening structures may be used. Thus, the invention is not limited to the combination shown in FIG. 2.


Distal segment 49 of bore 44 typically surrounds a portion of ultrasound transmission member 24 and may also contain one or more additional sets of absorber members 46. Distal segment 49 may also contain a portion of a Y-connector 15, which is coupled with the distal end 43 of housing 42 of proximal end connector apparatus 12. Coupling of Y-connector 15 with distal end 43 of proximal end connector assembly 12 may be accomplished via complementary threads, pressure fitting, or any other suitable means. A Y-connector lumen 48 of Y-connector 15 allows passage of ultrasound transmission member 24 and is in communication with the catheter body lumen.


Generally, pressurized fluid such as a coolant liquid may be infused through side-arm 13, through Y-connector lumen 45 and through the catheter body lumen so that it flows out of one or more fluid outflow apertures in distal head. The temperature and flow rate of such coolant liquid may be specifically controlled to maintain the temperature of ultrasound transmission member 24 at a desired temperature within its optimal working range. In particular, in embodiments of the invention wherein ultrasound transmission member 24 is formed of a metal alloy which exhibits optimal physical properties (e.g. super elasticity) within a specific range of temperatures, the temperature and flow rate of coolant liquid infused through fluid infusion side-arm 13 may be specifically controlled to maintain the temperature of ultrasound transmission member 24 within a range of temperatures at which it demonstrates its most desirable physical properties. For example, in embodiments of the invention wherein ultrasound transmission member 24 is formed of a shape memory alloy which exhibits super elasticity when in its martensite state, but which loses super elasticity as it transitions to an austenite state, it will be desirable to adjust the temperature and flow rate of the coolant liquid infused through fluid infusion side-arm 13 so as to maintain the shape memory alloy of ultrasound transmission member 24 within a temperature range at which the alloy will remain in its martensite state and will not transition to an austenite state. The temperature at which such shape memory alloys transition from a martensite state to an austenite state is known as the “martensite transition temperature” of the material. Thus, in these embodiments, the fluid infused through side-arm 13 will be at such temperature, and will be infused at such rate, as to maintain the shape memory alloy of ultrasound transmission member 24 below its martensite transition temperature.


Referring to FIGS. 3A and 3B, one embodiment of absorber member 50 of the present invention is shown disposed about ultrasound transmission wire 24 and immediately adjacent the distal end of sonic connector 52. Generally, absorber member 50 may have any suitable size, shape or configuration, may be made of any suitable material, and may be coupled with ultrasound transmission member 24 by any suitable means to provide for absorption or dampening of heat, transverse vibrations, other unwanted stresses on ultrasound transmission member 24 and/or the like. Typically, absorber member 50 is made from relatively light-weight material(s), so that little or no additional load is placed on the transmission wire. In some embodiments, absorber member 50 comprises one or more materials having heat transfer properties for absorbing heat from ultrasound transmission member 24. Essentially, such an absorber member 50 acts as a heat sink to help prevent ultrasound transmission member from increasing in temperature to a level which may increase wear and tear of transmission member 24. Materials which may be used for providing absorber member with heat absorption properties, for example, may include but are not limited to aluminum and its alloys, magnesium and it alloys and/or titanium and its alloys.


Absorber member 50 may be coupled with ultrasound transmission member 24 by any suitable means. In some embodiments, for example, absorber member 50 may be positioned at a desired location on transmission member 24 during manufacturing and then may be crimped, using a crimping device, to adhere to transmission member 24. Other methods for coupling absorber member 50 with transmission member 24 are also contemplated, such as pressure fitting, use of adhesive substances, and the like.


Absorber members 50 of the present invention are generally positioned on transmission member 24 at a location adjacent to the distal end of sonic connector 52. As shown in FIG. 3A, in some embodiments absorber member 50 is positioned immediately adjacent and abutting the distal end of sonic connector 52. In other embodiments, as in FIG. 3B, absorber member 50 may be disposed very close to the distal end of sonic connector 52 without actually abutting or touching sonic connector 52. In various embodiments, for example, the distance between the distal end of sonic connector 52 and the proximal end of absorber member 50 may range up to a few millimeters.


With reference now to FIGS. 4A and 4C, various embodiments of proximal end connector apparatus 12 may include an absorber member 50 having two or more component parts and/or comprising two or more different materials. For example, in some embodiments absorber member 50 includes a vibrational absorber 58 immediately surrounding transmission member 24 and a constraining member 56 immediately surrounding vibrational absorber 58. In various embodiments, vibrational absorber 58 and/or constraining member 56 may be configured to absorb transverse vibrations, absorb/transfer heat, or both. In some embodiments, for example, vibrational absorber 58 is made from a polymer or plastic capable of absorbing both vibrations and heat, while constraining member 56 is configured primarily to hold vibrational absorber 58 in place on transmission member 24.


In other embodiments, for example as in FIG. 4B, a differently shaped constraining member 64 may include one or more heat absorptive materials, and part of constraining member 64 may contact transmission member 24 or be disposed in close proximity to transmission member 24 to absorb heat generated in transmission member 24. Constraining member 64 may also absorb vibrations in some embodiments. In various embodiments, therefore, constraining member 56, 64 may serve a constraining function, a vibrational absorption function, a heat absorption function, or any combination thereof.


Referring now to FIG. 4C, another embodiment of absorber member 50 includes a constraining member 68 that overlaps a distal portion of sonic connector 52. Again, such a constraining member 68 may provide for vibration and/or heat absorption in addition to the constraining function. In such overlapping embodiments, vibrational absorber 58 may directly abut the distal end of sonic connector 52 or may be spaced apart from sonic connector 52, as shown in FIG. 4C. Generally, absorber members 50 of the invention will include at least one part that abuts or is closely adjacent to sonic connector 52, but may include one or more parts that are separate as well, as in FIG. 4C. As is evident from FIGS. 4A-4C, absorber member 50 may include any suitable combination of component parts having any suitable configuration and comprising any suitable combination of materials. In other embodiments, of course, absorber member 50 may comprise one, unitary piece, may comprise more than two components parts, or the like.


Although the invention has been described above with specific reference to various embodiments and examples, it should be understood that various additions, modifications, deletions and alterations may be made to such embodiments without departing from the spirit or scope of the invention. Accordingly, it is intended that all reasonably foreseeable additions, deletions, alterations and modifications be included within the scope of the invention as defined in the following claims.

Claims
  • 1. An ultrasound catheter for disrupting occlusions in blood vessels, the ultrasound catheter comprising: an elongate flexible catheter body having a proximal end, a distal end and at least one lumen;a housing connected to the proximal end of the catheter body having a lumen and a hollow inner bore defining an inner wall;an ultrasound transmission member extending longitudinally through the lumen of the catheter body;a sonic connector having a proximal end and a distal end, the proximal end being configured to be directly connected to an ultrasound transducer, the distal end being directly connected to a proximal end of the ultrasound transmission member; andan absorber member coupled with the ultrasound transmission member adjacent the sonic connector, and positioned distally of the sonic connector, and separated from the inner wall.
  • 2. An ultrasound catheter as in claim 1, wherein the absorber member surrounds a portion of the ultrasound transmission member adjacent a distal end of the sonic connector.
  • 3. An ultrasound catheter as in claim 2, wherein the absorber member includes a bore for receiving the ultrasound transmission member.
  • 4. An ultrasound catheter as in claim 3, wherein the absorber member is tubular.
  • 5. An ultrasound catheter as in claim 1, wherein a proximal portion of the absorber member contacts a distal end of the sonic connector.
  • 6. An ultrasound catheter as in claim 1, wherein the absorber member is separated from a distal end of the sonic connector by a distance of approximately ¼ wavelength of an ultrasound wave transmitted to the ultrasound catheter.
  • 7. The ultrasound catheter as in claim 1, wherein the absorber member does not contact the catheter body.
  • 8. An ultrasound catheter as in claim 1, wherein the absorber member comprises at least one vibration absorbing material selected from the group consisting of a rubber, a polymer, and a rubber/polymer combination.
  • 9. An ultrasound catheter as in claim 8, wherein the absorber member further comprises at least one metal having heat conductivity properties.
  • 10. An ultrasound catheter as in claim 1, wherein the absorber member comprises: a vibrational absorber in contact with the ultrasound transmission member for absorbing vibrations; anda constraining member coupled with the vibrational absorber for holding the vibrational absorber in place on the ultrasound transmission member.
  • 11. An ultrasound catheter as in claim 10, wherein both the vibrational absorber and the constraining member are tubular, the constraining member substantially surrounding the vibrational absorber.
  • 12. An ultrasound catheter as in claim 10, wherein the constraining member contacts the transmission member and comprises an absorptive material for absorbing heat.
  • 13. An ultrasound catheter as in claim 10, wherein a proximal portion of the constraining member surrounds a proximal portion of the absorber member, and the proximal portion of the constraining member contacts a distal portion of the sonic connector.
  • 14. An ultrasound catheter as in claim 10, wherein the constraining member has a proximal end and a distal end, and wherein the constraining member comprises a bore for receiving the ultrasound transmission member, wherein the bore includes a widened portion at the proximal end for receiving the vibrational absorber.
  • 15. An ultrasound catheter as in claim 10, wherein both the vibrational absorber and the constraining member are tubular and of substantially equal length, the constraining member substantially surrounding the vibrational absorber, a proximal end of the vibrational absorber substantially coinciding with a proximal end of the constraining member, and a distal end of the vibrational absorber substantially coinciding with a distal end of the constraining member.
  • 16. An ultrasound catheter for disrupting occlusions in blood vessels, the ultrasound catheter comprising: an elongate flexible catheter body having a proximal end, a distal end and at least one lumen;a housing connected to the proximal end of the catheter body having a lumen and a hollow inner bore defining an inner wall;an ultrasound transmission member extending longitudinally through the lumen of the catheter body;a sonic connector having a distal end directly connected to a proximal end of the ultrasound transmission member and a proximal end for directly connecting to a separate ultrasound generating device; andan absorber member coupled with and supported by the ultrasound transmission member, positioned adjacent and distally of the sonic connector, and separated from the inner wall.
  • 17. An ultrasound catheter as in claim 16, wherein the absorber member comprises: a vibrational absorber in contact with the ultrasound transmission member for absorbing vibrations; anda constraining member coupled with the vibrational absorber for holding the vibrational absorber in place on the ultrasound transmission member.
  • 18. An ultrasound catheter for disrupting occlusions in blood vessels, the ultrasound catheter comprising: an elongate flexible catheter body having a proximal end, a distal end and at least one lumen;a housing connected to the proximal end of the catheter body having a lumen and a hollow inner bore defining an inner wall;an ultrasound transmission member extending longitudinally through the lumen of the catheter body;a sonic connector having a distal end directly connected to a proximal end of the ultrasound transmission member and a proximal end for directly connecting to a separate ultrasound generating device; andan absorber member coupled with the ultrasound transmission member adjacent the distal end of the sonic connector, positioned distally of the sonic connector, and separated from the inner wall, wherein the absorber member comprises a vibrational absorber in contact with the transmission member for absorbing vibrations, and comprises a constraining member coupled with and at least partially surrounding the vibrational absorber for holding the vibrational absorber in place on the transmission member; andwherein a proximal end of the vibrational absorber substantially coincides with a proximal end of the constraining member.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 11/179,829 (now U.S. Pat. No. 7,621,929), filed Jul. 11 , 2005, which is a division of U.S. patent application Ser. No. 10/375,903 (now U.S. Pat. No. 6,942,677), filed Feb. 26, 2003, and is related to U.S. patent application Ser. No. 10/229,371 (now U.S. Pat. No. 7,137,963), filed Aug. 26, 2002, entitled “Ultrasound Catheter for Disrupting Blood Vessel Obstructions,” the full disclosures of which are hereby incorporated by reference.

US Referenced Citations (255)
Number Name Date Kind
3433226 Boyd Mar 1969 A
3565062 Kuris Feb 1971 A
3612038 Halligan et al. Oct 1971 A
3631848 Muller Jan 1972 A
3719737 Vaillancourt et al. Mar 1973 A
3823717 Pohlman et al. Jul 1974 A
3839841 Amplatz Oct 1974 A
3896811 Storz Jul 1975 A
4016882 Broadwin et al. Apr 1977 A
4033331 Guss et al. Jul 1977 A
4136700 Broadwin et al. Jan 1979 A
4337090 Harrison Jun 1982 A
4368410 Hance Jan 1983 A
4417578 Banko Nov 1983 A
4425115 Wuchinich Jan 1984 A
4486680 Bonnet et al. Dec 1984 A
4505767 Quin Mar 1985 A
4565589 Harrison Jan 1986 A
4572184 Stohl et al. Feb 1986 A
4664112 Kensey et al. May 1987 A
4665906 Jervis May 1987 A
4679558 Kensey et al. Jul 1987 A
4700705 Kensey et al. Oct 1987 A
4721117 Mar et al. Jan 1988 A
4750902 Wuchinich et al. Jun 1988 A
4808153 Parisi Feb 1989 A
4811743 Stevens Mar 1989 A
4827911 Broadwin et al. May 1989 A
4838853 Parisi Jun 1989 A
4854325 Stevens Aug 1989 A
4870953 DonMicheal et al. Oct 1989 A
4886060 Wiksell Dec 1989 A
4920954 Alliger et al. May 1990 A
4923462 Stevens May 1990 A
4924863 Sterzer May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936845 Stevens Jun 1990 A
5000185 Yock Mar 1991 A
5015227 Broadwin et al. May 1991 A
5026384 Farr et al. Jun 1991 A
5046503 Schneiderman Sep 1991 A
5053008 Bajaj Oct 1991 A
5058570 Idemoto et al. Oct 1991 A
5076276 Sakurai Dec 1991 A
5091205 Fan Feb 1992 A
5100423 Fearnot Mar 1992 A
5109859 Jenkins May 1992 A
5114414 Buchbinder May 1992 A
5116350 Stevens May 1992 A
5127917 Niederhauser et al. Jul 1992 A
5156143 Bocquet et al. Oct 1992 A
5163421 Bernstein Nov 1992 A
5180363 Idemoto et al. Jan 1993 A
5183470 Wettermann Feb 1993 A
5195955 Don Michael Mar 1993 A
5215614 Wijkamp et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5226421 Frisbie et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242385 Strukel Sep 1993 A
5243997 Uflacker et al. Sep 1993 A
5248296 Alliger Sep 1993 A
5255669 Kubota et al. Oct 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5269297 Weng et al. Dec 1993 A
5269793 Simpson Dec 1993 A
5287858 Hammerslag et al. Feb 1994 A
5290229 Paskar Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5312328 Nita et al. May 1994 A
5324255 Passafaro et al. Jun 1994 A
5324260 O'neill et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5341818 Abrams et al. Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5362309 Carter Nov 1994 A
5368557 Nita Nov 1994 A
5368558 Nita Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5378234 Hammerslag et al. Jan 1995 A
5380274 Nita Jan 1995 A
5380316 Aita et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5389096 Aita et al. Feb 1995 A
5397293 Alliger et al. Mar 1995 A
5397301 Pflueger et al. Mar 1995 A
5405318 Nita Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417703 Brown et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431663 Carter Jul 1995 A
5443078 Uflacker Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449369 Imran Sep 1995 A
5451209 Ainsworth et al. Sep 1995 A
5465733 Hinohara et al. Nov 1995 A
5474531 Carter Dec 1995 A
5480379 La Rosa Jan 1996 A
5484398 Stoddard Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5507738 Ciervo Apr 1996 A
5516043 Manna et al. May 1996 A
5527273 Manna et al. Jun 1996 A
5540656 Pflueger et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5597882 Schiller et al. Jan 1997 A
5607421 Jeevanandam et al. Mar 1997 A
5611807 O'Boyle Mar 1997 A
5618266 Liprie Apr 1997 A
5626593 Imran May 1997 A
5658282 Daw et al. Aug 1997 A
5695460 Siegel et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5715825 Crowley Feb 1998 A
5720724 Ressemann et al. Feb 1998 A
5728062 Brisken Mar 1998 A
5738100 Yagami et al. Apr 1998 A
5797876 Spears et al. Aug 1998 A
5816923 Milo et al. Oct 1998 A
5827203 Nita Oct 1998 A
5830222 Makower Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5895397 Jang et al. Apr 1999 A
5902287 Martin May 1999 A
5904667 Falwell May 1999 A
5916192 Nita et al. Jun 1999 A
5935142 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5957882 Nita et al. Sep 1999 A
5957899 Spears et al. Sep 1999 A
5964223 Baran Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971949 Levin et al. Oct 1999 A
5976119 Spears et al. Nov 1999 A
5989208 Nita Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004280 Buck et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6007514 Nita Dec 1999 A
6022309 Celliers et al. Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6030357 Daoud et al. Feb 2000 A
6051010 DiMatteo et al. Apr 2000 A
6113558 Rosenschein et al. Sep 2000 A
6123698 Spears et al. Sep 2000 A
6149596 Bancroft Nov 2000 A
6159176 Broadwin et al. Dec 2000 A
6165127 Crowley Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6179809 Khairkhahan et al. Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6206842 Tu et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6217543 Anis et al. Apr 2001 B1
6231546 Milo et al. May 2001 B1
6231587 Makower May 2001 B1
6235007 Divinio, Jr. et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6241703 Levin et al. Jun 2001 B1
6277084 Abele et al. Aug 2001 B1
6283983 Makower et al. Sep 2001 B1
6287271 Dubrul et al. Sep 2001 B1
6287285 Michal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6296620 Gesswein et al. Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6309358 Okubo Oct 2001 B1
6315741 Martin et al. Nov 2001 B1
6331171 Cohen Dec 2001 B1
6379378 Werneth et al. Apr 2002 B1
6387109 Davison et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398736 Seward Jun 2002 B1
6416533 Gobin et al. Jul 2002 B1
6423026 Gesswein et al. Jul 2002 B1
6433464 Jones Aug 2002 B2
6434418 Neal et al. Aug 2002 B1
6450975 Brennan et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6491707 Makower Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6508781 Brennan et al. Jan 2003 B1
6508784 Shu Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6524251 Rabiner et al. Feb 2003 B2
6544215 Bencini et al. Apr 2003 B1
6547754 Evans et al. Apr 2003 B1
6551337 Rabiner et al. Apr 2003 B1
6554846 Hamilton et al. Apr 2003 B2
6558502 Divino, Jr. et al. May 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6589253 Cornish et al. Jul 2003 B1
6596235 Divino, Jr. et al. Jul 2003 B2
6615062 Ryan et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6635017 Moehring et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6660013 Rabiner Dec 2003 B2
6676900 Divino, Jr. et al. Jan 2004 B1
6682502 Bond et al. Jan 2004 B2
6685657 Jones Feb 2004 B2
6689086 Nita et al. Feb 2004 B1
6695781 Rabiner et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6702750 Yock Mar 2004 B2
6719725 Milo et al. Apr 2004 B2
6729334 Baran May 2004 B1
6761698 Shibata et al. Jul 2004 B2
6855123 Nita Feb 2005 B2
6936025 Evans et al. Aug 2005 B1
6936056 Nash et al. Aug 2005 B2
6942677 Nita et al. Sep 2005 B2
7004173 Sparks et al. Feb 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7131983 Murakami Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7150853 Lee et al. Dec 2006 B2
7166098 Steward et al. Jan 2007 B1
7267650 Chow et al. Sep 2007 B2
7335180 Nita et al. Feb 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7494468 Rabiner et al. Feb 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7604608 Nita et al. Oct 2009 B2
7621929 Nita et al. Nov 2009 B2
7776025 Bobo, Jr. Aug 2010 B2
7938819 Kugler et al. May 2011 B2
8083727 Kugler et al. Dec 2011 B2
8133236 Nita Mar 2012 B2
8226566 Nita Jul 2012 B2
20020049402 Peacock, III et al. Apr 2002 A1
20030009153 Brisken et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030125620 Satou et al. Jul 2003 A1
20030199817 Thompson et al. Oct 2003 A1
20050222557 Baxter et al. Oct 2005 A1
20060264759 Moehring et al. Nov 2006 A1
20070037119 Pal et al. Feb 2007 A1
20070260172 Nita Nov 2007 A1
20080287804 Nita Nov 2008 A1
20110130834 Wilson et al. Jun 2011 A1
Foreign Referenced Citations (55)
Number Date Country
2256127 May 1974 DE
3821836 Feb 1976 DE
2438648 Jan 1990 DE
8910040 Jan 1990 DE
4042435 Aug 1991 DE
0005719 Dec 1979 EP
316789 May 1989 EP
316789 May 1989 EP
0376562 Jul 1990 EP
0379156 Jul 1990 EP
0394583 Oct 1990 EP
0443256 Aug 1991 EP
0541249 May 1993 EP
0820728 Jan 1998 EP
1323481 Jul 2003 EP
1106957 Mar 1968 GB
SHO61-272045 Dec 1986 JP
01099547 Apr 1989 JP
2-71510 May 1990 JP
U03067608 Jul 1991 JP
2006086822 Mar 1994 JP
2007116260 May 1995 JP
09-503137 Mar 1997 JP
10216140 Aug 1998 JP
2001104356 Apr 2001 JP
2001321388 Nov 2001 JP
2002186627 Jul 2002 JP
2005-253874 Sep 2005 JP
2006-522644 Oct 2006 JP
WO 8705739 Sep 1987 WO
WO 8906515 Sep 1989 WO
WO 9001300 Feb 1990 WO
WO9004362 May 1990 WO
WO9107917 Jun 1991 WO
WO9211815 Jul 1992 WO
WO9308750 May 1993 WO
WO9316646 Sep 1993 WO
WO9412140 Jun 1994 WO
WO9414382 Jul 1994 WO
WO9508954 Apr 1995 WO
WO9509571 Apr 1995 WO
WO 9515192 Jun 1995 WO
WO9635469 Nov 1996 WO
WO 9721462 Jun 1997 WO
WO 9745078 Dec 1997 WO
WO9835721 Aug 1998 WO
WO9852637 Nov 1998 WO
WO9925412 May 1999 WO
WO0053341 Sep 2000 WO
WO0067830 Nov 2000 WO
WO2004012609 Feb 2004 WO
WO 2004093736 Nov 2004 WO
WO2004112888 Dec 2004 WO
WO 2005053769 Jun 2005 WO
WO 2006049593 May 2006 WO
Non-Patent Literature Citations (10)
Entry
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beam-rd/Ebeam Theory.htm> 2 pages total.
“What is electron beam curing?” downloaded from web on Nov. 14, 2002 <http://www.mis.omi.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha> 4 pages total.
Calhoun, et al., “Electron-beam systems for medical device sterilization” download from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archives/97/07/002.html> 7 pages total.
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351.
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4.
Office Action for Japanese Patent Application No. 2010-122862, Mar. 5, 2012.
Health Care Without Harm [report], Non-Incineration Medical Waste Treatment Technologies, “Irradiation, biological, and other technologies: E-beam, biological, and sharps treatment systems”, Chapter 9., Aug. 2001, pp. 69-74.
Chandra Sehgal et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943.
http://www.merriam-webster.com/dictionary/couple, definition of the term coupled retrieved on, May 18, 2013.
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by ‘therapeutic’ ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676.
Related Publications (1)
Number Date Country
20100049209 A1 Feb 2010 US
Divisions (1)
Number Date Country
Parent 10375903 Feb 2003 US
Child 11179829 US
Continuations (1)
Number Date Country
Parent 11179829 Jul 2005 US
Child 12572118 US