Field of the Invention
The present invention pertains to medical equipment, and more particularly, to a therapeutic ultrasound system for ablating obstructions within tubular anatomical structures such as blood vessels. The ultrasound system includes a protective feature that minimizes the introduction of debris into the patient's vasculature if the ultrasound transmission member were to break, fracture or become dislodged during a medical procedure. The ultrasound system also includes a distal tip configuration that increases energy intensity and reduces perforations.
Description of the Prior Art
A number of ultrasound systems and devices have heretofore been proposed for use in ablating or removing obstructive material from blood vessels. Ultrasound catheters have been utilized to ablate various types of obstructions from blood vessels of humans and animals. Successful applications of ultrasound energy to smaller blood vessels, such as the coronary arteries, requires the use of relatively small diameter ultrasound catheters which are sufficiently small and flexible to undergo transluminal advancement through the tortuous vasculature of the aortic arch and coronary tree. However, because of its small diameter, the ultrasound transmission member which extends through such catheters is particularly susceptible to losses in the transmitted ultrasound energy, and breakage. Reducing the size of the ultrasound transmission member, particularly the distal tip, will increase energy intensity. However, it will also make the distal tip of the ultrasound transmission member more prone to perforations due to inherited stiffness of the transmission member and a smaller tip size.
Breakage of ultrasound transmission members often occurs near the proximal end thereof, generally at the coupling between the ultrasound catheter coupling and the ultrasound transducer. This is believed to be because energy concentrations and stresses are highest at these points. Thus, any external forces applied to the ultrasound transmission member in this region may result in stresses exceeding the elastic limit of the ultrasound transmission member.
Breakage of ultrasound transmission members can also occur near the distal end thereof, generally at the area of the smallest cross-section. To minimize breakage of the ultrasound transmission wire at the distal end, a smaller distal tip with less mass or a tip made of polymer or a lower density metal may be utilized to further reduce stress at the distal in on the transmission wire. It is important that any debris resulting from the breakage of the ultrasound transmission member not be allowed to be introduced into a patient's vasculature during a medical procedure.
Thus, there still exists a need to further improve efficacy of the ultrasound systems and protect against breakage of the ultrasound transmission member during a medical procedure.
It is an object of the present invention to provide an ultrasound catheter system with a protective feature that prevents or minimizes the introduction of debris into the patient's vasculature if the ultrasound transmission member were to break or fracture during a medical procedure.
In order to accomplish the objects of the present invention, there is provided an ultrasound catheter having an elongate flexible catheter body having a lumen extending longitudinally therethrough, and an ultrasound transmission member extending longitudinally through the lumen of the catheter body. The ultrasound transmission member has a proximal end that is coupled to a separate ultrasound generating device, and a distal end that terminates at the distal end of the catheter body. The ultrasound transmission member is directly attached to the guidewire tube and/or the catheter body, and such attachment can be accomplished using a direct attachment or via an attachment member. A radiopaque marker or sleeve can also be positioned on the distal end of the ultrasound catheter to improve its visibility.
The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices, compositions, components, mechanisms and methods are omitted so as to not obscure the description of the present invention with unnecessary detail.
The catheter body 11 is formed of a flexible polymeric material such as nylon (Pebax™) manufactured by Atochimie, Cour be Voie, Hauts Ve-Sine, France. The flexible catheter body 11 is preferably in the form of an elongate tube having one or more lumens extending longitudinally therethrough. The catheter body 11 defines a main lumen 15. Extending longitudinally through the main lumen 15 is an elongate ultrasound transmission member 16 having a proximal end which is removably connectable to the ultrasound transducer 24 via a sonic connector (not shown) such that ultrasound energy will pass through the ultrasound transmission member 16. As such, when the foot actuated on-off switch 28 operatively connected to the ultrasound transducer 24 is depressed; ultrasound energy will pass through the ultrasound transmission member 16 to the distal end 14 of the catheter body 11.
A guidewire port 58 is provided in the catheter body 11 at any location along the catheter body 11. A guidewire lumen 60 extends from the guidewire port 58 through the main lumen 15 of the catheter body 11 in a manner that is concomitant to the length of the ultrasound transmission member 16. In one embodiment, the guidewire port 58 can be provided at a location that is closer to the proximal end 12 than to the distal end 14 of the catheter.
In one embodiment, the ultrasound transmission member 16 may be formed of any material capable of effectively transmitting the ultrasonic energy from the ultrasound transducer 24 to the distal end 14 of the ultrasound transmission member 16, and is preferably made from metal or metal alloys. It is possible to form all or a portion of the ultrasound transmission member 16 with one or more materials which exhibit super-elasticity. Such materials should preferably exhibit super-elasticity consistently within the range of temperatures normally encountered by the ultrasound transmission member 16 during operation of the catheter device 10. Specifically, all or part of the ultrasound transmission member 16 may be formed of one or more metal alloys known as “shape memory alloys”. Examples of super-elastic metal alloys which are usable to form the ultrasound transmission member 16 of the present invention are described in detail in U.S. Pat. No. 4,665,906 (Jervis); U.S. Pat. No. 4,565,589 (Harrison); U.S. Pat. No. 4,505,767 (Quin); and U.S. Pat. No. 4,337,090 (Harrison). The disclosures of U.S. Pat. Nos. 4,665,906; 4,565,589; 4,505,767; and 4,337,090 are expressly incorporated herein by reference insofar as they describe the compositions, properties, chemistries, and behavior of specific metal alloys which are super-elastic within the temperature range at which the ultrasound transmission member 16 of the present invention operates, any and all of which super-elastic metal alloys may be usable to form the super-elastic ultrasound transmission member 16.
The frontal portion of the Y-connector 18 is connected to the proximal end 12 of the catheter 10 using techniques that are well-known in the catheter art. An injection pump 54 or IV bag (not shown) or syringe (not shown) can be connected, by way of an infusion tube 55, to an infusion port or sidearm 72 of the Y-connector 18 (see
In addition to the foregoing, the injection pump 54 or syringe may be utilized to infuse a radiographic contrast medium into the catheter 10 for purposes of imaging. Examples of iodinated radiographic contrast media which may be selectively infused into the catheter 10 via the injection pump 54 are commercially available as Angiovist 370 from Berlex Labs, Wayne, N.J. and Hexabrix from Malinkrodt, St. Louis, Mo.
The proximal end of the Y-connector 18 is attached to the distal end of the catheter knob 20 by threadably engaging the proximal end of the Y-connector 18 inside a threaded distal bore (not shown) at the distal end of the catheter knob 20.
The proximal end of the ultrasound transmission member 16 is attached to a sonic connector (not shown) which is configured to effect operative and removable attachment of the proximal end of the ultrasound transmission member 16 to the horn of the ultrasound transducer 24. The sonic connector is preferably configured and constructed to permit passage of ultrasound energy through the ultrasound transmission member 16 with minimal lateral side-to-side movement of the ultrasound transmission member 16 while, at the same time, permitting unrestricted longitudinal forward/backward vibration or movement of the ultrasound transmission member 16. Examples of ultrasound transducers, sonic connectors and their connections are illustrated in U.S. Pat. Nos. 6,702,748, 6,855,123, 6,942,620 and 6,942,677, whose disclosures are incorporated by this reference as though set forth fully herein.
Referring to
In the embodiment shown in
The distal end 14a in
In addition, instead of the attachment mechanism 64, the embodiments of
The distal end 14b in
Third, the intermediate member 64b in
Comparing the embodiments of
In
Attaching the anchor wire 64c or 64d to the cap 66c or 66d, or not attaching the anchor wire 64c or 64d to the cap 66c or 66d, provides different options. Attaching the anchor wire 64c to the cap 66c prevents dislodgement of the cap 66c or the distal tip 36c if the breakage occurs near or at the distal tip 36c. However, breakage at such locations is rare, so the embodiment in
A guidewire has been included in the embodiments of
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
This is a divisional of U.S. patent application Ser. No. 12/218,827, filed Jul. 18, 2008, now U.S. Pat. No. 8,246,643, which is a continuation-in-part of U.S. patent application Ser. No. 12/004,984, filed Dec. 21, 2007, now U.S. Pat. No. 8,496,669, which is in turn a continuation-in-part of U.S. patent application Ser. No. 11/594,663, filed Nov. 7, 2006, now U.S. Pat. No. 8,133,236, whose entire disclosures are incorporated herein by this reference as though set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
3433226 | Boyd | Mar 1969 | A |
3565062 | Kuris | Feb 1971 | A |
3612038 | Halligan et al. | Oct 1971 | A |
3631848 | Muller | Jan 1972 | A |
3719737 | Vaillancourt et al. | Mar 1973 | A |
3823717 | Pohlman | Jul 1974 | A |
3839841 | Amplatz | Oct 1974 | A |
3896811 | Storz | Jul 1975 | A |
4016882 | Broadwin et al. | Apr 1977 | A |
4033331 | Guss et al. | Jul 1977 | A |
4136700 | Broadwin et al. | Jan 1979 | A |
4337090 | Harrison | Jun 1982 | A |
4368410 | Hance | Jan 1983 | A |
4417578 | Banko | Nov 1983 | A |
4425115 | Wuchinich | Jan 1984 | A |
4486680 | Bonnet | Dec 1984 | A |
4505767 | Quin | Mar 1985 | A |
4545767 | Suzuki | Oct 1985 | A |
4565589 | Harrison | Jan 1986 | A |
4565787 | Bossle et al. | Jan 1986 | A |
4572184 | Stohl | Feb 1986 | A |
4664112 | Kensey et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4808153 | Parisi | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4870953 | Donmicheal | Oct 1989 | A |
4886060 | Wiksell | Dec 1989 | A |
4920954 | Alliger | May 1990 | A |
4923462 | Stevens | May 1990 | A |
4924863 | Sterzer | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
5000185 | Yock | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026384 | Farr | Jun 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5076276 | Sakurai | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5156143 | Bocquet et al. | Oct 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5215614 | Wijkamp et al. | Jun 1993 | A |
5221255 | Mahurkar | Jun 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255669 | Kubota et al. | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5287858 | Hammerslag et al. | Feb 1994 | A |
5290229 | Paskar | Mar 1994 | A |
5304115 | Pflueger | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324260 | O'neill et al. | Jun 1994 | A |
5325860 | Seward | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368557 | Nita | Nov 1994 | A |
5368558 | Nita | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380274 | Nita | Jan 1995 | A |
5380316 | Aita et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383460 | Jang | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397293 | Alliger | Mar 1995 | A |
5397301 | Pflueger | Mar 1995 | A |
5405318 | Nita | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5421923 | Clarke et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431663 | Carter | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449369 | Imran | Sep 1995 | A |
5451209 | Ainsworth et al. | Sep 1995 | A |
5465733 | Hinohara | Nov 1995 | A |
5474531 | Carter | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5527273 | Manna | Jun 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5597497 | Dean et al. | Jan 1997 | A |
5597882 | Schiller et al. | Jan 1997 | A |
5607421 | Jeevanandam | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5618266 | Liprie | Apr 1997 | A |
5626593 | Imran | May 1997 | A |
5649935 | Kremer | Jul 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5738100 | Yagami et al. | Apr 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5827203 | Nita | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5895397 | Jang | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5904667 | Falwell | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916912 | Ames et al. | Jun 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5937301 | Gardner et al. | Aug 1999 | A |
5944737 | Tsonton | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957899 | Spears et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5976119 | Spears et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004280 | Buck | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030357 | Daoud et al. | Feb 2000 | A |
6051010 | DiMatteo | Apr 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6149596 | Bancroft | Nov 2000 | A |
6159176 | Broadwin et al. | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206842 | Tu | Mar 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235007 | Divino, Jr. et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6277084 | Abele et al. | Aug 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6296620 | Gesswein | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309358 | Okubo | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6387109 | Davison | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398736 | Seward | Jun 2002 | B1 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6423026 | Gesswein et al. | Jul 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6434418 | Neal et al. | Aug 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6454757 | Nita | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6491707 | Makower | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6508781 | Brennan et al. | Jan 2003 | B1 |
6508784 | Shu | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547754 | Evans et al. | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6554846 | Hamilton et al. | Apr 2003 | B2 |
6558502 | Divino, Jr. et al. | May 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6573470 | Brown et al. | Jun 2003 | B1 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6596235 | Divino, Jr. et al. | Jul 2003 | B2 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6635017 | Moehring et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6660013 | Rabiner | Dec 2003 | B2 |
6676900 | Divino, Jr. et al. | Jan 2004 | B1 |
6682502 | Bond et al. | Jan 2004 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695810 | Peacock, III et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702750 | Yock | Mar 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6936025 | Evans et al. | Aug 2005 | B1 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7150853 | Lee et al. | Dec 2006 | B2 |
7166098 | Steward et al. | Jan 2007 | B1 |
7220233 | Nita et al. | May 2007 | B2 |
7267650 | Chow et al. | Sep 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7425198 | Moehring et al. | Sep 2008 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7771358 | Moehring et al. | Aug 2010 | B2 |
7776025 | Bobo, Jr. | Aug 2010 | B2 |
7938819 | Kugler et al. | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
8043251 | Nita et al. | Oct 2011 | B2 |
8083727 | Kugler et al. | Dec 2011 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
20020077643 | Rabiner | Jun 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030125620 | Satou et al. | Jul 2003 | A1 |
20030199817 | Thompson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030225332 | Okada | Dec 2003 | A1 |
20040138570 | Nita et al. | Jul 2004 | A1 |
20040167507 | Nita et al. | Aug 2004 | A1 |
20040204670 | Nita et al. | Oct 2004 | A1 |
20050113688 | Nita et al. | May 2005 | A1 |
20050215946 | Hansmann et al. | Sep 2005 | A1 |
20050222557 | Baxter et al. | Oct 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060264759 | Moehring et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070037119 | Pal et al. | Feb 2007 | A1 |
20070260172 | Nita | Nov 2007 | A1 |
20080108937 | Nita | May 2008 | A1 |
20080221506 | Rodriguez et al. | Sep 2008 | A1 |
20080228111 | Nita | Sep 2008 | A1 |
20080287804 | Nita | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
2256127 | May 1974 | DE |
2438648 | Feb 1976 | DE |
3821836 | Jan 1990 | DE |
8910040 | Jan 1990 | DE |
4042435 | Aug 1991 | DE |
0005719 | Dec 1979 | EP |
0316789 | May 1989 | EP |
0376562 | Jul 1990 | EP |
0379156 | Jul 1990 | EP |
0394583 | Oct 1990 | EP |
0443256 | Aug 1991 | EP |
0541249 | May 1993 | EP |
0316796 | Nov 1995 | EP |
0820728 | Jan 1998 | EP |
1323481 | Jul 2003 | EP |
1106957 | Mar 1968 | GB |
SHO61-272045 | Dec 1986 | JP |
01099547 | Apr 1989 | JP |
2-71510 | May 1990 | JP |
U03067608 | Jul 1991 | JP |
7-500752 | Jan 1995 | JP |
2007116260 | May 1995 | JP |
09-503137 | Mar 1997 | JP |
10216140 | Aug 1998 | JP |
2000-291543 | Oct 2000 | JP |
2001104356 | Apr 2001 | JP |
2001321388 | Nov 2001 | JP |
2002186627 | Jul 2002 | JP |
2005-253874 | Sep 2005 | JP |
2006086822 | Mar 2006 | JP |
WO8705739 | Sep 1987 | WO |
WO8705793 | Oct 1987 | WO |
WO8906515 | Jul 1989 | WO |
WO9001300 | Feb 1990 | WO |
WO9004362 | May 1990 | WO |
WO9107917 | Jun 1991 | WO |
WO9211815 | Jul 1992 | WO |
WO9308750 | May 1993 | WO |
WO9316646 | Sep 1993 | WO |
WO9412140 | Jun 1994 | WO |
WO9414382 | Jul 1994 | WO |
WO9508954 | Apr 1995 | WO |
WO9509571 | Apr 1995 | WO |
WO 9515192 | Jun 1995 | WO |
WO9635469 | Nov 1996 | WO |
WO9705739 | Feb 1997 | WO |
WO 9721462 | Jun 1997 | WO |
WO9745078 | Dec 1997 | WO |
WO9827874 | Jul 1998 | WO |
WO 9852637 | Nov 1998 | WO |
WO9851224 | Nov 1998 | WO |
WO9925412 | May 1999 | WO |
WO0053341 | Sep 2000 | WO |
WO0067830 | Nov 2000 | WO |
WO03039381 | May 2003 | WO |
WO2004012609 | Feb 2004 | WO |
WO2004112888 | Dec 2004 | WO |
WO 2006049593 | May 2006 | WO |
Entry |
---|
Chandra Sehgal et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943. |
http://www.merriam-webster.com/dictionary/couple, definition of the term coupled retrieved on, May 18, 2013. |
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by ‘therapeutic’ ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676. |
Health Care Without Harm [report], Non-Incineration Medical Waste Treatment Technologies, “Irradiation, biological, and other technologies: E-beam, biological, and sharps treatment systems”, Chapter 9., Aug. 2001, pp. 69-74. |
Siegel et al., In Vivo Ultrasound Arterial Recanalization Atherosclerotic Total Occlusions, Journal of the American College of Cardiology, Feb. 1990, vol. 15, Issue 2, pp. 345-351. |
Number | Date | Country | |
---|---|---|---|
20120283743 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12218827 | Jul 2008 | US |
Child | 13548982 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12004984 | Dec 2007 | US |
Child | 12218827 | US | |
Parent | 11594663 | Nov 2006 | US |
Child | 12004984 | US |